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Abstract - Often during conferences or casual 
conversations, the speech-impaired people face issues of 
understanding what is being conveyed by the orator and 
also in rightfully putting their opinions in front of others 
without having any sort of miscommunication. In order to 
avoid such issues and establish a common ground for a 
conversation between them, the sign language gestures 
need to be understood for effective communication. In this 
project, we are developing an android application which not 
only detects a person’s hand gestures (American Sign 
Language) in real-time using a pre-trained Machine 
Learning model (Recurrent Neural Networks) but also 
translate it into a text format. This text can later be 
translated into regional languages according to the user's 
choice. Our aim is to recognise American Sign Language 
(ASL) alphabets, numbers and a few commonly used 
phrases.  

Key Words:  Google MediaPipe, Android, ASL, 
Translation, Hand Tracking, Palm Detection, Machine 
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1. INTRODUCTION 

A majority of the population are capable of communicating 
with each other through different verbal methods like 
speech, with the help of various languages which were 
developed by people over past centuries. But not everyone 
is equally gifted to communicate through verbal methods. 
Such people who don’t have the ability to hear and talk are 
called deaf and mute respectively by society. People who 
are deaf-mute experience great limitations and 
inconvenience in their personal and social life. This can 
hinder their day-to-day tasks such as travelling, working 
professionally, taking part in social events, etc. These 
limitations can prove a lifetime disadvantage such as  

1. Losing the sense of independence: Relying on others for 
basic communication and the frustration of not being able 
to convey themselves adequately can lead to lower self-
esteem and confidence.  

2. Poor Education: The majority of the time, deaf-mute 
children are left with no choice but to enroll in 
mainstream schools. These children not only need a 
special environment for their education but also individual 
attention which is generally not available in mainstream 
schools. This results in lower grades than the normal kids 

and also eventually dropping out of school due to their 
environmental and physical shortcomings. Ultimately, 
they have lower employability and become less self-
sufficient.  

3. Poor Social interaction and communication: During 
summits, conferences or public / political speeches, it is 
observed that a Sign Language Translator is assigned for 
the speech-impaired people to understand what is being 
conveyed. Even during day-today conversations, it is 
difficult for a speech-impaired person to rightfully convey 
what he/she means with the help of sign language as there 
are chances of the other person interpreting it differently 
due to lack of knowledge about sign languages. This can 
often lead to miscommunication. The deaf-mute often 
lacks communication skills and hence have a poor social 
life.  

It is shown that deaf people's relations are limited to their 
community and people who know sign language. 

1.1. GESTURES 

Gestures are meaningful maneuvers that involve physical 
motion of different body parts such as hands, fingers, arms, 
head, neck, eyes etc. Gestures convey meaningful 
information. Hand gestures in day-to-day life are used in a 
way by people to express their thoughts and feelings, 
which also helps to reinforce information delivered in our 
daily conversation. Hand gestures vary from person to 
person and are at the same time open for interpretation; 
thus, implying no structure. Sign language, on the other 
hand, is a structured form of hand gestures involving visual 
motions and signs, which are used as a communication 
system.  

1.2. SIGN LANGUAGE 

For speech-impaired as well as deaf people, sign language 
serves as a beneficial tool for day-to-day interactions. Sign 
language involves the use of different body parts such as 
our fingers, head, body, hand, arm and facial expression to 
deliver any kind of information. Using these parts of the 
body different gestures are done to represent concepts 
and ideas thus making Sign Language is a visual language 
of a kind. Primarily, sign languages are used by people 
who are deaf but they can also be used by others, such as 
people who can hear but are speech-impaired and also 
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helpful for children with Autism Spectrum Disorder (ASD) 
who struggle developing verbal communication. Hand 
gestures are usually distinguished into various types such 
as controlling gestures, conversational gestures, 
manipulative gestures, and communicative gestures. Sign 
language comes under the type of communicative 
gestures. Since sign language is highly structural, it is 
suitable to be used as a test-bed for computer vision 
algorithms.  

Like spoken languages, there is no single global sign 
language that is used across the world. These sign 
languages are developed naturally through a variety of 
groups of people interacting with each other resulting in a 
large variety of sign languages. There are somewhere 
between 138 to 300 different types of sign languages used 
across the world. After thorough research, it was observed 
that the most common sign languages used around the 
world are American Sign Language (ASL), Indian Sign 
Language (ISL) and Arabic Sign Language (ArSL). Even 
though countries like Britain, Australia and America which 
have English as their first language have their individual 
sign languages. 

1.2.1. AMERICAN SIGN LANGUAGE 

American Sign Language (ASL) is a hand gesture-based 
language that does not depend upon speech or sound. ASL 
has been used and developed by the deaf community over 
centuries as a means of not only communication on a daily 
basis but also a sign of cultural unity and pride. The most 
common misconception about ASL is that it is a signed 
version of English. ASL has its own grammar, sentence 
formation, slangs, and also regional variation which is 
much more flexible than English due to which it cannot be 
stated as a representation of the English language. ASL 
users are as capable as other lingual users in conveying 
abstract or complex ideas. 

1.2.2. SIGN LANGUAGE GESTURE RECOGNITION  

Gesture’s recognition involves complex processes such as 
motion modelling, motion analysis, pattern recognition 
and machine learning. It consists of methods that involve 
the use of manual and non-manual parameters. The 
structure of environments such as background 
illumination and speed of movement affects the predictive 
ability. The difference in viewpoints causes the gesture to 
appear different in 2D space. Gestures and sign language 
recognition includes an entire process of tracking and 
identifying various signs that are being performed and 
converting them into connotationally meaningful words. 
Earlier, dated around 1993, efforts were made on 
achieving gesture recognition. Back then gesture 
recognition techniques were adapted from speech and 
handwriting recognition techniques. To achieve this, 
Dynamic Time Warping (DTW) was used. Dynamic Time 
Warping utilizes information on the trajectory of the hand 

to compare a query sign with examples that were in a 
database.  

