
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2351

Server Emulator and Virtualizer for Next-Generation Rack Servers

Chinmay N1, Sujata D. Badiger2

1,2Electronics and Communication Engineering, RV College of Engineering, Bengaluru, India

--***---

Abstract – The existing system of software development,
debugging and software validation is heavily dependent on
the actual physical hardware availability. The entire
development process is slow and delayed without the
availability of the actual hardware and thus affects the
business function. In this paper, OpenBMC firmware is
booted in the emulated ast2600-evb board using QEMU and
all the required drivers and services such as networking, ssh,
WebUI are enabled. The container image is created to
automate the entire process which reduces the software
development time and dependencies between the software
development and the hardware availability.

1. INTRODUCTION

Time to market for today's server is heavily dependent on
physical hardware. The software development and
validation is delayed because of the unavailability of the
actual hardware. Adapting to the newer technologies is
also hindered because of the unsupported hardware. All
these affect the business requirements and the market of
servers.. Emulation of physical hardware will solve the
problem caused by any delays in chip tape out that will
postpone the development of purely software
applications.

1.1 Motivation

Today's servers market is heavily dependent on the
availability of the physical and thus development process
is slow. The main motivation is to reduce the time
required for the software development process and
testing high quality BMC images. This reduces the time for
development as the image is ready with various
applications and services enabled before the actual
hardware is manufactured. This helps the development
team work on the defects and try adding other new
applications required and supported by the board. It helps
in opening and running existing applications on the
emulated board and also helps the developer team in
testing the other new applications.

1.2 Importance of Emulator

The dependence of the software development timetable
on hardware supply is significantly decreased by including
emulated devices. As a result, a software development
phase will start considerably earlier in the process of
creating a product. The timeframe for developing a typical

embedded device can be affected by emulated
devices.Both the creation as well as testing of a software
package and the hardware validation can benefit from
emulated devices.

2. LITERATURE REVIEW

This section contains a survey of present technologies and
research available related to the topic in an attempt to
better understand the efforts that have gone into this field
of study and also understand where the efforts should be
focused while developing the product. The papers
discussed in this section include work related to current
OpenBMC image booting methods, Software design,
implementation of virtual design and optimization using
QEMU, Flashing OpenBMC images using QEMU, etc. These
papers have state-of-art methods to boot and optimize
OpenBMC images using the server emulator QEMU.

In [1], Rui Almeida has suggested using a simulation tool,
namely QEMU, to aid in the creation and simulation of
dependable systems. Aiming for a simulated environment
which covers the multiplicity use case, allows validation of
dynamic interaction under multiple architectures, and
offers reliability calculations to contrast architecturally
redundant systems, extensions based on this tool were
built.

QEMU, which supports both Xen and KVM, is commonly
used in cloud systems. Essentially, it is a dynamic
translator that is quick and portable and an embedded
device emulator that simulates numerous CPUs and board
models. Additionally, it can offer a rapid virtual platform
for software development. For example, Android Emulator
uses it to simulate the entire mobile platform. To simulate
new hardware, however, QEMU needs a new virtual device
module because it only supports common hardware.
XiaoXiao Bian et al. [7], have wrapped up the investigation
into full system emulation, examine the internals and
architecture of QEMU, provide precise procedures for
building user-defined virtual hardware devices, and write
the Linux kernel drivers for the new device.The findings of
the research demonstrate that the entire environment for
running, testing, and debugging is created, and user-level
apps can be created again for new virtual hardware before
the real device is made available.

Francesco Menichellin et al. [9] presents an emulation
environment for rough memory architectures.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2352

Approximate memories are important in the context of
error-tolerant applications, which save energy at the
expense of the incidence of data processing errors.
Memories that allow controlled read/write errors are
referred to as approximate memories. These faults are
typically the result of architectural or circuitry approaches
that were implemented to conserve energy. Since the
amount of permitted error depends on the application, it is
very crucial that these systems be able to be simulated.
Through simulation, one may examine an application's
behavior and study its tolerance for actual error rates,
figuring out how much energy can be saved without
sacrificing output quality. Based on QEMU, an emulation
ecosystem was created for these architectures that
enables the running of programmes that can assign some
of their information in a memory region that is prone to
errors. An emulated design, the fault injection model, and
a case study demonstrating the outcomes of the emulator
were demonstrated in this work.

