
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 96

Design and Verification of the UART and SPI protocol using UVM

Vivekananda T1, Mahesh Kumar N2

1PG Student (M.Tech in VLSI Design & Embedded Systems), Department of Electronics and Communication
Engineering, Dayananda Sagar College of Engineering, Bengaluru, Karnataka

2Associate Professor, Department of Electronics and Communication Engineering, Dayananda Sagar College of
Engineering, Bengaluru, Karnataka

---***---
Abstract - Communication protocol plays an important role
in organizing communication between the devices. These
protocols have specific set of rules and agreed upon between
the devices to achieve successful communication. UART and
SPI are two widely used protocols in serial communication.
This paper includes the design of the UART and SPI functional
module SV hardware description language. Functional
verification of the UART and SPI is performed with the help of
the Universal Verification Methodology. The reusable UVM
testbench architecture is designed to drive the randomized
stimuli to the unit under test to check the functional
correctness, by comparing the collected response to the
intended response using the scoreboard mechanism.
Reusability of the stimulus will reduce the overall execution
time.

Key Words: UART-Universal Asynchronous Receiver-
Transmitter, SPI-Serial Peripheral Interface, UVM-
Universal Verification Methodology, SV-SystemVerilog,
Code coverage analysis

1. INTRODUCTION

In VLSI chip design process, verification of the design plays a
very important role. The design must be tested for different
test cases to verify its functionality. It takes a lot of effort,
time for the verification of integrated circuits and its
efficiency measure is a tedious job. The complexity of
verification increases with the complexity of the device's
design [1]. The verification of complex designs consumes
approximately 60-70% of the product development life
cycle, and cannot be achieved by the traditional directed
testing method [2]. Verification of IC’s using Verilog/
SystemVerilog lacks the test bench’s reusability for
environment and also consumes more time. Universal
Verification Methodology is the standard form of Verification
[1]. The UVM has numerous class libraries which enable
reuse of the environment across the projects. In this paper,
we have used a two communication protocol designs to do
verification using the UVM. One is UART and another one is
SPI. Communication protocols can be divided into two
categories: Inter system protocols and Intra system
protocols. Inter system protocol is implemented in
communication between two distinct devices, such as a
computer and a microcontroller kit through inter bus
system. UART is the one of the inter system communication

protocol. UART stands for Universal Asynchronous Receiver-
Transmitter. UART is a hardware communication protocol
that is primarily used for data transmission over a long
distance and between the devices with high reliability. It can
be used in both transmission and receiving of a data serially
in asynchronous way [1]. UART is an asynchronous, means
communication between the devices without using clock
signal. It has two pins, one is transmitter and another is
receiver. Parallel data is converted into serial format by
UART transmitter after receiving from system bus and
transmits. Serial data is converted back into parallel format
by UART receiver and send it to system bus. For
transmission and receiving data between two UART
modules, only two wires are required.

Intra system protocol is implemented in communication
between two devices on the printed circuit board or SoC’s.
SPI is the one of the intra system communication protocol.
SPI stands for Serial Peripheral Interface. SPI is primarily
used for data transmission over a short distance with high
speed and reliability. SPI is a synchronous, full-duplex
interface with a master slave architecture, which uses clock
for the communication. The rising or falling edge of the clock
is used to synchronise the data from the master or slave.
Data can be sent or received simultaneously. The SPI comes
in either 3-wire or 4-wire interface. The clock signal
produced by the master serves as the synchronizer for data
transmission.

2. OVERVIEW OF UART AND SPI

2.1 UART

UART is one of the most widely used hardware
communication protocol. It supports bi-directional,
asynchronous and serial data transmission. UART can
communicate in the simplex, half-duplex and full-duplex
modes. One way transmission is allowed in simplex mode.
Either transmitter or receiver is allowed transmission at a
time in half duplex mode; a receiver will be in idle state if the
transmitter is transmitting data, and vice versa. Both way
transmissions is allowed in a full duplex mode; both
transmitter and receiver work at the same time [3]. UART
typically contains two wires: a transmitter (Tx) and a
receiver (Rx) as shown in the fig -1.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 97

Fig -1: Universal Asynchronous Receiver Transmitter

The transmitting UART converts parallel data into serial data,
once received from the data bus. The receiving UART
translates back to parallel data after receiving serial data bit
by bit. No clock synchronization between transmitter (Tx)
and receiver (Rx), this means they have to agree beforehand
to a clock frequency. This is done by setting the baud rate for
UART Tx and UART Rx. Transmission of data speed is
measured as a baud rate, which is represented in bits per
second (bps). UART can works in different baud rates like
1200, 2400, 4800, 9600, and 115200 bps. Tx and Rx must
function at same baud rate in the both UARTs [1] [3]. Data is
sent in the form of packets.

