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Abstract - This paper describes a novel text-to-speech 
(TTS) technique based on deep convolutional neural networks 
(CNN), without any recurrent units. Recurrent neural network 
(RNN) has been a standard technique to model sequential data 
recently, and this technique has been used in some cutting-edge 
neural TTS techniques. However, training RNN component 
often requires a very powerful computer, or very long time 
typically several days or weeks. Recent other studies, on the 
other hand, have shown that CNN-based sequence synthesis can 
be much faster than RNN-based techniques, because of high 
parallelizability. The objective of this paper is to show an 
alternative neural TTS system, based only on CNN, that can 
alleviate these economic costs of training. In our experiment, 
the proposed Deep Convolutional TTS can be sufficiently 
trained only in a night (15 hours), using an ordinary gaming PC 
equipped with two GPUs, while the quality of the synthesized 
speech was almost acceptable. 

Key Words:  Text-to-speech, deep learning, 
convolutional neural network, attention, sequence-to-
sequence learning. 

1. INTRODUCTION  

 Text-to-speech (TTS) is getting more and more common 
recently, and is getting to be a basic user interface for many 
systems. To encourage further use of TTS in various systems, 
it is significant to develop a handy, maintainable, extensible 
TTS component that is accessible to speech non-specialists, 
enterprising individuals and small teams who do not have 
massive computers. 

Traditional TTS systems, however, are not necessarily 
friendly for them, as these systems are typically composed of 
many domain- specific modules. For example, a typical 
parametric TTS system is an elaborate integration of many 
modules e.g. a text analyzer 

F0 generator, a spectrum generator, a pause estimator, 

and a vocoder that synthesize a waveform from these data, 
etc. 

Deep learning sometimes can unite these internal build-   
ing blocks into a single model, and directly connects the input    

and the output; this type of technique is sometimes called 
‘end-to-end’ learning. Although such a technique is 
sometimes criticized as ‘a black box,’ nevertheless, an end-to-
end TTS system named Tacotron, which directly estimates a 
spectrogram from an in- put text, has achieved promising 
performance recently, without intensively-engineered 
parametric models based on domain-specific knowledge. 
Tacotron, however, has a drawback that it exploits many 
recurrent units, which are quite costly to train, making it 
almost infeasible for ordinary labs without luxurious 
machines to study and extend it further. Indeed, some people 
tried to implement open clones of Tacotron but they are 
struggling to reproduce the speech of satisfactory quality as 
clear as the original work. 

The purpose of this paper is to show Deep Convolutional 
TTS (DCTTS), a novel, handy neural TTS, which is fully 
convolutional. The architecture is largely similar to Tacotron 
but is based on a fully convolutional sequence-to-sequence 
learning model similar to the literature We show this handy 
TTS actually works in a reasonable setting. The contribution of 
this article is twofold: (1) Propose a fully CNN-based TTS 
system which can be trained much faster than an RNN-based 
state-of-the-art neural TTS system, while the sound quality is 
still acceptable. (2) An idea to rapidly train the attention, which 

we call ‘guided attention,’ is also shown. 

1.1 Related Work 

Neural speech synthesis: Recently, there is a surge of 
interest in speech synthesis with neural networks, including 
Deep Voice 1 [Arik et al., 2017a], Deep Voice 2 [Arik et al., 
2017b], Deep Voice 3 [Ping et al., 2018], WaveNet [Oord et 
al., 2016a], SampleRNN [Mehri et al., 2016], Char2Wav 
[Sotelo et al., 2017], Tacotron [Wang et al., 2017] and 
VoiceLoop [Taigman et al., 2018]. Among these methods, 
sequence-to-sequence models [Ping et al., 2018, Wang et al., 
2017, Sotelo et al., 2017] with attention mechanism have 
much simpler pipeline and can produce more natural speech 
[e.g., Shen et al., 2017]. In this work, we use Deep Voice 3 as 
the baseline multi-speaker model, because of its simple 
convolutional architecture and high efficiency for training 
and fast model adaptation. It should be noted that our 
techniques can be seamlessly applied to other neural speech 
synthesis models.  
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Few-shot generative modeling: Humans can learn new 
generative tasks from only a few examples, which motivates 
research on few-shot generative models. Early studies 
mostly focus on Bayesian methods. For example, hierarchical 
Bayesian models are used to exploit compositionality and 
causality for few-shot generation of characters [Lake et al., 
2013, 2015] and words in speech [Lake et al., 2014]. 
Recently, deep neural networks achieve great successes in 
few-shot density estimation and conditional image 
generation [e.g., Rezende et al., 2016, Reed et al., 2017, Azadi 
et al., 2017], because of the great potential for composition 
in their learned representation. In this work, we investigate 
few-shot generative modeling of speech conditioned on a 
particular speaker. We train a separate speaker encoding 
network to directly predict the parameters of multi-speaker 
generative model by only taking unsubscribed audio samples 
as inputs.  