In [11], Tse-Chen Yeh and Ming-Chao Chiang have offered
an interface for QEMU and SystemC virtualized platforms
to connect to the master/slave interfaces of hardware
modelled in SystemC. The virtual platform may run a fully-
Hedged operating system like Linux and makes use of
QEMU as the instruction-accurate instruction set
simulator (lA-ISS). In order to assist the co-creation of
various hardware modeling techniques and software
components at the preliminary phase of Electronic System
Level (ESL) design, the proposed interface allows the
hardware modeled in SystemC to access hardware
modeled in QEMU. The experimental findings—using
Direct Memory Access Controller (DMAC) as an example—
show that the proposed interface enables the cross-
validation of hardware models and device drivers as well
as the migration of hardware models from QEMU to
SystemC. Additionally, the virtual platform has the ability
to deliver statistics that are instruction-accurate, making it
simple to assess the hardware model performance and
conduct design space exploration.

3. Methodology

The information required to develop the firmware is
collected. Once the related information is collected and
development of the OpenBMC firmware is done. The
firmware developed is implemented in the emulated
board in QEMU. The same firmware is implemented in the
actual hardware. The functionality of the OpenBMC is
validated and compared. Addition of new features are
done to the firmware and then implemented in both
hardware and emulator and these features are then
validated. The figure 1 shows the methodology discussed.

 Figure-1: Design Methodology

The firmware developed needs to have applications and
services that are completely software dependent and basic
hardware services that are required to boot the kernel and
get the BMC shell loaded in the emulated board.

4. Implementation

Figure-2: Flowchart

The design is implemented as shown in flowchart figure 2.
The implementation of the server emulator is done with
the following steps discussed in the flowchart. It involves
the booting of OpenBMC in an ast2600-evb emulated
board in QEMU. The BMC is loaded in QEMU and various
other functionalities are added to the BMC loaded in the
QEMU. Network is enabled in the BMC loaded. Once the
BMC is up with the network it allows to enable other
functions i.e ssh, telnet. These supports give the developer
remote access to the BMC that fastens the development,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2353

debugging and validation. The container image is created
to automate the complete process that loads the OpenBMC
firmware and BMC with all functionalities is loaded in the
emulated board. The container image developed can be
run on any platform and OS and there is no specific
requirement to run the container image and set up the
BMC in QEMU. This helps the developer to set up BMC in
any given system and perform the operations with this
container image.

The network is enabled using the tap interface. This
interface just acts as a bridge between the host system and
QEMU. The bridge is created by the host and QEMU needs
to be identified about the bridge name through the
different parameters that are passed in the command. In
this interface both QEMU and host are in the same subnet
and share the same default gateway. Through this
interface ping function works within a guest and the BMC
i.e emulation in QEMU is accessible from the host or any
other network. This helps the user having remote access
to the BMC shell.

3. RESULTS

Figure-3: Boot Logs and device configuration

Figure 3 shows the boot logs of the OpenBMC firmware
that is loaded in an ast2600-evb emulated board. The logs
show the information regarding the memory that is
allocated and the device configuration.

Figure-4: Routing table and IP configuration of the BMC

Figure 4 shows the IP configurations of the BMC i.e is
loaded in QEMU . It also shows the routing table of the
BMC. The BMC is up with the network and able to send
and receive packets from different IP address with
different subnets.

 Figure-5: SSH support

Figure 5 shows the BMC has SSH enabled and can be
remotely accessed through SSH. It also shows the BMC is
able to receive packets that are transmitted from remote
hosts .