Fig -2: UART frame format

Frame format of a UART is shown in the fig -2. It consists of
start bit, stop bit and parity bit. The beginning and finish of a
message are represented by the start and stop bits. At the
receiving end, the parity bit acts as the check bit. Parity bit is
optional and depends on requirements.

Communication in UART is initiated by transmitter in the
form of frame. Start, stop, and parity bits are added to
construct a data frame. The data frame is then transmitted
serially to Tx pin. Rx pin reads the data frame and removes
the start and stop bit. Actually length of the data is 5 to 8 bits
[4].

2.2 SPI

SPI is one of the most widely used communication protocol.
SPI stands for Serial Peripheral Interface. Serial Peripheral
Interface supports synchronous, full duplex communication
and serial data transmission with high speed over the short
distance. Short distance means communication between the
devices on the same board. SPI is mainly used for
communication between the microcontrollers/micro-
processors and peripherals [6]. SPI protocols requires clock
signal for synchronization between the transmission and
reception during the communication. SPI protocol works in

the master-slave configuration. SPI supports single master-
single slave and single mater-multiple saves architectures.
SPI supports bi-directional, synchronous and serial data
transmission. Transmission takes place on synchronous clock
signal generated by the master. SPI needs just four lines for
the communication to happen between the master and the
slave [7].

Fig -3: Serial Peripheral Interface

SPI single master-slave architecture is shown in the fig -3. SPI
consists of the four signals: serial clock (SCK), chip select/
slave select (CS), master in slave out (MISO) and master out
slave in (MOSI). The rising or falling edges of the clock are
used to send and receive data from the master and slave,
respectively. The signal description of the serial peripheral
interface

Master In Slave Out (MISO): Using a MISO line, the master
chip receives data from the slave. Transmits data serially one
direction with MSB bit sent first. The MISO line will be in a
high impedance state if the slave chip is not chosen.

Master Out Slave In (MOSI): Using a MOSI line, the master
chip transmits data to the slave chip. MSB bit is sent first and
in single direction serially during data transmission.

Serial Clock (SCK): Serial clock is used to synchronise data
between the master & slave and thr MOSI & MISO signal line.
A byte of data can be exchanged between a slave and master
device in eight clock cycles. SCK is generated by the master
device and is used as the slave device's input clock.

Chip/Slave Select (CS): The slave chip is selected using the
chip select line of slave. It should stay active low during data
transfer [6-8].

Fig - 4: SPI 8 bit data transmisson

After Communication in the SPI is initiated by the master and
configures the clock. Master uses the clock configure to set
the frequency which must be less than or equal to slave

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 98

device’s maximum frequency. The master will select the
particular slave device for communication through the slave’s
CS line to low state. MOSI line is used to shift the data from
shift register to slave and slave shifts the data into shift
register. MISO line is used to shift the data from slave to
master in the same fashion as MOSI as shown in the fig -4 [6].

3. UNIVERSAL VERIFICATION METHODOLOGY

Verification is a process of determining whether the designed
module meets the specific requirements in the design of IC’s.
UVM is a standard methodology for verifying integrated
circuit designs. Abbreviation of UVM is Universal Verification
Methodology. UVM is mainly derived from the open
verification methodology (OVM). The OVM was created as a
result of a joint effort between Cadence Design Systems and
Mentor Graphics to integrate the ideas of Universal Reuse
Methodology (URM) and Advanced Verification Methodology
(AVM). UVM uses SystemVerilog for verification. Additionally,
Synopsys joined and combined the Reference Verification
Methodology (RVM) and OVM methodologies to create
Universal Verification Methodology (UVM), which was
approved by the Accellera committee to become the new
standard to be used for the functional verification of
integrated circuit designs in 2009 [2]. Based on the
requirement of the project, some of the points considered in
the UVM are code re-usability, build the verification
environment, random stimulus generation and verify the
design under test using the environment. Fig -5 shows the
typical UVM testbench architecture.

