
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 25

Continuous Health Monitoring of Micro-Service based Application

Vyomikaa Basani1, Anitha G S2

1Student, Dept. of Electrical and Electronics Engineering, RV College of Engineering, Karnataka, India
2Associate Professor, Dept. of Electrical and Electronics Engineering, RV College of Engineering, Karnataka, India
---***---
Abstract - Popularity of developing an application using
microservices architecture is gaining more attention because
of smaller and faster deployments, ease of understanding,
scalability, Continuous Integration, Continuous Delivery, and
improved fault isolation. Though Micro-Services bring lots of
advantages, it has its own challenges. Teams can easily
manage and monitor individual services, but they lose sight of
the global system behavior. The objective of this paper is to
develop a centralized and continuous health monitoring
system for an application built with Micro-Services
architecture. The proposed system is developed with the help
of AWS lambda that is triggered by an API Gateway for every
cron schedule. The real-time health status of each service of
the application is displayed in Kibana in the form of a
dashboard. This developed system keeps the developers alerted
whenever a particular service stops functioning.

Key Words: Microservices, Serverless, AWS lambda, API
Gateway, ELK Stack;

1.INTRODUCTION

Recent developments of the cloud landscape for applications
suggests there is a shift towards microservisation. The
purpose of microservices is to use autonomous units that are
isolated from one another and coordinate them into a
distributed infrastructure by a lightweight container
technology, such as Docker. Though Micro-
Services/Serverless/Containers bring lots of advantages, it
has its own challenges. Teams can easily manage and
monitor individual components/services, but they lose sight
of the global system behaviour. Traditional forms of
monitoring are not suitable for microservices because there
are multiple services that make up the same functionality
that was previously supported by a single application.
Consider a scenario when the application fails to function
normally, an issue may be reported with a transaction that is
distributed across several microservices, server-less
functions and teams. It is difficult to differentiate the
service/component that is responsible for the issue from
those that are affected by it. Monitoring the health of
microservices is an important part of ensuring developers
are alerted quickly to interruptions in service for mission
critical applications. These health checks also provide a
means to keep API warm, so it is ready to service requests as
quickly as possible. Hence, it is important to establish a
different, easy, and effective process of achieving the
distributed tracing using log collection, log aggregation and
visualization.

2. LITERATURE REVIEW

The study by C. Pahl and P. Jamshidi was conducted to
discuss the microservices architecture. The details of a
microservice are hidden from the other microservices.[1] The
services interact with each other with well-defined APIs. This
reduces the number of requests made to the application. Each
microservice can be developed with different programming
language, and technologies. Microservices embrace the
concept of decentralization as each service can be deployed
and maintained by different teams.

M. Viggiato et al., presented a review paper on the use of
microservices architecture in practice. In the microservices
architecture, the application is composed of many
independently deployable and loosely coupled smaller
services.[2] Microservices provide many advantages such as
scalability, maintainability, easy and faster deployment, and
no commitment to a single technology stack. With the use of
microservices, developers also face challenges such as
monitoring of the application, and complex interaction
between the services.

According to the survey conducted by J. Ghofrani and D.
Lübke, one of the main challenges of building an application
with microservices architecture is that its distributed nature
makes it difficult to debug the issues. Monitoring of
microservices based application requires larger efforts
because it requires to go through huge volumes of data.
Application logging and tracing allows operators to debug the
errors.[3]

V. Ivanov and K. Smolander have presented a review
paper on the impact of serverless on DevOps practices. From
the research, the results show that the serverless approach
strongly affects various automation practices such as
deployment, test execution and monitoring of the
application.[4] The use of serverless reduces the
infrastructure cost and provides automatic scalability. It also
reduces the time on the maintenance and management of
servers.

H. Andi discussed the concept of serverless cloud
computing framework, its benefits and usage in IT
industry.[5] The analysis suggests serverless cloud
computing reduces the execution time, and cost of
maintenance, also it offers high security. [6] B. Choudhary et
al., have developed the serverless chat application to discuss
the functioning of Amazon Web Services (AWS) lambda along

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 26

with other services. The developed model did not require any
maintenance or management of servers and the number of
users could be augmented as required.