Speaker-dependent speech processing: Speaker-
dependent modeling has been widely studied for automatic 
speech recognition (ASR), with the goal of improving the 
performance by exploiting speaker characteristics. In 
particular, there are two groups of methods in neural ASR, in 
alignment with our two voice cloning approaches. The first 
group is speaker adaptation for the whole-model [Yu et al., 
2013], a portion of the model [Miao and Metze, 2015, Cui et 
al., 2017], or merely to a speaker embedding [Abdel-Hamid 
and Jiang, 2013, Xue et al., 2014]. Speaker adaptation for 
voice cloning is in the same vein as these approaches, but 
differences arise when text-to-speech vs. speech-to-text are 
considered [Yamagishi et al., 2009]. The second group is 
based on training ASR models jointly with embeddings. 
Extraction of the embeddings can be based on i-vectors 
[Miao et al., 2015], or bottleneck layers of neural networks 
trained with a classification loss [Li and Wu, 2015]. Although 
the general idea of speaker encoding is also based on 
extracting the embeddings directly, as a major distinction, 
our speaker encoder models are trained with an objective 
function that is directly related to speech synthesis. Lastly, 
speaker-dependent modeling is essential for multi-speaker 
speech synthesis. Using i-vectors to represent speaker-
dependent characteristics is one approach [Wu et al., 2015], 
however, they have the limitation of being separately 
trained, with an objective that is not directly related to 
speech synthesis. Also they may not be accurately extracted 
with small amount of audio [Miao et al., 2015]. Another 
approach for multi-speaker speech synthesis is using 
trainable speaker embeddings [Arik et al., 2017b], which are 
randomly initialized and jointly optimized from a generative 
loss function. 

Voice conversion: A closely related task of voice cloning is 
voice conversion. The goal of voice conversion is to modify 
an utterance from source speaker to make it sound like the 
target speaker, while keeping the linguistic contents 
unchanged. Unlike voice cloning, voice conversion systems 
do not need to generalize to unseen texts. One common 

approach is dynamic frequency warping, to align spectra of 
different speakers. Agiomyrgiannakis and Roupakia [2016] 
proposes a dynamic programming algorithm that 
simultaneously estimates the optimal frequency warping 
and weighting transform while matching source and target 
speakers using a matching-minimization algorithm. Wu et al. 
[2016] uses a spectral conversion approach integrated with 
the locally linear embeddings for manifold learning. There 
are also approaches to model spectral conversion using 
neural networks [Desai et al., 2010, Chen et al., 2014, Hwang 
et al., 2015]. Those models are typically trained with a large 
amount of audio pairs of target and source speakers. 