Later on Hidden Markov Models (HMM) were proposed to 
distinguish and classify the orientation of the hand, its 
information of the trajectory and the resultant shape of 
the gesture depicting the one in sign language. Adaption of 
this concept comes from speech recognition and its innate 
properties make it ideal to be used in gesture recognition.  

The use of HMMs alone had several limitations in training 
models. One such limitation was the three-dimensional 
translation and rotation data of the signs. This was 
overcome with the use of ‘Flock of Birds’ developed by 
Ascension Technologies. The Flock is Ascension's most 
popular tracker. Researchers, developers and end-users 
alike use it in all real-time visualization and interactive 
applications. Accompanied with this was using bigram and 
epenthesis modelling that helped in achieving higher 
accuracy. All these methods were applied in mostly 
overcoming a barrier in conversations at places of social 
gathering. Keeping this ideology in mind, efforts are being 
made even today to make advancements in gesture 
recognition so that this feature can be made easily 
available for everyone to use.  

In places of gatherings that involve social interaction, 
efforts have always been made to make an impaired 
person feel less overwhelmed. Thus, to overcome the issue 
of the communication barrier, a common ground is to be 
established between people for effective communication 
to take place. 

1.3. PROBLEM STATEMENT  

Our aim is to develop an android application that uses a 
Machine Learning model to recognize the American Sign 
Language (ASL) gestures in real-time and convert them to 
text. Further, the detected-gesture text is converted into 
regional language depending upon the preference of the 
user.  

The next chapter contains a detailed description of the 
research of the software and hardware methodologies 
used in hand gesture recognition and also some novel 
solutions of the same. 

2. LITERATURE SURVEY  

In this section, different approaches related to gesture 
recognition and translation have been discussed. The 
majority of the work for Sign Language Recognition can be 
generally be categorized:  

1. Sensor-based gesture recognition  

This approach requires the use of sensors, instruments to 
capture the motion, position, and velocity of the hand.  
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A. Inertial measurement unit (IMU): Measure the 
acceleration, position, degree of freedom and acceleration 
of the fingers. This includes the use of a gyroscope and 
accelerometer.  

B. Electromyography (EMG): Measures human muscles 
electrical pulses and harnesses the bio-signal to detect 
fingers movements.  

C. Wi-Fi and Radar: Uses radio waves, broad beam radar 
or spectrogram to detect in air signal strength changes.  

D. Others: Utilizes flex sensors, ultrasonic, mechanical, 
electromagnetics and haptic technologies.  

2. Vision-based gesture recognition  

Vision-based approaches require the acquisition of images 
or video of the hand gestures through a video camera.  

A. Single-camera: Webcam, video camera and a 
smartphone camera.  

B. Stereo-camera: Using multiple monocular cameras to 
provide depth information.  

C. Active techniques: Uses the projection of structured 
light. Such devices include Kinect and Leap Motion 
Controller (LMC).  

D. Invasive techniques: Body markers such as colored 
gloves, wrist bands, and LED lights. 

2.1. SENSOR-BASED SIGN LANGUAGE RECOGNITION 

The first category is hardware-based solutions for sign 
language recognition. These solutions make use of special 
dedicated hardware, like sensors or gloves, that the user 
especially either has to wear or carry alongside which will, 
in turn, help the developers to get that extra variable they 
need to get more accurate results.  

A primitive and most popular way of recognizing sign 
language is to use flex sensors attached to a glove. A flex 
sensor is basically a variable resistor whose terminal 
resistance changes with the change in bent angle. The 
resistance at the terminal increases linearly as the flat 
strip of the sensor is bent at higher angles. Kadam et al 
proposed that when flex sensors are mounted on the 
fingers of the glove, it changes the resistance as the 
position of the finger changes. These resistance values of 
each finger sensed by the flex sensor are then stored in the 
EEPROM of a microcontroller and can be saved and 
labelled as a gesture. The LCD display is used as a 
reference for how much a finger bends to correctly sign a 
letter. In this work, the authors have programmed the 
system to work in two modes viz teaching and learning 
modes. The user can flip a switch to toggle between the 
two modes. The teaching mode is where the user can input 

a gesture wearing a glove and can register that gesture 
into the system enabling the user to add user-defined 
gestures. On the other hand, the learning mode can be 
used for students to practice the registered gestures in the 
system. According to this implementation, the accuracy of 
the selected signs was around 86%. [1] Harish et al 
proposed a similar solution to recognize ISL with an 
addition of an accelerometer to include further 
parameters such as rotation, angle tilt and direction 
changes of the hand. [2] Chuang et al proposed a wireless 
solution for flex sensor gloves wherein a gated recurrent 
unit (GRU) algorithm was used to spot gestures using the 
sensory data obtained from the smart gloves. The motions 
correlated with various fingers and the changes between 
two consecutive gestures were taken into account during 
the GRU training period. For the final gesture grouping, 
the maximum a posteriori (MAP) calculation was used 
based on the gesture spotting data. [3]  

A more complex way of recognizing dynamic hand 
gestures is by using RGBD cameras with three-
dimensional convolutional neural networks (3D-CNN). 
Molchanov et al proposed a hand gesture recognition 
system that utilizes depth and intensity channels with 3D 
convolutional neural networks. It was interleaved 
between the two channels to build normalized Spatio-
temporal volumes, and train two separate subnetworks 
with these volumes. To reduce potential overfitting and 
effective Spatio-temporal data to improve the 
generalization of the gesture classifier, the proposal was 
an augmentation method to deform the input volumes of 
hand gestures. The augmentation method also 
incorporates existing spatial augmentation techniques. [4] 
Tran et al proposed an updated version of this system by 
further detecting fingertips of the user using a similar 
RGBD camera and 3D CNN approach. [5]  

