
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1055

Formal Verification Of An Intellectual Property In a Field

Programmable Gate Array

Prashanth M1, Sujatha K2

1Department of Electronics and communication, BMS college of engineering, Bangalore, India
2 Associate Professor, Dept. of Electronics and communication, BMS college of engineering, Bangalore, India

---***---
Abstract - The verification method has fallen behind,
nevertheless, as a result of increased IC production
capabilities. The verification phase of the circuit design flow,
according to ITRS, has taken the longest. Verification
engineers now outnumber design engineers in terms of the
number of active engineering projects. Verification is now the
IC design industry's bottleneck since the ratio for sophisticated
designs might approach 2:1 or 3:1. Verification will become
the main obstacle for the future growth of the IC design
business if significant advancements are not made.

 Our suggested formal verification will compare the
reference model with the implementation model using Jasper
Gold formal verification tool. With the necessary design
changes made without sacrificing functionality, we were able
to achieve an assertion pass rate of 80%.

Key Words: Formal verification, Intellectual property,
counter example, Sequential equivalence checking,
Combinational equivalence checking.

1. INTRODUCTION

Formal verification is the process of utilizing mathematical
tools to confirm the accuracy of the design. Timing checks
are not carried out by formal verification tools, which
instead utilize a variety of techniques to verify the design.
Since these tools don't require a test bench or stimulus, once
an RTL code is ready, formal verification can be carried out,
A bug is easier to correct the sooner it is discovered[1].
Formal verification techniques find bugs that are missed by
standard verification methods. Moreover, formal verification
typically identifies flaws rather more quickly than standard
methods do in cases when they are detectable. A design first
should undergo formal verification before being functionally
tested through simulation and emulation. Essentially, the
DUT is a network of flip-flops and logical gates. Equations
may be used to express this network of gates and flip-flops.
The tool then independently evaluates each checker (i.e., SVA
assertion), looking for any possible input sequences that
might show the checker to be untrue. If such a sequence is
discovered, a waveform illustrating this erroneous situation
is shown. This waveform is known as a counter example in
formal language (CEX)[5].

The goal of formal verification is to detect the bugs in the
early stage of the design and in less time, we can verify the

design specifications. The main types of equivalence
checking in formal verification is logical equivalence
checking and sequential equivalence checking. Logical
equivalence checking, sometimes referred to a process
known as combinational equivalence checking, procedure of
determining if two architectures share the same
combinational logic between registers. The number of
registers in the two designs under comparison need to be
equal as well. This method is used to confirm that two
designs with various levels of abstraction, like a gate-level
netlist, are functionally similar and a layout netlist are
functionally equivalent[3].

The technique of confirming that whether two designs
specifications are equivalent or not and produce the similar
results when given the similar inputs is known as sequential
equivalence checking. The sequential logic of two designs,
which may have different implementations, is compared by
the SEC as shown in figure 1.1.

Some more logic, including scan-based logic, power control
circuits, etc. Verification of such modifications is required.
Regular verification processes take a long period, which
extends the time to market. The changed design is compared
to the golden design using sequential equivalence testing to
ensure that they are functionally equal.

Fig -1: Sequential Equivalence Checking

The ideal candidates for formal verification are these short,
control-oriented pieces that are repeated frequently. All of
Written assertions and assumptions for the design and
interaction using SVA. In order to ensure that every
component is covered during formal verification of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1056

design., cover points are also defined in system Verilog.
Additionally, as part of the subsystem level verification, the
assertions created for these modules are reused. Equivalence
checking includes sequential equivalence checking gives
application of sequential equivalence checking in clocked
gated circuits. Compared to general sequential equivalency
checking, sequential logic synthesis frequently results in
significantly simpler equivalence checking difficulties (SEC).
When sequential equivalence checking can be transformed
into a combinational equivalence check.

2. FORMAL VERIFICATION METHODOLOGY

Gathering the specifications and needs of the desired product
is the first step in the development cycle of any
semiconductor chip. To obtain the desired behavior from the
hardware unit, design engineers construct the register
transfer logic. The Design Under Test (DUT) is examined for
its functional and structural properties according to the
suggested approach before the verification activities are
actually implemented, as shown in Fig. 1. A proper inspection
strategy must be established on basis of analysis and taking
into account the resources accessible for the purpose of
verification.

