
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2602

Upgradability of smart contracts: A Review

Girish N M1, Sharadadevi Kaganurmath2

1UG Student, RV College of Engineering, Bengaluru, Karnataka, India
2Professor, Dept of Information Science and Engineering, RV College of Engineering, Bengaluru, Karnataka, India

---***---
Abstract - Smart contracts have been developed and
employed in both permissioned and permissionless blockchains
recently, mainly to enforce agreements among parties without
the need for intermediaries. This achievement is the result of
blockchain immutability which guarantees that no party can
alter the conditions of an already deployed contract. However,
immutability also makes patching or updating contracts
impossible even when incorrectness, unfairness, or security
flaws are spotted in them. So far, researchers in academia and
industry have developed two main methods, data segregation
and proxy storage, with six patterns to make deployed
contracts upgradable. However, until now, there has been no
comprehensive framework that can simultaneously offer
upgradability, security resilience, and scalability features. For
example, none of the existing solutions have implemented any
security mechanism that can resist attacks such as the DAO
one. Through extensive analysis and implementation of all
these patterns, and taking state-of-the-art attacks on the
Ethereum network into consideration, we review framework,
“Comprehensive-Data-Proxy pattern” which uses data
segregation on the top of proxy pattern, that can completely
defend against any types of Reentrancy attacks. Additionally,
this solution mitigates the scalability issue of the proxy
pattern. Our experiments show that the framework can
address these two issues with negligible impact on
performance.

Key Words: Blockchain, Smart Contract, Ethereum,
Distributed platform, DAO

I. INTRODUCTION

Due to the immutability of blockchains, smart contracts [26]
are replacing regular contracts since they can do away with
middlemen. This immutable quality guarantees that
deployed contracts are not changed by any participating
parties, fostering confidence between them. With the
exception of Bitcoin [12], many blockchains have been built
to accommodate smart contracts. Smart contracts are
written in languages like Go-Lang [1] and Solidity [19] on
some platforms, such as Ethereum [7]. Once deployed, they
can be executed by the parties concerned at specific
addresses within the Ethereum network [17].

Anyone can access any address or smart contract on a
permissionless blockchain like Ethereum and start its
execution if the necessary criteria are satisfied. In actuality,
anyone can create and use contract. Making sure that the
deployed smart contracts are accurate, equitable, and secure

is crucial [11]. Writing fair and error-free contracts is far
from simple, as shown by the numerous attacks being
attempted against the Ethereum platform [4]. This kind of
security vulnerability requires the targeted smart contract to
be patched immediately, or attackers exploit it again.
However, patching or upgrading a contract is in contrast
with the immutability feature of blockchain. We need to find
a way to patch or upgrade smart contracts if we aim to
develop this new technology and prepare it for mass
adoption.

So far, there have been two categories of upgradable
patterns developed by researchers to achieve upgradability
on the Ethereum platform. The technique used in all these
solutions is to map the states of storage data in the newly
deployed contracts to the original versions. By doing so, the
states of data can be updated and manipulated by the new
contracts without making any changes to the previous
versions, something which was supposedly impossible to do
directly before. For instance, in [25], the authors introduce a
data segregation pattern, which suggests that a contract is
written as two separate (sub)contracts; a data contract and a
logic contract. In this case, the upgradability is achieved
through upgrading the logic contract without touching the
data in the data contract. In another approach, OpenZeppelin
[9] developed a novel method that uses a proxy contract to
overtake the ownership of storage addresses of all versions
of a given contract. Any call to the target contract would be
redirected to the proxy contract which in turn, will send all
transactions to the same address it controls, and through
this, achieves the upgradability goal. To sum up, mapping the
states of new version of the deployed contract to its original
storage address is the key to any state-of-the-art solution.

While these solutions can bring upgradability to smart
contracts in the immutable environment of blockchain, what
is missing in them is resilience to attacks, which was one of
the reasons behind the need for updating the contract in the
first place. Indeed, none of the existing patterns implement
any control to prevent critical attacks, such as Reentrancy
attacks [16], in Ethereum. For instance, protecting the Ethers
held by logic contracts in data segregation patterns is vital,
but none of sub-patterns in this category can handle it. Thus,
it remains an open question how we can apply a security
mechanism to improve updatable contracts resilience to
attacks.