M. Villamizar et al., in the paper have compared Amazon
Web Services with other cloud computing services based on
various factors such as cost, performance and response
time.[7] The cost per million requests of the architectures
implemented with the cloud computing services were
compared and it was found that AWS lambda can reduce the
cost per scenario up to 77.08% compared to other cloud
computing services. [8]-[10] For the architecture operated by
AWS lambda, the response time was found to be less
comparatively. From the research, the results obtained
concludes better performance can be obtained at lower costs
with AWS lambda.

The paper by L. Muller et al., focuses on the
implementation of a file upload stream on AWS lambda to
discuss the performance indicators influencing traffic on
serverless computing. From the study, it was found that the
performance of the lambda function is determined by the
overall latency in the Round-Trip-time and their execution
time. Further it was found that the latency increased with the
incorporation of other cloud services in the lambda function
such as API gateway. However, a serverless architecture
facilitates quick deployment, better scalability, and reduced
architecture costs.[11]

A.-V. Zamfir et al., presents a review paper on the need for
Elasticsearch system for systems monitoring and big data
analysis.[12] The paper focuses on the current state of
Elasticsearch, Logstash, and Kibana (ELK) stack and the
possibility of extension of the Elasticsearch system with
machine learning to automate the elastic technology. The
machine learning techniques can help in the root cause
analysis and with further advancements, it can also suggest
the possible mitigation steps based on the past events.

P. Bavaskar et al., discussed the performance of Elastic
stack in log analysis for big data processing. The purpose of
tracking and analyzing the logs is to find malfunctioning of a
particular system. From the analysis, it can be concluded that
Elasticsearch is the most suitable for data visualization as it
provides advanced search capabilities, centralized data
processing and aids in picturing the logs in the form of pie-
charts, graphs, dashboards, etc. [13]

Elasticsearch is based on Lucene search engine that
allows users to store, search and analyze big volume of data.
It is built with Representational State Transfer (REST) API.
According to A. Neumann et al., in the paper, a REST service is
a server-client model that allows easy API usage.[14] The
paper by O. V. R. Nikita Kathare and D. V. Prabhu presents a
comprehensive study of Elasticsearch. It has many features
such as high scalability, index management, full text search
engine, high security, and availability. Elasticsearch supports

various datatypes, also optimized and aggregation querying
in search indices and eventual consistency.[15] According to
D. Kalyani et al., Elasticsearch makes the search process
faster because of its use of inverted indices. It also has a
failure recovery mechanism as its architecture is distributed
in nature.[16]

M. Mitra and D. Sy documented about the ELK stack.
Elastic stack provides a way to consolidate storage of logs,
event monitoring and report generation. Based on the study,
it is found that elastic stack is well suited for time series data
as it can pull events using plugins such as Elasticsearch, log4j,
Kafka, HTTP, JDBC, etc. Kibana allows users to visualize the
logs, from various sources, in the form of bar graphs, pie-
chart etc. It also allows the users to search for the keyword
for various requirements such as root cause analysis.[17]
Zhao. J et al., presents management of API gateway based on
Micro-Service Architecture. The API gateway provides a
means of integrating various microservices and hence
simplifies the interaction between client and the
application.[18], [19]

 3. PROPOSED HEALTH MONITORING SYSTEM

The centralized and continuous health monitoring system is
developed using the lambda function provided by the
Amazon Web Services and the results are visualized in the
Kibana. The services are monitored continuously with the
help of cron jobs.

The implementation of the system is as shown in Fig.1. The
development of the continuous health monitoring system
includes the following steps:

1. Querying the status of all the components of the
application by creating an AWS lambda function.

2. Creation of a CI pipeline to trigger the AWS lambda
function periodically.

3. Sending the obtained health status results from the
lambda function to the ELK stack in the required
format.

4. Generating a report using Kibana metrics that gives
information about the health status of the services.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 27

3.1 Python Lambda Function

An AWS lambda function is created to get and query the
health status from the services of the application with the
help of the microservice endpoints. The required python
libraries are imported to make HTTP requests and to send
the logs to the ELK stack. An array is initialized with the
microservices endpoints. These endpoints are required to
make HTTP requests to check the health of a service. For
each service, the Kibana logs are initialized in the form of key
value pairs. There are two key value pairs: one that logs the
success count and the other logs the failure count.