 Formal Verification has the ability to verify every piece of
digital hardware, but it is necessarily constrained by the
design state space explosion problem. Therefore, the DUT has
to be examined for its suitability for formal analysis based on
the scheduled/available time for verification and resource
variables. The hardware designs that are most suited for the
use of formal techniques are referred to as "formal friendly"
designs.

 The following architectures are not suitable for formal
verification: FPU’s, multipliers, AXI, PCI bus protocols, GPUs,
SPUs, filters, and designs that perform sophisticated
algorithms The earlier efforts, however, demonstrate that
formal methods may still be used to verify these designs.
Since human manipulation is required to, for example,
minimize the proof complexity, excellent formal verification
knowledge and a high level of effort are required to complete
the verification.

A semi-formal approach can be devised when the DUT is
too vast to be taken into account for end-to-end formal
verification. [11]Using both formal and simulation methods, a
hybrid verification strategy verifies the DUT. Traditional
simulation approaches will be used to verify RTL designs
which are too vast and/or complicated to be taken into
consideration for formal verification owing to time and/or
resource constraints. To address various challenges in formal
verification, a systematic approach must be taken. The
obstacles include formal test planning, producing properties,
confirming the accuracy of the property collection, and
complexity management.

 The creation of a verification plan is an essential and
significant step in successfully verifying the DUV. The Design
and Verification Engineers define the aims of the verification
process in an industrial setting. The design's characteristics
or abstract criteria that must be verified must be listed. To
gather the functional coverage, these characteristics are
successively mapped to the produced attributes.

 The development of the property is a crucial component
of the formal verification. The formal tool uses model
checking to ascertain whether the design specifications
satisfy the property hypothesis after capturing the properties
from the Executing the formal test plan is the methodology's
main component. It takes less time and is simpler to set up
the setting for formal verification than simulation.

Fig -2: Formal verification methodology

Executing the formal test plan is the methodology's main
component. It takes less time and is simpler to set up the
setting for formal verification than simulation. This stage
involves defining the DUV's reset behavior and triggering
event (clock edge). Global restrictions (such as turning off
scan mode I/test mode) are also defined for the DUT. After
completing the first few stages, the setup has to be examined
for any unintentional over constraining. This may be done by

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1057

compiling the stimuli coverage, which displays the RTL code
lines that are omitted from formal analysis because of the
restrictions. Examining should be done on the portion of the
RTL code that was omitted by the inadvertent limiting.

 In comparison to the methods described thus far, the
formal analysis and debugging Counter examples need
greater time and resources. Modern formal tools come with
cutting-edge debugging and analysis features that may be
used to significantly cut the amount of effort spent
troubleshooting. It is necessary to take the necessary actions
as shown in Fig. 2 after identifying the causes of the property
failure.

 The collection of coverage from the property runs is the
last phase in the flow. The quality of the characteristics is
closely correlated with the quality of the formal verification.
Review the attributes and gather observable coverage are
necessary to prevent trash in-garbage out. The formal tools
produce structural and functional coverage data during the
formal analysis. While the structural coverage is focused on
the coverage of RTL lines, the functional coverage is
concerned with the outcomes of property pass/fail tests. If
the analysis depth is sufficient to analyze all potential design
behaviors in the case of "bounded" proofs, it is still possible
to retrieve the coverage information.

3. PROJECT METHODOLOGY

Fig -3: Project Methodology

 DUT is the IP, which is under test for verification.
Reference or specification model is the golden reference
model, which may be written in C/C++/Sysc/Verilog
language. The implemented design is usually written in
Register transfer level.

 Wrapper file includes all the input mappings between C
and RTL model signals and TCL script consist of constraints
which is written as assertions. Both DUT and manual script
is fed to the tool where the tool checks for all the possible
combinations of input to match the assertions. If it fails then
Counterexample will be generated.

 Design under test is the turbov IP which will be verified in
Jasper gold C2RTL tool. Implemented model is written in
RTL language and reference model is written in C language.
Where both models are fed with same set of inputs and
output is verified for the same.

 As in C language we can’t define input and output logic
wrapper file is written to define the input and output signal
logic for the design. In TCL script the wrapper file is called
which is the reference model file and the same signals of C
model and RTL model is defined. Here the assumptions
which is my input to the DUT is defined and the functionality
which is to be verified is written as assertions.