In recent years there has been the development of novel 
sensors such as Leap Motion Controller and Microsoft 
Kinect which doesn't require the user to wear the apparel. 
The Leap Motion Controller (LMC) is an optical hand 
tracking module that captures the movements of the 
user's hands. It is a small USB peripheral that uses two 
monochromatic IR cameras and three infrared LEDs which 
covers a somewhat hemispherical area. The LMC sensors 
have a range approximation of 1 meter and the user needs 
to position their hands above the sensor in the range of 
the hemispherical area. The LMC then calculates the 2D 
frames generated by the cameras and gives the 3D 
positioning of the hands. Yang, Chen and Zhu when 
presented their work, they proposed the duo of an LMC 
and the two-layer Bidirectional Recurrent Neural Network 
(BRNN) has been used for the first time to detect Dynamic 
ASL gestures which the authors claim to be much more 
accurate. In addition to the two-layer BRNN, their 
framework included 26 discriminative features based on 
angles, positions, and distances between the fingers. In 
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this work, an LMC is used to extract features of dynamic 
gestures which are then processed by some specific 
methods and then given to the two-layer BRNN model 
which outputs the recognized gesture. The authors of this 
paper managed to get an accuracy of about 95% to 96% 
for 480 samples and 360 samples respectively which was 
higher amongst other significant works in the same field. 
[6]  

These solutions are a great way to get fast and accurate 
results but they tend to be expensive and cumbersome. 
These special hardware devices are not integrated into our 
day to day lives. Thus, they would serve more of a 
special/limited purpose. Some drawbacks of using these 
solutions like the use of RGBD cameras, Leap Motion 
Controllers are that they all usually come in hefty sizes 
whereas solutions like flex sensors need the computers to 
process/compute their received data. As said, our aim is to 
maintain a common ground for communication for 
impaired people at any given point in time and such 
solutions won’t prove to be effective as they need to thus 
carry this dedicated hardware. 

2.2. VISION-BASED SIGN LANGUAGE RECOGNITION 

The second category for hand gesture recognition is 
Computer Vision-Based. The advancement in image 
capturing methods and image processing techniques, 
making it one of the most popular and preferred ways of 
recognizing hand gestures. Vision-based methods have 
multiple benefits including that they can capture texture 
and color parameters which is difficult to achieve using 
sensor technology in 2D and 3D study of hand gesture 
recognition. Badhe and Kulkarni proposed the following 
steps in their work:  

1. Data Acquisition: Acquiring the gestural data from the 
user. This can be done in two ways either with still images 
or in a form of a video. For a real-time system, video input 
is required which is then processed frame by frame by the 
system. 

2. Preprocessing the Image: The raw images/frames from 
the camera undergo various methods of preprocessing to 
extract useful/needed parameters which means to 
eliminate the redundant, meaningless noise and 
superficial information that does not contribute to a vital 
matter of the feature extraction. This is a very important 
step to make the system work more efficiently and more 
accurately. Some of the most common preprocessing 
techniques are:  

  A. Image Enhancement and segmentation  

  B. Color filtration and skin segmentation  

  C. Noise Removal: Erosion and Dilation  

  D. Thresholding  

  E. Blob Detection  

  F. Contour detection 

3. Feature Extraction: The feature components of the 
preprocessed gesture images are extracted and collected 
in form of data which is usually as vectors.  

4. Template Matching: The stored vectors are then 
compared with the existing vectors that are stored in the 
reference vectors database.  

5. Classification: Based on the output of the template 
matching the classification will be done as per the nearest 
match found in template matching.  

6. Gesture Recognition: This block recognizes the gesture 
completely and produces the appropriate output.  

The authors tested their system for 26 Alphabets, 9 
numbers and up to 10 phrases made in ISL. The accuracy 
ranged between 95-100%, 85-100% and 85- 95% was 
achieved in alphabets, numbers and phrases respectively. 
[7]  

Wang et al proposed gesture-based human-machine 
interaction can be achieved through precise hand 
segmentation using skin color and background 
information. In complex backgrounds with identical skin 
colors and non-uniform lighting, skin color based hand 
segmentation using skin color templates performs poorly. 
The method proposed by Wang thus improves accuracy by 
using related information to split the image on the 
reversed side. The findings of the experiments reveal that 
this method outperforms the method that only uses the 
skin color model. [8]  

Further advancement of the previous work was done by 
Hsiang-Yueh Lai and Han-Jheng Lai. Lai et al. proposed in 
the work on Real-time Dynamic Hand Gesture Recognition 
that the processing of video streams is done where the 
stream is fed through the RGB camera. Webcams were 
used with resolution 640x480p to capture RGB images. 
Further, these images were converted to YCbCr format. 
Thresholds were set such that the skin color region was 
turned to white and the non-skin color (background) 
region was turned to black. Further morphological 
operations were done on the image to convert it into a 
complete binary image. The authors used OpenCV’s list 
storage method and a sequence of contour points method 
to delete the noise and the face. The condition that the 
face’s bottom contour is wider than the wrist contour was 
set to split the hand contour from the binary image. The 
center of the palm is the first to be detected as it 
resembles a rough square shape and is easiest to detect. 
Further fingers are detected and the angle between the 
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joints are defined. After the hand detection, the convex 
hull was calculated to detect the convex defect points. 
These points were used to calculate the angle between the 
finger spacing. Aculeate points were also detected in a 
close contour curve as fingertips. The hand gestures are 
recognized by the fingertip positions and angles between 
fingers. [9] 

2.3. NOVEL SOLUTIONS FOR HAND GESTURE 
RECOGNITION 

Around the world, researchers are always looking for 
ways to develop and modernize systems involving human-
computer interactions with the growing advancement in 
the field of communication systems. The usual focus is on 
the exclusion of any special devices or vision-based 
technology. And the most fundamental application 
involving this application is hand gesture recognition. 
Thus, there are a few such unique solutions to Hand 
Gesture Recognition. Amongst these, two of the solutions 
were worth mentioning as the technologies used or the 
concepts involved would provide great help in the project 
as well as would widen the opportunity for future 
upgrades.  