The function handler gets executed when the lambda is
invoked. This lambda function is invoked by the API gateway
which is added as a trigger. The API gateway is called by the
CI pipeline and hence the lambda function is triggered
periodically. A function check_endpoint is defined that
checks the health of a service by taking two arguments,
argument one is the service name and argument two is the
microservice endpoint. If the microservice endpoint is a
POST call, it makes a POST HTTP request and returns the
response, similarly if the microservice endpoint is a GET call,
it makes a GET HTTP request and returns the response.

Another function send_logs is defined that sends the status
of the response obtained to a topic in the ELK stack in the
form of key value pairs. If the service is functioning properly,
the success key is appended with the value 1 and if the
service is not functioning properly, then the failure key will
have the value 1. Each time the handler is executed, the
Kibana logs are initialized, and the health status of the
services are sent to the ELK stack.

3.2 API Gateway and Cron Jobs

An API Gateway is created that allows the developers to
connect non-AWS applications to AWS backend resources,
such as code and servers. REST API is chosen to cache
endpoint responses and to gain control over various API
management capabilities such as per-client rate limiting and
API keys. The API Gateway is then added as a trigger to the
lambda function. A cron job is created in the EventBridge
service provided by Amazon Web Services. The AWS lambda
is triggered every five minutes, so the cron period is five min.
The event bus selected is default and the rule type is
schedule. The lambda function is then added as the target to
the created cron job.

4. RESULTS

4.1 AWS Lambda Results

The lambda function is executed every five minutes. Every
time the lambda gets executed; the logs are sent to the ELK
stack. The output obtained in the AWS console is as shown in
Fig. 2. First, the logs in the form of key value pairs are
initialized. The lambda function queries the health status of
each service by making HTTP requests to the microservices
endpoints. Then displays the status of the response of all the
services. Finally, these key value pairs that contain the
information regarding the health status of the services of the
application are sent to the Kibana.

The Kibana Dashboard visualizes the health status results
obtained from the AWS lambda. In the Kibana dashboard,
each pie-chart shows the success rate of a service of the
application over a period as shown in Fig. 3.

Fig -1: Project Design

Fig -3: Success Rate of Services

Fig -2: AWS Lambda Function Output

 4.2 Kibana Dashboard

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 28

The kibana dashboard also has a time series graph for each
service. The time series graph for one of the services is as
shown in Fig. 4. The failure count is represented by a red
vertical bar and the success count is represented by a green
vertical bar. It also displays the overall success rate and
overall failure rate.

4. CONCLUSION

The continuous health monitoring system developed in this
project provides end-to-end visibility, faster and easy
debugging of customer issues and automated SLA tracking.
With the developed centralized health monitoring system,
the health status of each service of the application can be
viewed on the Kibana dashboard in real time. It also displays
the overall success rate and overall failure rate. The health
status of each service can also be viewed for a particular
time by applying the time filter. The continuous health
monitoring system keeps the developers alerted whenever a
particular component stops functioning.

The developed centralized and continuous health monitoring
system can be applied to other microservices based
applications. The developed continuous health monitoring
system can be combined with an alerting system so that
whenever a particular component stops functioning,
notifications can be sent with the help of Amazon SNS. The
health monitoring system can also be combined with
distributed tracing to capture more granular metrics.

REFERENCES

[1] M. Viggiato, R. Terra, H. Rocha, M. Valente, and E.
Figueiredo, “Microservices in practice: A survey study,”
Sep. 2018

[2] C. Pahl1 and P. Jamshidi, “Microservices: A Systematic
Mapping Study,” in 2016 International Conference on
Cloud Computing and Services Science, vol. 1, pp. 137-
146, ISBN: 978-989-758-182-3.