The major three categories of classes at UVM are as follows.

uvm_object: Base class in the UVM for uvm data and other
classes for operational method. uvm_component and
uvm_transaction are inherited from it.

uvm_transaction: Serves as the root base class for uvm
components and utilized in the generation of stimuli.

uvm component: are essentially static and remain
throughout the simulation. Top, Agent, Sequence Item,
Sequence, Test, Environment, Driver, Sequencer, Monitor,
Scoreboard are the uvm_components.

The various phases of all the uvm components are

Build phase: Based on configuration and factory settings, it
creates and configures component hierarchies.

Connect phase: Establishes connection between the ports of
various uvm components with one another.

Run phase: Implement as a task for uvm components which
is presence during the entire run-time.

Extract phase: Acquires data from scoreboards and
functional coverage monitors and process it.

Check phase: Checks whether DUT is behaving properly and
identify errors during execution of testbench.

Report phase: Displays simulation results and also saves
results to a file.

Final phase: Termination of the simulation.

Fig -5: UVM testbench architecture

UVM testbench architecture has the following components.

Testbench: Instantiates the both unit under test and test
class. And also establishes connection between them.

Test: Configures the testbench, construction of a higher level
lower in the hierarchy will serve as the initial testbench parts
development measure and instantiates the sequence to begin
the stimulus.

Environment: Verification components like scoreboard and
agent are grouped together for reusability.

Agent: Incorporates monitor, driver and sequencer as a
signal entity through the TLM interface.

Sequencer: The task of the sequencer is to guide transactions
(also known as sequence items) that are generated in
sequence to the driver or vice versa.

Driver: Retrieves data from sequencer and sends the same to
DUT and reference model through interface.

Monitor: Samples the unit being tested and reference model,
records the data present in transactions, and then compares
it.

Scoreboard: Consists of checkers to verify the design
functionality.

Sequence: Generating and receiving the data items in
sequence to and from the driver is done.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 99

Sequence item: Acts as a placeholder for the procedure that
the monitor will check on DUT signals.

Code coverage analysis gives feedback to the report file
regarding the execution of statements, branches, conditions,
and expressions in the source code and measures the amount
of logic that is toggled during execution. Code coverage
mainly includes statement coverage, condition coverage,
branch coverage, expression coverage, focused expression
coverage and toggled coverage.

4. RESULTS

Functional modules for the above discussed protocols are
designed using SystemVerilog HDL, compiled and simulated
using QuestaSim. UVM verification and Code coverage
analysis are performed on the designed functional modules
using QuestaSim 10.7c include with UVM 1.2.

Fig -6: Simulated waveform of UART

Above fig -6 shows the simulated waveform of the UART data
transaction between transmitter and receiver. Transmission
of the data happens on the positive edge of the clock cycle.

Fig -7: UVM report of UART data transaction between tx
and rx

UVM report in the fig -7 gives the transaction details like
transaction numbers, transaction of the data between the
transmitter and receiver passed or failed. Here, we have used
the 10 transactions. Once the data is transmitted successfully,
will get the message [TRANSACTION]::TX PASS. After the data
is received successfully, expected data and obtained data is
compared in the scoreboard of the UVM. If the both the data
are same, will get the message [TRANSACTION]::RX PASS.
Data is chosen randomly using the concept of randomization.

Fig -8: UVM report summary of UART

UVM report summary in fig -8 gives the details of WARNING,
ERROR, FATAL, number of test case, iteration and time taken
during the UVM verification.

Fig -9: Simulated Waveform of SPI

Above fig - 9 shows the simulated waveform of the serial
peripheral interface data exchange between the master and
slave during MISO and MOSI mode of operation.