In this paper, we first introduce six main state-of-the-art
approaches and then comprehensively analyse four of them

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2603

that address the upgradability problem in Ethereum. Three
of these use data segregation pattern: basic data segregation,
satellite data segregation and register pattern [25]. The
remaining three methods that employ the proxy pattern
approach are Inherited Storage Proxy [14], Eternal Storage
Proxy [13] and Unstructured Storage Proxy [15]. After
introducing the six approaches, we deeply examine three
kinds of popular attacks on Ethereum which were studied in
[16], [8] and [21], namely, cross-function Reentrancy, typical
Reentrancy and DAO attacks. After analysing and
implementing these attacks, we then review mechanism to
enhance the current upgrading approaches in terms of
resilience to such attacks. Next, we thoroughly analyse the
proxy patterns and specifically, we study the function
signatures [19] of smart contracts in order to determine how
to improve the scalability of this pattern. We they implement
the design of multi-contracts proxy with a single contract so
that this implementation requires only one proxy for better
scalability.

To this end, we formulate and implement the comprehensive
combined-model, Comprehensive-data-proxy pattern [3], to
fully achieve upgradability as well as security resilience and
scalability. Under this model, the design smart contracts in
two layers as proposed by typical data segregation patterns,
but with the distinctive characteristics. First, they embed one
extra authentication and data verification component
between data layer and its logic contract layer, to rule out
the possibility of DAO attacks. Second, we implement a proxy
pattern at the data layer to fully achieve upgradability.

The first contribution is the analysing of state-of-the-art
methods that have been developed to upgrade smart
contracts, in which we shows that while proxy patterns can
fully achieve upgradability, they raise concerns about
memory handling and scalability. We also found that none of
the existing patterns have any security control to defend
against typical attacks. Then, we make enhancements to each
pattern based on our evaluation in the previous step. We
show that with the enhancement, i.e. Ether-Transfer-
Verification, all the existing data segregation patterns would
completely thwart well-known Re-entrancy and DAO attacks.
The new model of upgradable smart contract, i.e.
Comprehensive-dataproxy pattern, which can
simultaneously provide upgradability and resilience to
typical DAO and Re-entrancy attacks. The rest of the paper is
organised as follows: In Section II, we introduce the general
background of smart contracts and the problems that justify
the need for upgradability feature. Discussion on the results
will be presented in Section III. We wrap up the paper in
Section IV with our conclusion and further work.

II. BACKGROUND

A. The Concept of Upgradable Smart Contract

If smart contracts are immutable, how can we update them
like conventional software? This is the main research

question. It is crucial to understand that an already deployed
contract or opcode cannot be changed in any way. However,
we can upgrade contracts by creating a storage mapping
from the new contract to the old one. Several sorts of
patterns are now used to deal with contract upgradeability.
The six most common upgradable contract patterns will be
examined in the remaining paragraphs of this section.
Additionally, we separate them into two groups: proxy and
data segregation.

B. Data Segregation Patterns

In this section, we discuss the first upgradable pattern of
smart contract, i.e. Data Segregation. The core idea behind
data segregation is to separate data from the contract logic.
In this way, a given contract is written in two separate
(sub)contracts, a data contract and a logic or business
contract. The logic

Fig. 1.Upgradability by Data Segregation.

contract interacts and manipulates the data in the data
contract through some interfaces provided by the data
contract (see Fig. 1). By doing so, it brings the upgradability
to the contract as the logic contract can be upgraded and
redeployed, while the data contract which holds all the states
of for the contract remains the same on the chain. However,
one disadvantage of this simple pattern is that, the data
contract in this case does not have any upgradable capacity
like its counterpart.