[3] J. Ghofrani and D. Lübke, “Challenges of Microservices
Architecture: A Survey on the State of the Practice,” in
Feb. 2018 10th Central European Workshop on Services
and their Composition, vol. 2072.

[4] V. Ivanov and K. Smolander, “Implementation of a
devops pipeline for serverless applications,” in 2018
Lecture notes in Computer Science Book Series, IEEE,
Nov. 2018. doi: 10.1007/978-3- 030-03673-7_4.

[5] H. Andi, “Analysis of serverless computing techniques in
cloud software framework,” Journal of ISMAC, vol. 3, pp.
221–234, Aug. 2021. doi: 10.36548/jismac.2021.3.004.

[6] B. Choudhary, C. Pophale, A. Gutte, A. Dani, and S.
Sonawani, “Case study: Use of aws lambda for building a
serverless chat application,” in. Jan. 2020, pp. 237–244,
isbn: 978-981-15-0789-2. doi: 10.1007/978-981-15-
0790-8_24.

[7] M. Villamizar, O. Garc´es, L. Ochoa, H. Castro, L.
Salamanca, M. Verano, R. Casallas, S. Gil, C. Valencia, A.
Zambrano, and M. Lang, “Infrastructure cost comparison
of running web applications in the cloud using aws
lambda and monolithic and microservice architectures,”
in 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), 2016, pp.
179–182. doi: 10.1109/CCGrid.2016.37.

[8] S. Mukherjee, “Benefits of aws in modern cloud,” Mar.
2019. doi: 10.5281/zenodo.2587217.

[9] D. Rajan, “Serverless architecture - a revolution in cloud
computing,” Dec. 2018, pp. 88–93. doi:
10.1109/ICoAC44903.2018.8939081.

[10] C. Kotas, T. Naughton, and N. Imam, “A comparison of
amazon web services and microsoft azure cloud
platforms for high performance computing,” in 2018
IEEE International Conference on Consumer Electronics
(ICCE), 2018, pp. 1–4. doi: 10.1109/ICCE.2018.8326349.

[11] L. Muller, C. Chrysoulas, N. Pitropakis, and P. Barclay, “A
traffic analysis on serverless computing based on the
example of a file upload stream on aws lambda,” Big
Data and Cognitive Computing, vol. 4, Dec. 2020. doi:
10.3390/bdcc4040038.

[12] A.-V. Zamfir, M. Carabas, C. Carabas, and N. Tapus,
“Systems monitoring and big data analysis using the
elasticsearch system,” May 2019, pp. 188–193. doi:
10.1109/CSCS.2019.00039.

[13] P. Bavaskar, O. Kemker, A. Sinha, and M. Sabri, “A survey
on: ”log analysis with elk stack tool”,” SSRN Electronic
Journal, vol. 6, pp. 965–968, Nov. 2019.

[14] A. Neumann, N. Laranjeiro, and J. Bernardino, “An
analysis of public rest web service apis,” IEEE
Transactions on Services Computing, vol. 14, pp. 957–
970, Jul. 2021. doi: 10.1109/TSC. 2018.2847344.

Fig -4: Time Series Graph of Service1

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 29

[15] O. V. R. Nikita Kathare and D. V. Prabhu, “A
comprehensive study of elasticsearch,” International
Journal of Science and Research (IJSR), vol. 10, Jun.
2021.

[16] D. Kalyani and D. Mehta, “Paper on searching and
indexing using elasticsearch,” International Journal of
Engineering and Computer Science, 2017.

[17] M. Mitra and D. Sy, “The rise of elastic stack,” Nov. 2016.
doi: 10.13140/RG.2.2.17596.03203.

[18] J. Zhao, S. Jing, and L. Jiang, “Management of api gateway
based on micro-service architecture,” Journal of Physics:
Conference Series, vol. 1087, p. 032 032, Sep. 2018. doi:
10 .1088 / 1742 - 6596/1087/3/032032.

[19] M. Tomi´c, V. Dimitrieski, M. Vjeˇstica, R. Zupunski, A.
Jeremi´c, and H. Kaufmann, “Towards ˇ applying api
gateway to support microservice architectures for
embedded systems,” Mar. 2022.