Fig -10: UVM report of SPI’s data transaction between
master and slave

UVM report in the fig -10 gives the successful data transfer
between master and slave and vice-versa. Transaction details
like RD_WR Match, address Match, MISO data Match and
MOSI data Match are shown on successful data exchanged
between the master and slave

Fig -11: UVM report summary of SPI

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 100

UVM report summary in fig -11 gives the details of WARNING,
ERROR, FATAL, number of test case, iteration and time taken
during the UVM verification.

Fig -12: Code coverage report of UART

Fig -13: Code coverage report of SPI

Fig -12 and fig -13 shows the code coverage report of UART
and SPI functional modules.

Fig -14: Code coverage details of UART functional module

Fig –15: Code coverage of SPI master

Fig -15 shows the code coverage details of SPI master
functional module.

Fig -16: Code coverage of SPI Slave

Fig -16 shows the code coverage details of SPI slave functinal
module.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 101

Fig -17: Code coverage of UART testbench

Fig -17 shows the code coverage details of UART testbench

Fig -18: Code coverage of SPI testbench

Fig -18 shows the code coverage details of the SPI testbench

5. CONCLUSIONS

This paper contains the brief discussion of the UART and SPI
protocols. The work includes the design of the functional
modules of UART and SPI using SystemVerilog HDL. UVM
testbench environment is built for the designed modules.
Functional modules are simulated using QuestaSim 10.7c.
UVM verification and code coverage analysis of designed
modules are performed using the QuestaSim 10.7c pre-
compiled with UVM 1.2.

REFERENCES

[1] Priyanka B., Gokul M.R., Nigitha A., & Poomica., J. (2021).
“Design of UART Using Verilog And Verifying Using
UVM”. 2021 7th International Conference on Advanced
Computing and Communication Systems (ICACCS), 1,
1270-1273.

[2] B. Vineeth; B. Bala Tripura Sundari, "UVM Based
Testbench Architecture for Coverage Driven Functional
Verification of SPI Protocol", 2018 International
Conference on Advances in Computing, Communications
and Informatics (ICACCI), 2018 sep19

[3] Ashok Kumar Gupta, Ashish Raman, Naveen Kumar, and
Ravi Ranjan “Design and Implementation of High-Speed
Universal Asynchronous Receiver and Transmitter
(UART) ” 2020 7th International Conference on Signal
Processing and Integrated Networks (SPIN) IEEE 20
April 2020

[4] Kashyap B, Ravi V. “Universal Verification Methodology
Based Verification of UART Protocol” InJournal of
Physics: Conference Series 2020 Dec 1 (Vol. 1716, No. 1,
p. 012040). IOP Publishing.

[5] Pallavi Polsani, V. Priyanka B., Y. Padma Sai, “Design and
Verification of Serial Peripheral Interface (SPI) Protocol”
International Journal of Recent Technology and
Engineering (IJRTE) ISSN: 2277-3878 (Online), Volume-
8 Issue-6, March 2020

[6] Dr.Punith Kumar M B, Sreekantesha H N, “Design and
Verification of SPI Core Using UVM” Journal of Emerging
Technologies and Innovative Research (JETIR) JETIR
May 2019, Volume 6, Issue 5

[7] Kulkarni A, Sakthivel SM. “UVM methodology based
functional Verification of SPI Protocol” In Journal of
Physics: Conference Series2020 Dec 1 (Vol. 1716, No. 1,
p. 012035). IOP Publishing

[8] Ni W, Wang X. “Functional coverage-driven UVM-based
UART IP verification” In2015 IEEE 11th International
Conference on ASIC (ASICON) 2015 Nov 3 (pp. 1-4).
IEEE.

[9] Yamini R, & Ramya M V. (2020). “Design and Verification
of UART using System Verilog” International Journal of
Engineering and Advanced Technology (IJEAT), 9(5),
1208–1211

[10] Roopesh, D Siddesha K, Kavitha Narayan B M “RTL
DESIGN AND VERIFICATION OF SPI MASTER-SLAVE
USING UVM” International Journal of Advanced
Research in Electronics and Communication Engineering
Volume 4, Issue 8, August 2015.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 102

[11] Y. Fang and X. Chen, "Design and Simulation of UART
Serial Communication Module Based on VHDL", 2011
3rd International Workshop on Intelligent Systems and
Applications, pp. 1-4, 2011.