The first solution that we came across was WiGeR: Wi-Fi-
Based Gesture Recognition System. In the research paper, 
Al-qaness et al. discussed the focus of this project is 
majorly based on the Wi-Fi signals. It is a novel 
segmentation method based on wavelet analysis and 
Short-Time Energy (STE). This solution includes Channel 
State Information (CSI) as the metric of the designed 
system. Earlier efforts were made to track human motion 
using the Wi-Fi based mechanisms that used Received 
Signal Strength (RSS) from the wireless MAC layer. Though 
this failed as the distance increased because the value of 
RSS decreased which led to multipath fading in 
environments that were a bit complex. In contrast to this, 
CSI adapts to the environmental changes and also uses O-
FDM making it more robust. Its algorithm intercepts CSI 
segments and analyzes the variations in CSI caused by 
hand motions, revealing the unique patterns of gestures. 
To recognize the gestures through the walls, the algorithm 
involved effective segmentation and fast classification. To 
make this system more secure in terms of different signals 
sensed, the system has a pre-decided gesture for user 
authentication to commence detection. The makers of this 
WiGeR project claim accuracy up to 99% but only under 
certain conditions. The security is compromised and there 
are limitations on sensing the gestures through multiple 
obstructions such as a wall. Also, it requires sophisticated 
Wi-Fi (transmitters and receivers) which is difficult and 
not user-friendly. So it’s still at a research stage and is not 
a viable option. [10]  

The second novel solution is an app called Hand Talk 
Translator. This app has a 3D avatar of an interpreter. 
Input to the app is given in the form of text in the text box 

or in the form of speech that is later converted to text. The 
entered text is then translated by the avatar using 
animation of the same into an American Sign Language 
(ASL) gesture. The app allows a choice of two languages: 
English and Portuguese to be converted to ASL. For 
security purposes, the app requires authentication of the 
user. While setting up the profile, the app has a category 
that lets us choose if the user is hearing impaired or not. 
The app thus lets the users personalize the experience and 
store the history of the recent translations done. Using the 
history, the user can save the translations by marking 
them favorite under the user details entered for 
authentication, thus letting offline access to the 
translations anytime. The app also lets the users rate the 
gesture and if possible, provide feedback from time to time 
after the translations are done in order to enhance the 
overall experience.  

In this chapter, some widely used methods for hand 
gesture recognition were discussed that involve hardware 
as well as software-based approaches along with some 
novel ideas. In the next chapter, the proposed 
implementation is discussed along with some of the 
preliminaries. 

3. IMPLEMENTATION 

As discussed in the literature survey above, vision-based 
techniques prove more beneficial in the lower-level case of 
Hand Gesture Recognition. Most of these projects and 
studies were implemented and executed on the computer. 
This resulted in some limitations while accessing the 
system as it was not user-oriented in terms of 
convenience. 

In both academia and business, media review is a hot 
topic. A media decoder separates audio and video streams 
from a media file or camera content, which are then 
analysed separately. TensorFlow, PyTorch, CNTK, and 
MXNet are neural net engines that represent their neural 
networks as directed graphs with simple and predictable 
nodes, i.e. one input generates one output, which allows 
very efficient execution of the compute graph consisting of 
such lower level semantics. Beam and Dataflow, for 
example, are graph processing and data flow systems that 
run on clusters of computing machines. While the 
dependencies of each operation are often specified as 
graphs, Beam and Dataflow manage large chunks of data 
in a batching rather than a streaming manner, making 
them unsuitable for audio/video processing. 

3.1. INTRODUCTION TO MEDIAPIPE 

The existing state-of-the-art methods focus mainly on 
efficient desktop environments for inference whereas an 
android based solution was needed which will not only be 
lightweight in terms of computation but also be robust and 
accurate to achieve realtime performance. While looking 
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for a solution to the above-mentioned requirements, we 
discovered MediaPipe. 

MediaPipe is an open-source platform for creating 
inference pipelines for arbitrary sensory data. A 
perception pipeline can be constructed as a graph of 
modular components using MediaPipe, which includes 
model inference, media processing algorithms, and data 
transformations, among other things. The graph contains 
sensory details such as audio and video sources, as well as 
perceived details such as object localization and face 
landmark streams.  

MediaPipe is a tool for machine learning (ML) 
professionals, also including students, teachers, and 
software developers, who want to create technology 
experiments, deploy production-ready ML programs, and 
publish code for their study. Rapid prototyping of vision 
pipelines with inference models and other modular 
elements is the key use case for MediaPipe. It lets us build 
a model and deploy it on any platform (i.e., Android, iOS, 
web, IoT).  