There are currently three patterns in this category: basic
data segregation, satellite pattern, and register contract
pattern. In the basic data segregation approach, an original
contract is simply separated into two child contracts; a data
contract and a logic contract. For instance, an ERC20 [23]
standard contract is realised by a data contract which
contains the states such as accounts and balance of account,
and a logic contract which covers operations like mint and
transfer methods. Similarly, Satellite Contract also contains a
data contract and satellite contracts which works similarly to
the logic contract mentioned before. What makes this
pattern different from the previous one is that each of the
satellite contracts is responsible for one functionality only.
Register contract pattern is additionally used to update the
logic contract address to the data contract. Although this
pattern can refer to the latest copy of a contract, it cannot
import the existing data into the new version of the contract.
Therefore, it should be used with other types of upgradable
pattern, such as basic segregation or satellite contract
pattern.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2604

C. Proxy Patterns

Another upgradable category is about proxy contracts, as
Zeppolinos [10] has suggested for the Ethereum platform.
There are currently three types of upgradable proxy
patterns: Inherited Proxy Storage, Eternal Proxy Storage and
Unstructured Proxy Storage. They all share the same
foundation that the proxy contract takes control of all the
states of contracts by handling every call to them though
delegatecalls [6]. By doing this, the sender’s original address
is preserved while its call is passed through the proxy
contract to the original storage address, as shown in Fig. 2.

Fig. 2.Upgradability by using the Inherited Storage.

As it can be seen, all the calls to the contract are handled by
the proxy contract. It forwards all these calls to the execution
storage area of the contract by using delegatecall. Through
this, the proxy is in control of the storage, and all states of
the contract, since the delegatecall does not change the
sender origin. It is also worth noticing that there is no need
for separation of data and logic contracts in this solution. The
target contract will update itself with its storage being
controlled by the proxy contract, thus, it can access all the
states of its original contract.

III. REVIEW RESULTS

In this section, we describe the key results of the
experiment regarding to the performance of upgradable
patterns, resilience to DAO and re-entrance attacks and
upgradability capacity.

A. Performance Indicators

In order to evaluate the gas used and TPS for each pattern,
we perform the experiment with two standard
transactions; the mint (top up) and transfer transactions.
Fig. 5. Gas used for deployment, mint and transfer (gas
used for deployment was presented by 3 percent of actual
value for presenting purpose

We also measured the gas consumed in the process of
deploying smart contracts for each pattern as shown in
Fig. 5. As it can be seen from the these above tables, and
TPS in table 6, the amount of Gas

Fig. 6.The TPS performance indicator.

used for the deployment, mint and transfer method as
well as the TPS are consistent with our analyses in section
III. It also proved that these two indicators of proposed
pattern, are not considerable more than these existing
methods.

B. Resilience to DAO Attacks

In order to evaluate the resilience of patterns against two
common attacks on the Ethereum Public Chain, we
launched the attacks on each of them. Out result is
consistent with our analysis. Without a proper protection
mechanism, all patterns are vulnerable to DAO and
Reentrancy attacks. On the contrary, the proposed pattern
completely blocks these attacks even though the above-
mentioned vulnerabilities exist in the logic contract. In the
other words, DAT and any types of Reentrancy attacks are
eliminated by the use of data segregation technique
introduced.

C. Upgradable Capacity

As we stated before, none of the data segregation patterns
can provide full upgradability, since only the logic
contract of this category is upgradable while its
counterpart (the data contract) is not. On the other hand,
all the three proxy patterns as well as the pattern have the
capacity for complete upgradability. In the case of proxy
patterns, the target contact can be upgraded freely
regardless of the proxy contract. The pattern also achieves
this with both logic contract and data contract, plus multi-
proxy contract capacity.

CONCLUSION

In this paper, we analysed the need for upgradability in
smart contracts, state-of-the-art upgradable patterns, then
we thoroughly analysed those patterns to show the main
differences, also the limitations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2605

REFERENCES

[1] Golang documentation. [Online]. Available:
https://golang.org/doc/

[2] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks
on ethereum smart contracts sok,” in Proceedings of the
6th International Conference on Principles of Security
and Trust - Volume 10204. New York, NY, USA: Springer-
Verlag New York, Inc., 2017, pp. 164–186. [Online].
Available: https://doi.org/10.1007/978-3-662-54455-6

8

[3] C. Bui. (2019, May) Upgradable smart contract patterns.
[Online]. Available: https://github.com/SWlabs/dao-
attacks

[4] Consensys, “Known attacks,” May 2016. [Online].
Available: https: //consensys.github.io/smart-contract-
best-practices/known attacks/

[5] P. Daian. (2016, Jun) Analysis of the dao exploit.
[Online]. Available:
http://hackingdistributed.com/2016/06/18/analysis-
of-the-dao-exploit/

[6] Ethereum, “Ethereum virtual machine opcodes,” Sep
2018. [Online]. Available:
https://ethervm.io/#CALLDATALOAD

[7] “What is ethereum,” July 2019. [Online]. Available:
http://www.ethdocs.org/en/latest/introduction/what-
is-ethereum.html

[8] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus:
Analyzing safety of smart contracts,” 01 2018.