Figure-6:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2354

Figure 6 shows the Login page for the OpenBMC that is
loaded for the user interaction and the login page comes
up when the user is working on the BMC or the BMC is
powered on and has to perform operations to the BMC
loaded in QEMU through webUI. This login page gives the
user access to the information related to BMC i.e loaded in
the emulated board.

 Figure-7: OpenBMC web page

Figure 7 shows the BMC health condition and the current
state of the BMC. It also shows the date and time of the
BMC being accessed. It shows the logs related to the BMC
health. The page also has other features like network
settings, user permissions, controlling the BMC states etc .

All these functionalities enabled in emulated boards
makes development , debugging and validations of both
software and hardware easier and faster.

4. CONCLUSION AND FUTURE SCOPE

In this paper, the Management controller firmware was
emulated in QEMU and a complete BMC was set up with
users having access to the BMC services and its
application. The BMC setup had support for networking,
ssh,telnet and various other software dependent
applications that don't require hardware support to be
emulated. Further the complete automation of emulating
BMC in qemu was done with the help of a docker container
image. This image makes all the required setup that are
necessary to install a QEMU in any given environment.
This project has significantly decreased the dependence of
the software development timeline on hardware delivery
by including QEMU emulated BMC devices. As a result, the
software development process can now start considerably
earlier in the process of creating a product.

In future, the WebUI can be enabled with more features
added, virtual GPIO support can also be added to the
emulated BMC. It is also possible to add emmc support and
enable the development of drivers supported by QEMU in
future.

REFERENCES

1] Rui Almeida et al. “Reliable Software Design Aided by
QEMU Simulation”. In: 2021 22nd IEEE International
Conference on Industrial Technology (ICIT). Vol. 1. 2021,
pp. 797–804.

[2] Prachi Palsodkar et al. “Yocto Based Home Automation
using Open BMC Platform and RestAPI”. In: 2022 IEEE
Delhi Section Conference (DELCON). IEEE. 2019, pp. 1–3.

[3] Zhang Rongqiang. “Bringing the OpenBMC for platform
management system in telco cloud”. In: (2019).

[4] Jae-Hoon An, Chanyeong Kim, and Younghwan Kim.
“The design and development of integrated interface for
provision BMC framework”. In: Proceedings of the 2018
Conference on Research in Adaptive and Convergent
Systems. 2018, pp. 276–278.

[5] Calvin Muramoto, Stephen Dunlap, and Scott Graham.
“Improving Hardware Security on Talos II Architecture
Through Boot Image Encryption”. In: International
Conference on Cyber Warfare and Security. Vol. 17. 1.
2018, pp. 489–496.

[6] Jae-Hoon An, Younghwan Kim, and Chang Won Park.
“Design of Framework supporting IPMI and DCMI based
on Open BMC”. In: Proceedings of the International
Conference on Research in Adaptive and Convergent
Systems. 2017, pp. 298–299.

[7] XiaoXiao Bian. “Implement a virtual development
platform based on QeMU”. In: 2017 Interna- tional
Conference on Green Informatics (ICGI). IEEE. 2017, pp.
93–97.

[8] Fabio Frustaci et al. “Approximate SRAMs with
dynamic energy-quality management”. In: IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems 24.6 (2016), pp. 2128–2141.

[9] Francesco Menichelli et al. “An emulator for
approximate memory platforms based on qemu”. In:
International Conference on Applications in Electronics
Pervading Industry, Environment and Society. Springer.
2016, pp. 153–159.

[10] Fabio Frustaci et al. “SRAM for error-tolerant
applications with dynamic energy-quality manage- ment
in 28 nm CMOS”. In: IEEE Journal of Solid-state circuits
50.5 (2015), pp. 1310–1323.

[11] Tse-Chen Yeh and Ming-Chao Chiang. “On the
interfacing between QEMU and SystemC for virtual
platform construction: Using DMA as a case”. In: Journal of
Systems Architecture 58.3-4 (2012), pp. 99–111