4. RESULTS

 While synthesizing the RTL model to the jaspegold formal
tool encountered with the combinational loop errors.

In order to overcome the combinational loop errors written
the Verilog code SCFIFO component instantiations. In
addition, written the Test script to check the functionality.

The results of the assertion pass rate before and after
instantiating the Verilog model instantiation in the design is
as shown.

Assertion pass rate before SCFIFO model
Instantiation

Total Tasks 2

Total properties

Assumptions 0

Assertions

 -Proven

 -bounded_proven

 -CEX

96

35 (36.45%)

0

61 (63.54%)

Table1. Assertion results before SCFIFO model

Instantiations

When the TCL script ran in Jasper gold formal tool before
instantiating the SCFIFO modules in the design the too was
black boxing the out-of-range signals. Because of that the
assertion pass rate was 63.54% as shown in table 1.

Assertion pass rate after SCFIFO model Instantiation

Total Tasks 2

Total properties

Assumptions 0

Assertions

-Proven

96

70 (80.20%)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1058

 -bounded_proven

 -CEX

0

19 (19.79)

Table 2. Assertion results after SCFIFO model

Instantiations

When the written Verilog code for SCFIFO models is
instantiated in the design without sacrificing the
functionality the assertion pass rate increased to 80.20 as
shown in table 2.

5. CONCLUSIONS

In the proposed work we have presented an efficient
method to verify the functionality of the design. Here we are
comparing the reference design which is C model with the
implemented model which is RTL model. Initially the SCFIFO
modules black boxed certain signals because of that
assertion pass rate was 36.45%. By developing Verilog
models for such four SCFIFO instantiations the assertion
pass rate increased to 80.20% without sacrificing the
original functionality of the design.

REFERENCES

[1] J. Wang, J. Shao, Y. Li and J. Ding, "Survey on Formal
Verification Methods for Digital IC," 2009 Fourth
International Conference on Internet Computing for
Science and Engineering, 2009, pp. 164-168, doi:
10.1109/ICICSE.2009.46.

[2] A Comparison of Assertion Based Formal Verification
with Coverage drove Constrained Random Simulation,
Experience on a Legacy IP, Jentil Jose, Sachin A. Basheer
WIPRO technologies.

[3] R. Drechsler and G. Fey, "Formal verification meets
robustness checking — Techniques and challenges,"
13th IEEE Symposium on Design and Diagnostics of
Electronic Circuits and Systems, 2010, pp. 4-4, doi:
10.1109/DDECS.2010.5491833.

[4] H. Savoj, A. Mishchenko and R. Brayton, "Sequential
Equivalence Checking for Clock-Gated Circuits," in IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 33, no. 2, pp. 305-317, Feb.
2014, doi: 10.1109/TCAD.2013.2284190.

[5] K. Gracie and M. Hamon, "Turbo and Turbo-Like Codes:
Principles and Applications in Telecommunications," in
Proceedings of the IEEE, vol. 95, no. 6, pp. 1228-1254,
June 2007, doi: 10.1109/JPROC.2007.895197

[6] S. Nandan and P. P. Deepthi, "Performance Improvement
of Turbo Codes Using Soft Input Decryption," 2018
Fourth International Conference on Computational
Intelligence and Communication Networks, 2012, pp.
394-397, doi: 10.1109/CICN.2018.160.

[7] A. H. Saleh, K. M. Saleh, and S. Al-Azawi, "Design and
simulation of CRC encoder and decoder using VHDL,"
2018 1st International Scientific Conference of
Engineering Sciences - 3rd Scientific Conference of
Engineering Science (ISCES), 2018, pp. 221-225, doi:
10.1109/ISCES.2018.8340557.

[8] H. Macherano, A. Zinchenko and "Combinational
Equivalence Checking for adder Circuits," in IEEE
Transactions on Computer-Aided Design ofIntegrated
Circuits and Systems, vol. 33, no. 2, pp. 305-317, Feb.
2014, doi: 10.1109/TCAD.2013.2284190.

[9] Cadence eLearning courses.

[10] "IEEE Standard for System, Software, and Hardware
Verification and Validation," in IEEE Std 1012-2016
(Revision of IEEE Std 1012-2012/ Incorporates IEEE Std
1012-2016/Cor1-2017) , vol., no., pp.1-260, 29 Sept.
2017, doi:10.1109/IEEESTD.2017.805546