Deploying a model on a new platform requires various 
dependencies to be added so that the code can execute as 
intended to. Whereas with MediaPipe, we don’t need to 
worry about the deployment of the ML models across 
platforms, it can be added like a module, and we can build 
the solution around it. MediaPipe is currently in the alpha 
stage at v0.7. Google to date continues to make and break 
API changes, guaranteeing stable APIs by v1.0. Version 0.7 
of MediaPipe has ML Solutions like Human Pose Detection 
and Tracking, Face Mesh, Hand Tracking, Hair 
Segmentation, etc. which are implemented under Apache 
2.0 License.  

Compared to the other neural network engines mentioned 
above MediaPipe functions at a much higher level of 
semantics and allows for more complex and diverse 
actions, such as one input generating zero, one, or several 
outputs, which neural networks cannot model. Because of 
its sophistication, MediaPipe excels at interpreting media 
at higher semantic levels. 

3.2. FRAMEWORK CONCEPTS OF MEDIAPIPE 

In order to understand the way MediaPipe works, some 
basic framework concepts need to be understood to get a 
better understanding of how the processing happens.  

3.2.1. PACKETS  

A Packet is a basic unit of data flow in the MediaPipe 
Framework. A packet consists of a shared pointer to an 
immutable payload as well as a numerical timestamp. The 
payload can be of any C++ type, and the class of the 
payload is often known as the packet type. Packets are 
treated as value classes, which means they can be copied 

at a minimal cost. The ownership of the payload is shared 
by each copy. The timestamp of each copy is unique.  

3.2.2. STREAMS  

Each node in the graph has a Stream that connects it to 
another node. A stream is a set of packets whose 
timestamps must be increasing uniformly. Any number of 
input streams of the same kind may be attached to an 
output source. Each input stream generates a different 
copy of the packets via an output stream and retains its 
queue such that the receiving node can ingest them at its 
frequency.  

3.2.3. GRAPH  

A graph is made up of nodes that are connected by 
coordinated connections and through which packets will 
flow. The graph also contains the scheduler for the 
execution of nodes. A graph is usually specified in a 
distinct file called a graph configuration, or it can be 
constructed programmatically in code. Graphs help know 
the flow of the MediaPipe framework and as they 
represent themselves like a flowchart can thus prove 
helpful to debug through the nodes.  

A ‘GraphConfig’ is a standard that specifies a MediaPipe 
graph's topology and features. The graph can be identified 
as a Subgraph to modularize a GraphConfig into sub-
modules. The subgraph will then be used in a GraphConfig 
like it was a calculator. When a MediaPipe graph is 
mounted, the accompanying graph of calculators replaces 
each subgraph node. As a consequence, the subgraph's 
terminology and output are similar to that of the related 
calculator graph. MediaPipe graph execution is 
decentralized: there is no global clock, and different nodes 
can process data from different timestamps at the same 
time. Pipelining provides for higher throughput. 

3.2.4. CALCULATORS 

A Calculator is used to execute each node in the graph. The 
majority of graph execution takes place within its 
calculators. A calculator may receive zero or more input 
streams and can output the same amount of streams. Each 
calculator in a framework is documented with the system 
so that it can be defined by name in the graph 
configuration. All calculators stem from the same core 
Calculator class, which has 4 fundamental methods: 
GetContract(), Open(), Process(), and Close().  

In GetContract(), the authors of the calculator define the 
desired types of inputs and outputs. When a graph is 
generated, the system calls a static method to validate 
whether the associated inputs and outputs' packet types 
complement the details in this definition.  
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The system calls Open() when a graph begins (). At this 
point, the calculator has access to the input side packets. 
Open() interprets node setup operations and prepares the 
per-graph run state of the calculator. Packets can also be 
written to calculator outputs using this tool. Any error 
during Open() will end the graph run.  

When at least one input stream has a packet accessible, 
the system calls Process() continuously for a calculator 
with inputs. When concurrent execution is permitted, 
several Process() calls may be made at the same time.  

If an error happens during Process(), the framework calls 
Close(), which ends the graph run. The system calls Close() 
until all calls to Process() have completed or all input 
streams have closed. And if the graph run is halted due to 
an error, this method is only called if Open() was called 
and succeeded and if the graph run is halted due to an 
error. The calculator should be called a dead node until 
Close() returns. 

3.3. OVERVIEW OF THE PROJECT 

The solution that we implemented was divided into two 
principal stages:  

Stage 1 - Development on the Desktop  

Stage 2 - Deployment on Android 

3.3.1. STAGE 1  

 

Fig -1: Stage 1: Development on Desktop 

Fig 1. Shows the development of framework on desktop. 
The initial step of the first stage is to acquire a live video 
feed from the user via camera. The next step is the 
detection of the palm. This is implemented on MediaPipe 
using TensorFlow Lite. Initially, an anchor box is formed 
around the palm as it resembles a squarish shape which is 
easier to detect. After the palm is detected, anchor boxes 
are formed around the joints. After the palm detector 
defines the cropped image region of the hand, the hand-
landmark model operates on it to detect the 21 key points 
of the hand. The keypoint structure is such that upon 
joining the adjacent points, they form a skeleton over the 
hand. This model is then converted to an Android Archive 
(AAR) file. The AAR file is thus to build an Android 
Application in the Android Studio. 

 

 

3.3.2. STAGE 2 

 

Fig 2 - Stage 2: Deployment on Android 

Fig 2 show the Deployment of framework on Android. The 
AAR file generated in Stage 1 contains the hand-tracking 
model that outputs the 21 detected hand-key points along 
with suitable methods to access them using JavaScript. 
These detected key points are thus used to recognize the 
ASL gestures. The recognized gesture is then generated 
and displayed in a text format. A user-friendly interface 
(GUI) is developed for the Android application. The 
secondary objective of the project is a translation of the 
converted text into regional languages depending upon 
the choice of the user. A script was written to convert the 
recognized text into regional languages. The script was 
written to convert the English text into Hindi, Marathi and 
Gujarati. 