[9] Z. Labs, “Upgradeability using eternal storage,”
April 2018. [Online].
Available:
https://github.com/zeppelinos/labs/blob/master/upgr
adeabilityusingeternalstorage/contracts/Proxy.sol

[10] “Upgradeability using eternal storage,”
 April 2018. [Online].

Available:
https://github.com/zeppelinos/labs/tree/master/upgr
adeabilityusingeternalstorage

[11] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016, pp. 254–269. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978309

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” Dec 2008, accessed: 2015-07-01. [Online].
Available: https://bitcoin.org/ bitcoin.pdf

[13] OpenZeppelin. (2018, April) Upgradeability using
eternal storage. [Online]. Available:
https://github.com/OpenZeppelin/ openzeppelin-
labs/tree/ff479995ed90c4dbb5e32294fa95b16a22bb9
9c8/ upgradeability using eternal storage

[14] Upgradeability using inherited storage. [Online].
Available:
https://github.com/OpenZeppelin/openzeppelin-
labs/tree/
ff479995ed90c4dbb5e32294fa95b16a22bb99c8/upgra
deability using inherited storage

[15] Upgradeability using unstructured storage. [Online].
Available:
https://github.com/OpenZeppelin/openzeppelin-
labs/tree/ff479995ed90c4dbb5e32294fa95b16a22bb9
9c8/upgradeabilityusingunstructuredstorage

[16] M. Rodler, W. Li, G. Karame, and L. Davi, “Sereum:
Protecting existing smart contracts against re-entrancy
attacks,” in Proceedings of the

Network and Distributed System Security Symposium
(NDSS’19), 2019.

[17] F. Schar, “Decentralized finance: On blockchain- and
smart contract-¨ based financial markets,” 03 2020.

[18] D. Siegel. (2016, June) Understanding the dao attack.
[Online]. Available:
https://www.coindesk.com/understanding-dao-hack-
journalists

[19] Solidity. (2019, Mar) Solidity assembly. [Online].
Available:
https://solidity.readthedocs.io/en/v0.5.5/assembly.ht
ml

[20] Solidity assembly. [Online]. Available:
https://solidity.readthedocs.io/en/v0.5.3/assembly.ht
ml

[21] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F.
Bunzli,¨ and M. Vechev, “Securify: Practical security
analysis of smart contracts,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York, NY,
USA: ACM, 2018, pp. 67–82. [Online]. Available:

http://doi.acm.org/10.1145/3243734.3243780

http://doi.acm.org/10.1145/3243734.3243780

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2606

[22] D. Wesley. (2017, Oct) Reentrancy attack on a smart
contract. [Online]. Available:
https://medium.com/JusDev1988/Reentrancy-attack-
on-a-smart-contract-677eae1300f2

[23] E. Wiki, “Erc20 token standard,” Dec 2018. [Online].
Available:

https://theethereum.wiki/w/index.php/ERC20 Token
Standard

[24] M. Wohrer and U. Zdun, “Smart contracts: security
patterns in the ethereum ecosystem and solidity,” in
2018 International Workshop on Blockchain Oriented
Software Engineering (IWBOSE), March 2018, pp. 2–8.

[25] M. Wohrer and U. Zdun, “Design patterns for smart
contracts in the¨ ethereum ecosystem,” 2018.

[26] G. Wood, “Ethereum: A secure decentralised generalised
transaction ledger eip-150 revision (759dccd - 2017-
08-07),” 2017, accessed: 201801-03. [Online]. Available:

https://ethereum.github.io/yellowpaper/paper.pdf

[27] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C.
Pautasso, and P. Rimba, “A taxonomy of blockchain-
based systems for architecture design,” in 2017 IEEE
International Conference on Software Architecture
(ICSA), April 2017, pp. 243–252.

[28] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber, “A pattern
collection for blockchain-based applications,” 07 2018.

