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Abstract –A brain tumor refers to a cluster of aberrant brain 
cells in medical terms. The manual detection of brain tumor 
from brain MRI images is a difficult task, and sometimes it can 
cause misdiagnosis. Medical scanning has made it possible to 
detect brain tumors using imaging tools. They give clinicians a 
detailed image of the human brain. It is possible to detect early 
illnesses with sophisticated Artificial Intelligence and neural 
network classification models. In this paper, the brain tumor is 
detected from MRI brain images using a CNN model named 
EfficientNet. Four Efficient Net models i.e., EfficientNet B0, 
EfficientNet B1, EfficientNetB2, and EfficientNetB3 have been 
used for brain tumor classification. The performance of each 
model has been evaluated and the best model is found among 
the four models. 
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1. INTRODUCTION  

A brain tumor is an abnormal mass of cells that proliferates 
and reproduces uncontrollably in the brain. To identify this 
disease and determine the type of brain tumor, doctors 
perform several tests [1]. The brain scan is used to analyze 
the tumor. The medical field has recently given increased 
attention to AI as a result of its successful applications. 
Classifying magnetic resonance images with artificial 
intelligence has gained much interest in medical image 
analysis. There are two general types of brain tumor 
classification. The first is the categorization of brain images 
into normal or abnormal classes, second is the classification 
of different stages of brain tumor. 

This paper reviews and examines the brain tumor 
classification based on EfficientNet models. Here, based on 
the features extracted from the brain scan, an individual's 
MRI brain scan is categorized into either "tumor" or "no 
tumor." The methodology of brain tumor recognition using 
EfficientNet has been explained in are explained in Chapter 
3. Chapter 4 shows the experimental results and 
performance comparison. The conclusion of the study is 
presented in Chapter 5. 

 

 

2. LITERATURE REVIEW 

A combination of the SVM classifier and Fuzzy C means has 
been used for detecting brain tumor in [2]. To obtain brain 
attributes, the grey level run length matrix (GLRLM) has been 
employed in this method. SVM classifiers are employed to 
determine whether a brain scan contains a tumor or not. The 
SVM classifier was trained by utilizing 96 of the 120 brain 
MRI scans and then tested using 24 remaining images. This 
method obtained a maximum of 91.66% accuracy in the 
classification task. The brain tumor was identified in [3] by 
utilizing the Naive Bayes Classifier. An evaluation of 50 brain 
scans found an overall accuracy of 94%, with an 81.25 
percent tumor identification rate and a 100% non-tumor 
detection rate. Here, eight morphological traits and three 
intensity features have been derived from the segmented 
grayscale brain picture to categorize the tumor. The Naive 
Classifier is a supervised machine learning algorithm that is 
based on Bayes Probability theory.  

In [4], two distinct deep learning-based methods for 
classifying and detecting brain tumors have been suggested. 
BRATS 2018 dataset has been used in this work. FastAi and 
YOLOv5 classification models were both accurate to 94.98 
percent and 84.95%, respectively. Here, the classification 
model was constructed Based on ResNet34. To identify the 
brain tumor, [5] used a simple 8-layer convolutional neural 
network. A comparison of network performance with pre-
trained CNNs like VGG16, ResNet50, and InceptionV3 has 
been done to evaluate the network effectiveness. The 
proposed model achieved 96% training accuracy and 89% 
validation accuracy for brain tumor recognition. Here, the 
proposed system outperforms all other pretrained CNN 
models taken for comparison. 

A brain tumor classification system based on Fuzzy C 
means algorithm and SVM have been proposed in [6]. Fuzzy C 
means algorithm is done for extracting brain features from 
MRI brain scan and SVM is used for classification of brain 
scan into ‘tumor affected’ or ‘tumor not affected, class. The 
proposed detection system gives an accuracy of 97.89% 
accuracy. A brain image classification model that categorizes 
a person’s brain scan into either the ‘tumorous’ or 
‘nontumorous’ class has been implemented in [7] by utilizing 
Particle Swarm Optimization (PSO) based segmentation, and 
SVM classifier. PSO is used to partition the precise cancer 
region. A discrete wavelet transformation (DWT) is applied  
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Fig.1: Block diagram of the proposed system 

to the thirteen attributes that have been extracted to obtain 
brain features. Two SVM classifiers are used to classify brain 
images: a linear SVM and a radial basis function SVM. Here 
linear SVM gives an accuracy of 71% and radial basis SVM 
gives an accuracy of 85%. 