3.4. PROPOSED IMPLEMENTATION  

The steps listed in the previous section are briefly 
discussed in this section. The implemented solution 
utilizes a couple of frameworks working together:  

1. A palm detection model (called BlazePalm) that 
operates on the full image and returns an oriented hand 
bounding box.  

2. A hand landmark model that operates on the cropped 
image region defined by the palm detection model and 
returns high fidelity 3D hand key-points.  

3. A gesture recognition script that utilizes 3D hand key 
points as a basis to determine the ASL gesture. 

3.4.1. PALM DETECTION MODEL  

A single-shot detector model called BlazePalm is designed 
for mobile real-time to detect initial hand positions. Hand 
detection is a difficult task: the model must identify 
occluded and self-occluded hands when working through a 
wide range of hand sizes with a huge scale distance (>20x) 
relative to the picture frame. Faces have high contrast 
patterns, such as around the eyes and lips, whereas hands 
lack such characteristics, making it more difficult to 
accurately detect them based on their visual features 
alone. Providing additional context, such as arm, leg, or 
individual characteristics, helps with correct hand 
localization. Fig 3. shows the flow of Palm detection model 
through MediaPipe Graph. 
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Fig 3- MediaPipe Graph for Palm Detection 

First, instead of training a hand detector, we train a palm 
detector because estimating bounding boxes of rigid 
structures like palms and fists is much easier than 
detecting hands with articulated fingers. Furthermore, 
since palms are smaller specimens, the non-maximum 
suppression algorithm performs well even in two-hand 
self-occlusion situations such as handshakes. 
Furthermore, palms can be modelled using square 
bounding boxes (anchors in ML terminology) that ignore 
other aspect ratios, resulting in a reduction of 3-5 anchors. 
Second, also for small items, an encoder-decoder feature 
extractor is used for larger scene context understanding. 
Finally, due to the high size variation, the focal loss is 
reduced during the preparation to sustain a large number 
of anchors. 

Following is the algorithm of the BlazePalm model. Briefly, 
the input image on the CPU/GPU is transformed into a 256 
x 256 image. Scaling of the input image is done using the 
FIT function to preserve the aspect ratio. It is then 
integrated with TensorFlow Lite. Next is the 
transformation of the input image on GPU into an image 
tensor stored as a TfLiteTensor. It then takes image tensor 
and converts it into a vector of tensors (e.g. key points on 
palm i.e. joint-points). Vectors are then generated of SSD 
anchors based on specification. It decodes the detection 

tensors based on SSD anchors into vector detections. Each 
detection describes a detected object. Suppression is done 
to remove excessive detections. It then maps the detection 
label IDs and adjusts detected locations on letterboxed 
images to corresponding locations on the same image. 
Next is the extraction of image size from the input images. 
It converts results of palm detection into a rectangle 
(normalized by image size) that encloses the palm and is 
rotated such that the line connecting the center of the 
wrist and MCP of the middle finger is aligned with the Y-
axis of the rectangle. It expands and shifts the rectangle 
that contains the palm so that it's likely to cover the entire 
hand. 

 

Fig 4- Palm Detection Using MediaPipe 

Fig 4. shows the result obtained after implementing the 
Palm detection model. As seen in the above-obtained 
result, anchor boxes are generated on the Hand and the 
Palm. A red anchor box is generated around the Hand for 
further prediction of the position of the hand. A green 
anchor box is generated around the Palm. 

3.4.2. HAND-TRACKING MODEL 

Following palm detection across the entire picture, the 
hand landmark model uses regression to perform precise 
key-point localization of 21 3D hand-knuckle coordinates 
within the observed hand regions, which is known as a 
direct coordinate prediction. Even with partially visible 
hands and self-occlusions, the model develops a strong 
internal hand pose representation. 30K real-world images 
with 21 3D coordinates were annotated to obtain ground 
truth results. Z-value was taken from the image depth map 
if it exists per the corresponding coordinate.  

A high-quality synthetic hand model was made over 
different backgrounds and mapped to the corresponding 
3D coordinates to help cover the potential hand poses and 
provide further supervision on the essence of hand 
geometry. Purely synthetic evidence, on the other hand, 
does not generalize well to the real world. A mixed 
training schema was used to solve this dilemma. 
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Fig 5- MediaPipe Graph for Hand Tracking 

Fig 5. shows the flow of Hand Tracking graph in 
MediaPipe. This graph throttles the images flowing 
downstream for flow control. It passes through the very 
first incoming image unaltered and waits for downstream 
nodes (calculators and subgraphs) in the graph to finish 
their tasks before it passes through another image. All 
images that come in while waiting are dropped, limiting 
the number of in-flight images in most parts of the graph 
to 1. This prevents the downstream nodes from queuing 
up incoming images and data excessively. 

The graph caches hand-presence decision feedback from 
HandLandmarkSubgraph, and upon the arrival of the next 
input image sends out the cached decision with the 
timestamp replaced by that of the input image, essentially 
generating a packet that carries the previous hand-
presence decision. The anchor boxes made on the Hand 
detection part are then used for the Hand tracking part.  

 

The MergeCalculator merges a stream of hand rectangles 
generated by HandDetectionSubgraph and that generated 
by HandLandmark Subgraph into a single output stream 
by selecting between one of the two streams. The 
annotations and overlays are rendered on top of the input 
images. 

 

Fig 6- Hand Tracking Using MediaPipe 

Fig 6 shows the result of Hand Tracking Model with the 
help of MediaPipe. From the results shown above, 21 key 
points detected on the hand can be observed. The adjacent 
points are joined together to form a Skeleton over the 
hand. These detected points i.e., the skeleton is used to 
detect the gesture. 

