
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2326

Developing microservices with Java and applying Spring security

framework and OAuth2

Sneha Suresh Vanjire1, Dr. Rajashekara Murthy S2

 Student, Dept. of Information Science and Engineering, RV College of Engineering, Bangalore, Karnataka, India
Associate Professor, Dept. of Information Science and Engineering, RV College of Engineering, Bangalore,

Karnataka, India
---***---

Abstract - Today's development is mostly done using a
microservice architecture. As part of the microservices
architecture, applications are built from a number of small
modular services. In 2014, Google, Netflix and Twitter
implemented Microservice Architecture (MSA), which runs as
separate processes and communicates with each other in
different ways. Since then, these companies have widely
decoupled and implemented Microservice Architecture. With
this design, an application's services are broken down,
distributed independently, and then run. In this study, we look
at how Java microservices can be developed, as well as how
OAuth2 and the Spring Security Framework can be used to
secure microservice APIs that are built on top of the Spring
Framework.

Key Words: SpringBoot, Microservice Architecture
(MSA), Software Architecture, OAuth2, Proof of Concept
(POC), and Spring framework.

1. INTRODUCTION

Although RESTful endpoints with a single functionality are
how microservices are frequently characterized, there are
numerous different ways for developers to build these
services. The microservice architectural style was created as
a result of the architectural design of Service-Oriented
Architecture and Domain-Driven Design, with a significant
focus on DevOps techniques. It has attracted a lot of interest
from academics as a trustworthy and scalable solution to
construct cloud services, and it has also been widely adopted
by companies with millions of clients, like Netflix or Amazon.
In a nutshell, the microservice architecture encourages the
division of the programme into services as an unique
software architecture. According to the conventional
monolithic method of software architecture, each
deployment requires the bundle of the full application stack.
This idea has numerous disadvantages for the application,
including rigid scalability, significant resource costs and
refactoring effort, and challenges with DevOps amongst
scattered teams. By creating a Proof of Concept (POC) of an
MSA application utilizing the Spring Framework, Spring
Security, and OAuth2, and performing security testing over
the POC, this research aims to close the knowledge gap on
MSA and API security.

Different Ways of Creating Microservices

 RESTful endpoint-based applications operating
independently and acting as services for a certain
system characteristic.

 Creation of headless services like AWS Lambda, also
referred to as Function as a Service (FaaS).

 Services that use messaging or events to
communicate, such as clustered Vert.x vertices (the
Java Reactive framework), are known as messaging
or event-based services.

1.1 Various Microservices Libraries in Java

It can be difficult to think about the technology roadmap
while switching from such a monolithic to something like a
microservices architecture because there are so many
concepts, problems, and technological options. People could
therefore overthink the issue and overdevelop the answer
when developing a new application under a microservice
architecture. The most complete coverage for microservices
libraries is provided by the Spring framework, which is part
of the Java ecosystem.

A variety of libraries are listed with use cases in Table - 1.

Table -1: Libraries with Use Cases

Library Use cases Tools
Illustration

Discovering and
Registering Services

Manage
configurations
in a
distributed
and safe
manner

Spring Cloud
Configuration,
Consultation,
and Vault

Implementation
Management

Using
registered
service names
to locate
service nodes

Spring Cloud -
Netflix Eureka,
Consul

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2327

Monitoring for
Systems, JVMs, and
APIs

Performance
degradation,
risk and

crash analysis

New Relic,
Spring Boot
Admin and
Datadog

API Gateway serving as a
point of entry
and managing
issues with
security, URL
name, etc.

Zuul, Nginx,
cloud-provided
API

gateways

Security Secure socket
layer
authenticity
using a
password and
a digest,
OAUTH, and
JWT, and social
login
integrations

Spring Security
for Spring

1.2 Microservices with Java Frameworks

A new breed of Java frameworks allows you to swiftly
package an entire web service with the embedded container
of your choice in an auto running JAR file. It was
revolutionary to switch from a big, hefty J2EE container to a
smaller, lighter version. There will be a few frameworks
accessible, such as Spark, Dropwizard, and Spring Boot. We
will investigate a SpringBoot sample. The Spring framework
has been used to build Java applications for more than ten
years and is the de facto industry standard.

2. SPRINGBOOT

One important factor in Java's success in enterprise
development is the Spring Framework. Almost all of the
widely used libraries and frameworks for Java web
development are supported by this framework. We can
swiftly develop self-running microservices with Spring Boot
in a matter of minutes. In the past, developing boilerplate
code for an application's sole purpose of wiring Spring
infrastructure components required a significant amount of
development effort. The majority of the routine stuff has
already been set up for us.

Listed here are some of Spring Boot's highlights:

 Things may be rapidly set up and going.

 Overriding configuration, libraries, and frameworks
is incredibly flexible.

 There is a very robust community that can offer
answers to many potential issues.

Examine the base class for our usage cases and the Hello
World application example. This class will serve as the
foundation for our sample web application. If you want to
change or modify anything, you can use a property file, a
Metadata file, or Java-based configuration.

Define the Application class first. The Spring Boot
application's starting point and RESTful endpoint are both
provided by this short single class.

Class of Application shown in Fig -1 below.

Fig -1: Application class

An order to eliminate the need for manual project setup in
the beginning, the Spring Framework community offers an
additional facility. You can get a rapid, ready-to-launch initial
configuration with a list of all the Spring dependencies on
the http://www.start.spring.io website.

By default, Spring Boot loads the settings from class path
files called application. properties or application. yml. In this
manner, Java will finally be used to develop the microservice.

3. SPRING SECURITY FRAMEWORK AND OAUTH2

So we have created the microservices necessary to apply
security inorder to make secure applications.