3. METHODOLOGY 

In this work transfer learning-based approach for classifying 
brain scans has been employed. EfficientNet models are used 
here for automatic feature extraction and classification of 
brain features. The brain tumor detection system consists of 
two phases. One is the training phase and the other is the 
testing phase. In the training phase, feature extraction and 
classification on the training data set are done to create a 
prediction model. In the testing phase, test data is fed to the 
prediction model to determine whether the person has the 
tumor or not. The main steps involved in both phases are i) 
input the MRI data ii) preprocessing iii) feature extraction 
and classification. 

3.1 Input:  

The two-dimensional Magnetic resonance image of an 
individual’s brain is fed as the input to the system. The 
dataset is partitioned: as a training and testing set. Normally 
data is partitioned in 80:20 or 70:30 ratio. The dataset is 
collected from Kaggle. 

3.2 Pre-processing:  

The two-dimensional MRI brain data are of non-uniform 
size. The EfficientNet architecture requires input dimensions 
of 224 × 224. Therefore, the 2D brain images have been 
resized to a uniform dimension of 224×224×3. 

 

 

 

3.3 Feature extraction and classification:  

Automatic feature extraction and classification of brain 
features for tumor detection is done by EfficientNet models. 
Four efficient models have been used here. They are 
EfficientNet B0, EfficientNet B1, EfficientNetB2, EfficientNet 
B3. The EfficientNet is a CNN architecture where every 
depth, width, and resolution parameter are scaled 
continuously by applying a compound coefficient. Here each 
dimension is consistently scaled with a predetermined set of 
scaling coefficients. This type of scaling increases model 
accuracy and efficiency [8]. There are 8 EfficientNet models 
i.e, EfficientNet B0-B7.Out of the 8 models EfficientNet B0-B3 
has been used in this work. Every EfficientNet models have 5 
modules. The number of sub-modules varies depending on 
the model. Mobile inverted bottleneck convolution layer, 
squeeze layer, and excitation layer makes up the core of 
EfficientNet. EfficientNet B0 consists of 18 convolution 
layers. Since they outperformed numerous other networks 
(including DenseNet, Inception, and ResNet) on the 
ImageNet test, EfficientNets are advised for classification 
jobs. 
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Fig 2: Confusion Matrix of EfficientNet models 
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 Fig 3: Accuracy Curves of EfficientNet models 

 

 

 

 

 

 

 

 

EFFICIENTNET MODEL TRAINING ACCURACY VALIDATION ACCURACY 

EFFICIENTNET B0 58.7% 27.5% 

EFFICIENTNET B1 78.4% 85.2% 

EFFICIENTNET B2 80.6% 87.04% 

EFFICIENTNET B3 98.89% 93.1% 

Table 1: Accuracy of EfficientNet models 
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Fig 4: Loss Curves of EfficientNet models 

 

 

 

 

 

 

 

 

EFFICIENTNET MODEL ROC-AUC SCORE 

EFFICIENTNET B0 0.5 

EFFICIENTNET B1 0.8616 

EFFICIENTNET B2 0.8730 

EFFICIENTNET B3 0.9639 

Table 2: ROC AUC score of EfficientNet models 
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4. RESULTS 

Two-dimensional MRI images from Kaggle which are resized 
to a uniform dimension of 224×224×3 are fed as input to the 
system. 5712 images were used for training and 1311 
images were used for testing. Out of the four EfficientNet 
models, EfficientNet B3 provides higher accuracy in brain 
tumor classification task. EfficientNet B3 gives 98.8% 
training accuracy and 93.1% testing accuracy and 
outperforms all the other EfficientNet models. The least 
accurate was EfficientNet B0. This network model gives a 
low training accuracy score of 58.7% and a validation 
accuracy score of 27.5%. The accuracy and performance 
comparison of various models are given in Table 1 and Table 
2. 

5. CONCLUSION 

An abnormal proliferation of brain cells can affect the brain's 
functionality. Detecting a brain tumor early can result in a 
faster response to treatment, increasing survival chances [8]. 
Brain tumors are often detected using MRI brain scans. With 
the development of AI methods, CNN, a deep learning 
approach, can be used to categorize MRI images for tumor 
determination. In this work, automatic brain tumor 
detection using four CNN EfficientNet models (EfficientNet 
B0-B7) has been done and found the best one. In comparison 
to EfficientNet B0-B2 models, EfficientNet B3 shows the best 
performance for brain tumor classification. In the future, 
EfficientNet B4-B7 can also be used to classify brain tumors 
and check if the accuracy of detection has increased. 
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