3.4.3. GENERATION OF AAR FILE 

The architecture of an Android library is the same as that 
of an Android app module. It comprises source codes, 
resource directories, and an Android manifest, among 
other things. An Android library, on the other hand, 
compiles into an Android Archive (AAR) file that can be 
used as a dependency for an Android app module, rather 
than just an APK that runs on a device. AAR directories, 
unlike JAR files, have the following features for Android 
applications:  

- In addition to Java classes and methods, AAR files 
contain Android resources and a manifest file, 
enabling one to bundle in shared resources like 
templates and drawables. 

- C/C++ libraries for use by the app module's C/C++ 
code can be found in AAR directories.  

When you're creating an app with different APK versions, 
such as a free and premium version, and you need the 
same key components in both, AAR comes in handy. It is 
also beneficial when you're designing different apps that 
share common components like events, utilities, or UI 
templates.  

The MediaPipe Android Archive (AAR) library is an easier 
way to use Android Studio and Gradle. MediaPipe does not 
have a generic AAR for all projects to use. Instead, 
developers might have to add a MediaPipe_aar() target to 
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their project to create a custom AAR file. This is important 
in order to provide unique resources for each initiative, 
such as MediaPipe calculators.  

Following steps to build and integrate AAR into Android 
Studio:  

1. MediaPipe_aar() target is created.  

2. AAR file is built and generated using Bazel commands.  

3. The AAR file generated is saved in the libraries in the 
Android Studio. 

4. Assets are saved into the assets folder in the main file.  

5. OpenCV JNI libraries are saved into a new libraries 
folder. 6. build.gradle file is modified to add MediaPipe 
AAR and MediaPipe dependencies.  

3.4.4. GESTURE RECOGNITION  

The MediaPipe AAR file, which was introduced to the 
Android project's repositories, is inserted into the Android 
project's MainActivity file. Other required functions from 
the package, such as BasicActivity, Landmark, Structure, 
and Format Files, were declared. The Hand Landmarks 
(containing 21 key points) shown in Fig. 8 obtained from 
the AAR file are stored as a list in the MainActivity file 
which extends the BasicActivity. 

 

Fig 7- 21 Hand Keypoints 

A Hand Gesture Calculator was created to utilize the Hand 
Landmarks. Initially, these Hand Landmarks were used to 
detect the state of each finger, i.e., whether it is open or 
close. A Boolean value was set to false by default for the 
state of each of the fingers. For the first finger to be open, a 
reference point of the same is taken which is the key point 
6 in this case. This reference point is then compared with 
the rest of the key points of the first finger. The example 
for this is given below in Fig 8. 

 

Fig 8- Example of the state of the finger 

 

If the conditions are true the boolean is set to true. To set 
the boolean value of the state to true, corresponding 
comparisons were performed in a similar way for the rest 
of the fingers. For each gesture, a group of conditions were 
set to check the state of each finger; whether it is open or 
close. Based on these states, the gestures are recognised. 
For example, to recognise the gesture ‘HELLO’ we check 
the state of all the fingers and the thumb based on the 
action of the gesture. In this case, we need the state of all 
the fingers and thumb to be open. The conditions for the 
same are shown in Figure 9. 

 

Fig 9- Example of the Gesture Recognition for “Hello” 

There are few gestures that require the relative 
positioning of the hand landmarks as the information 
regarding the state of the finger is insufficient. In such 
cases, Euclidean distance needs to be measured between 
the key points. If the Euclidean distance is less than 0.1 it 
states that the key points are in closer vicinity of each 
other thus letting us detect the relative positioning of 
fingers. For the static ASL gesture ‘Money’, the thumb and 
the first finger need to be near each other. This is where 
the Euclidean distance is calculated between the first 
finger and the thumb and checked if the distance is lesser 
than the threshold. If the condition is set to be satisfied, 
the boolean of the same is set ‘true’. Along with the 
Euclidean distance condition, the state of the remaining 
fingers is also verified to detect the desired ASL gesture. In 
this project, we successfully implemented 10 static 
American Sign Language Gestures as shown in Figure 10. 

 

Fig 10- Implemented Static ASL Gestures 

3.4.5. TRANSLATION INTO REGIONAL LANGUAGES  

To help multilingual users, the static ASL gestures that 
were identified had to be translated into regional 
languages. Services like Google Cloud Translation API 
helps developers to do so at a fixed pricing chart. As the 
aim of this project was to make an app that could be 
available to maximum users with no or minimal costing, 
our approach was to make a dictionary for each of the 
languages.  
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In the Android application, an options bar (spinner) was 
added in order to facilitate the user to select the language 
of their choice. The spinner sends the selected option to 
the dictionary and thus the appropriate language is 
displayed. Three regional languages namely Hindi, Marathi 
and Gujarati were implemented along with the default 
language English. Figure 11 shows the implementation of 
the language spinner in this project. 

 

Fig 11- Language Spinner 

When the user’s hand is brought in front of the camera, the 
feed starts tracking the hand that is displayed over the app 
in the form of a skeleton. In a split second, the gesture is 
detected and the output is displayed in green color at the 
top-center of the screen in the English language by default. 
For the user to change the language according to his/her 
preference a dropdown menu is displayed at the bottom-
center of the app. Upon choosing the preferred language, 
the language of the recognized gesture displayed on the 
top-center is changed accordingly. 

 

Fig 12- Hand Gesture Recognition Application Layout 

 

 

 

4. RESULTS 

   

  

Fig. 13- ASL Gestures along with regional translations 

The Hand Gesture Recognition App was run and tested on 
the following 4 devices with different hardware 
specifications and Android versions which are mentioned 
in the Table 1. 