Therefore, in order to build safe apps, we have designed the
microservices that are required to apply security.
Applications exchange information with one another across
the Internet and network communication protocols, hence
this architectural design strongly relies on APIs (API). A
microservice application's Api must be appropriately
secured as a result in order to protect the application as well

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2328

as its resources against risks associated with API
invocations.

3.1 Microservice API and Microservice Architecture:

Microservice architecture (MSA) is the term for the
application architecture that divides an application into a
number of narrowly focused, single responsibilities,
portable, and independently evolving services. The typical
monolithic software architecture, in contrast, deploys the
complete application with all of its services inside just one
application server. Because REST is a lightweight protocol,
this research employs it for the API development and
experiment. MSA simply divides the application logic into
numerous smaller components; it does not make a
programme any simpler. Scalability and high availability are
two benefits of decomposition, but it also results in a
significantly highly complex network linkage between
components, especially whenever the application is made up
of an excess amount of services. A comparison of the
monolithic and microservice architectures is shown in Fig -2
and Fig -3.

Fig –2: Monolithic Architecture

Fig -3: Microservice Architecture

4. PROOF-OF-CONCEPT CREATION

The POC is created in order to respond to the inquiry.
Additionally, it must to demonstrate how MSA can be used in
actual business situations. In order to reply to the enquiry,
the POC is established. Additionally, it must show how MSA
can be applied in real-world business scenarios. This makes
a POC for such just an inventory management software an
appropriate experimental application. OAuth2 is used for
backend services that don't need a web application browser
and user interaction techniques in additional to the online
application, as seen in Fig -4. The POC must be constructed in
a specific fashion in order to perform security checks for
both of these technology types. Additionally, OAuth 2.0
should be investigated in the experiment for both
authentication and authorization needs. Key characteristics
and actors are suggested in the following subsections in
accordance with the experimental needs.

4.1 Use cases

Use scenarios for an authorization server include:

The Identity Provider in the OAuth2 process is the
Authorization Server. The design provides the fundamental
use scenarios for the Authorization Server, as shown in
Figure 4. The following two actors communicate with the
Authorization Server:

 Owner of the resource in the OAuth2 workflow.

 The client app is the client application which has
identified with the authorisation server.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2329

Fig -4: Authorization Server

Use scenarios for an resource server include:

There are two microservices put into place by the POC to
manage the watch and mobile phone, respectively. The
microservices replace the RPs in the OAuth pipeline. Figure 5
displays the use cases for the resource server.

Fig -5: Authorization Server

4.2 OAuth2 Authorisation Configuration

The built-in Authorization Server Configure Adapter of
the Spring Security Framework is improved by OAuth
configuration and now includes an implementation for
OAuth2 authorisation support. It offers the following key
features:

 OAuthDataSource: searches the database for client
information during the authorization procedure.

 TokenStore: The Java Database Connectivity
(JDBC) approach is used to access the access tokens
kept in the database as well.

 ApprovalStore: Using JDBC technology, users may
access approval data that is kept in a database.

 AuthorizationCodeServices: Authorization codes
are saved in a database, just like in the
ApprovalStore.

 Configure the ClientDetailsService by defining each
unique client and their properties with
configure(ClientDetailsServiceConfigurer clients).

 void Use the
configure(AuthorizationServerEndpointsConfigurer
endpoints) command to set up the Authorization
Server access points, including a token storage,
authenticating code service, token customizations,
user approvals, and grant types.

5. CONCLUSIONS

Just now, we looked at the standard starting point. Due to the
fact that it offers the most comprehensive solutions for the
diverse needs of any corporate system, the most of the
examples we examine from here on out will utilise the Spring
Framework. Using Spring Boot, we may split a larger
microservice into smaller ones. Microservices interact within
the MSA application with one another using service API
endpoints. An API endpoint is a location in which the
services can connect and receive the resources they need to
perform their duties. The API endpoint, which serves as the
interface through which data is transferred between
services, is crucial in ensuring the proper operation of the
systems and services that interact with it. As a result, API
endpoint security is among the most crucial security
components in an MSA applications. The researcher hopes to
expand on this work in the future to include the security of
all API implementations, as well as the security of additional
application layers like the business layer and the data access
layer. As a result, suggest an API security solution that is
more complete for the Java-based microservice application.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2330

REFERENCES

[1] Y. Gong, F. Gu, K. Chen and F. Wang, "The Architecture of
Micro-services and the Separation of Frond-end and
Back-end Applied in a Campus Information System,"
2020 IEEE International Conference on Advances in
Electrical Engineering and Computer Applications(
AEECA), 2020, pp. 321-324

[2] R. Pereira, P. Simão, J. Cunha and J. Saraiva, "jStanley:
Placing a Green Thumb on Java Collections," 2018 33rd
IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2018, pp. 856-859

[3] Y. Gan and C. Delimitrou, "The Architectural Implications
of Cloud Microservices," IEEE Computer Architecture
Letters, vol. 17, no. 2, July-Dec. 2018, pp. 155-158

[4] Hatma Suryotrisongko, Dedy Puji Jayanto, Aris
Tjahyanto, “Design and Development of Backend
Application for Public Complaint Systems Using
Microservice Spring Boot”, Procedia Computer Science,
vol. 124, 2017, pp. 736-743

[5] Y. Jayawardana, R. Fernando, G. Jayawardena, D.
Weerasooriya and I. Perera, "A Full Stack Microservices
Framework with Business Modelling," 2018 18th
International Conference on Advances in ICT for
Emerging Regions (ICTer), 2018, pp.

[6] Hatma Suryotrisongko, Dedy Puji Jayanto, Aris
Tjahyanto, “Design and Development of Backend
Application for Public Complaint Systems Using
Microservice Spring Boot”, 4th Information Systems
International Conference 2017, ISICO 2017, 6-8
November 2017, Bali, Indonesia