Table -1: Test Device Specifications 

Device Processor 
– RAM 

Android 
Version 

Screen 
Ratio 
(cm) 

Camera 
Resolut-
ion (MP) 

Mi Note 
9 Pro 

Octa-core 
Max 
2.32Ghz - 
8 GB 

Android 
11 

16.6 x 
7.7 

32 

Redmi 
K20 Pro 

Octa-core 
Max 
2.84Ghz - 
8GB 

Android 
10 

15.7 x 
7.4 

20 

Samsung 
Galaxy 
Note 8 

Octa-core 
(4x2.3GHz 
+ 
4x1.7GHz) 
- 6 GB 

Android 
8 

16.3 x 
7.5 

8 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 09 Issue: 09 | Sep 2022              www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 1090 
 

OnePlus 
5 

Octa-core 
(4x2.45 
GHz + 
4x1.9 
GHz) – 6 
GB 

Android 
10 

15.4 x 
7.4 

20 

 

The app was tested in debugging mode on all of the 4 
devices using Android Studio's Profiler tool. The Android 
Profiler tool provides real-time data that helped us 
understand how the app uses CPU, memory, network, and 
battery resources. The debugging process was done to 
accumulate data for a time period of 2 minutes. Results for 
one of the devices are shown below in Fig 14. 

 

Fig 14- CPU utilization of application 

The above figure shows the CPU utilization of the device 
while running the app. It was observed that the 
application utilized 10 to 15% out of the total CPU 
capacity. 

 

Fig 15- Memory usage of application 

The figure 15 represents statistics of memory usage of the 
Application. Over the two-minute period of testing it was 
observed that 400MB peak was used by the application, 
which is between 8-10% of the 4GB RAM available in the 
device. 

 

 

Fig 16- Network usage of application 

The above Fig 16 shows the network usage of the 
application. As the application is completely self-sufficient 
and does not require any internet provided services, no 
activity was seen in this analysis. 

 

Fig 17- Energy usage of application 

The figure 17 shows the overall load across the CPU, 
Networks and Location Services. It was observed that 
overall CPU load was low and no network or location 
services were used which makes this app power friendly 
and efficient for mobile devices. Similar results were seen 
across other 3 devices. As observed from the above 
statistics, the application was lightweight in terms of 
computation which resulted in real time response.  

Across all 4 devices, the application was tested for 100 
inputs i.e., 10 inputs of each of the 10 gestures. The inputs 
given were in real time with variable light conditions and 
across real life background. Each of the samples of hands 
differed in skin complexion. The test was done to check 
the accuracy of the gesture recognition system under real 
life circumstances. 
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Fig 18- Average accuracy result of each static ASL gesture 

The graph in Fig 23 shows the average accuracy obtained 
across all four devices for each of the 10 gestures. An 
overall accuracy of 98.5% was achieved. Also, insignificant 
or no performance drop was observed while translation of 
the recognized gesture. 

5. CONCLUSION 

The Gesture Recognition Application was thus 
implemented to detect 10 static American Sign Language 
Gestures performed by speech-impaired people. The 
recognized gestures are then converted to text format that 
are displayed on the top-center of the screen. These 
gestures can also be translated into three different 
regional languages namely Marathi, Hindi and Gujarati by 
selecting the language from the drop-down menu 
displayed on the bottom-center of the screen.  

The application aims to help the society in terms of better 
communication aspects. The application enables people 
with no knowledge of the American Sign Language to 
understand the gestures being performed by someone 
who is trying to communicate using Hand Gestures. 
Beyond this, the scalability of the App ensures support to 
people around the world who are unable to communicate 
due to a lack of understanding of American Sign Language. 

5.1. LIMITATIONS 

The gestures are mainly divided into two categories: Static 
gestures and Dynamic Gestures. Dynamic movements 
include strokes, pre-strokes, postures, and stages, while 
static gestures only include poses and configurations. The 
dynamic gestures often include movement of body parts. 
Depending on the context of the gesture, it can also include 
emotions. Aside from the action phenomenon, the 
inclusion of feelings is the second dividing characteristic 
between static and dynamic gestures. Emotions are 
incorporated into the dynamic gestures. For example, to 
express 'The Mountain was big,' one will use only static 
gestures, while to express 'The Mountain was this big,' one 

would need to use arm movements that fall into the 
category of dynamic gestures. 

There are a few gestures that include use of face for e.g. 
Mother is expressed using chin and Father is expressed 
using forehead. To recognize these gestures, facial 
detection is required along with its key points to 
determine the position of the hand. Facial key points are 
also required in order to determine the emotions of the 
person. As of now our android application has 
implemented a palm detection and hand tracking model 
which limits us to recognize hand gestures alone.  

Our project thus limits us to recognize the static ASL hand 
gestures that are independent of other parts of the body. 

5.2. FUTURE SCOPE 

The future of the Hand Gesture Recognition App is being 
able to add support for dynamic gestures that are gestures 
which are performed over a function of time (a few 
seconds) which is more complex to detect as the system 
needs to be able to detect the start of a dynamic gesture vs 
the start of a static gesture. Support for gestures wherein 
the gestures are performed with a combination of hand 
movements, body pose and facial expressions. The App 
can be modified in the future to include a feature to enable 
Text to Speech, increasing the functionality of the App. 
Beyond these, support for additional multiple languages 
can be added to the app, perhaps with the help of Google 
API, enabling support for more than a hundred different 
languages.  

Additionally, Using MediaPipe, the Hand Gesture 
Recognition App can be made cross platform, making 
deployment on iOS a possibility. 
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