1.2 Methodology 

Our DCTTS model consists of two networks: (1) 
Text2Mel, which synthesize a mel spectrogram from an input 
text, and (2) Spectrogram Super-resolution Network (SSRN), 
which convert a coarse mel spectrogram to the full STFT 
spectrogram. Fig. 1 shows the overall architecture of the 
proposed method. 3.1. Text2Mel: Text to Mel Spectrogram 
Network We first consider to synthesize a coarse mel 
spectrogram from a text. This is the main part of the 
proposed method. This module consists of four submodules: 
Text Encoder, Audio Encoder, Attention, and Audio Decoder. 
The network TextEnc first encodes the input sentence L = 
[l1, . . . , lN ] ∈ CharN consisting of N characters, into the two 
matrices K, V ∈ R d×N . On the other hand, the network 
AudioEnc encodes the coarse mel spectrogram S(= S1:F,1:T ) 
∈ R F ×T , of previously spoken speech, whose length is T, 
into a matrix Q ∈ R d×T . (K, V ) = TextEnc(L). (1) Q = 
AudioEnc(S1:F,1:T ). (2) An attention matrix A ∈ R N×T , 
defined as follows, evaluates how strongly the n-th character 
ln and t-th time frame S1:F,t are related, A = softmaxn-axis(K 
TQ/√ d). (3) Ant ∼ 1 implies that the module is looking at n-
th character ln at the time frame t, and it will look at ln or 
ln+1 or characters around them, at the subsequent time 
frame t + 1. Whatever, let us expect those are encoded in the 
n-th column of V . Thus a seed R ∈ R d×T , decoded to the 
subsequent frames S1:F,2:T +1, is obtained as R = Att(Q, K, V 
) := V A. (Note: matrix product.) (4) The resultant R is 
concatenated with the encoded audio Q, as R 0 = [R, Q], 
because we found it beneficial in our pilot study. Then, the 
concatenated matrix R 0 ∈ R 2d×T is decoded by the Audio 
Decoder module to synthesize a coarse mel spectrogram, 
Y1:F,2:T +1 = AudioDec(R 0 ). (5) The result Y1:F,2:T +1 is 
compared with the temporally-shifted ground truth S1:F,2:T 
+1, by a loss function Lspec(Y1:F,2:T +1|S1:F,2:T +1), and the 
error is back-propagated to the network parameters. The 
loss function was the sum of L1 loss and the binary 
divergence Dbin, Dbin(Y |S) := Eft[−Sft log Yft − (1 − Sft) 
log(1 − Yft)] = Eft[−SftYˆft + log(1 + exp Yˆft)], (6) where Yˆft 
= logit(Yft). Since the binary divergence gives a nonvanishing 
gradient to the network, ∂Dbin(Y |S)/∂Yˆft ∝ Yft − Sft, it is 
advantageous in gradient-based training. It is easily verified 
that the spectrogram error is non-negative, Lspec(Y |S) = 
Dbin(Y |S) + E[|Yft − Sft|] ≥ 0, and the equality holds iff Y = S. 
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3.1.1. Details of TextEnc, AudioEnc, and AudioDec Our 
networks are fully convolutional, and are not dependent on 
any recurrent units. Instead of RNN, we sometimes take 
advantages of dilated convolution [32, 13, 24] to take long 
contextual information into account. The top equation of Fig. 
2 is the content of TextEnc. It consists of the character 
embedding and the stacked 1D non-causal convolution. A 
previous literature [2] used a heavier RNN-based component 
named ‘CBHG,’ but we found this simpler network also 
works well. AudioEnc and AudioDec, shown in Fig. 2, are 
composed of 1D causal convolution layers with Highway 
activation. These convolution should be causal because the 
output of AudioDec is feedbacked to the input of AudioEnc in 
the synthesis stage. 3.2. Spectrogram Super-resolution 
Network (SSRN) We finally synthesize a full spectrogram |Z| 
∈ R F 0×4T , from the obtained coarse mel spectrogram Y ∈ R 
F ×T , by a spectrogram super-resolution network (SSRN). 
Upsampling frequency from F to F 0 is rather 
straightforward. We can achieve that by increasing the 
convolution channels of 1D convolutional network. 
Upsampling in temporal direction is not similarly done, but 
by twice applying deconvolution layers of stride size 2, we 
can quadruple the length of sequence from T to 4T = T 0 . 
The bottom equation of Fig. 2 shows SSRN. In this paper, as 
we do not consider online processing, all convolutions can be 
non-causal. The loss function was the same as Text2Mel: sum 
of binary divergence and L1 distance between the 
synthesized spectrogram SSRN(S) and the ground truth |Z|. 

Figure -1: Guided Attention 

 

Guided Attention Loss: Motivation, Method and Effects In 
general, an attention module is quite costly to train. 
Therefore, if there is some prior knowledge, it may be a help 
incorporating them into the model to alleviate the heavy 
training. We show that the simple measure below is helpful 
to train the attention module. In TTS, the possible attention 
matrix A lies in the very small subspace of R N×T . This is 
because of the rough correspondence of the order of the 
characters and the audio segments. That is, if one reads a 
text, it is natural to assume that the text position n 
progresses nearly linearly to the time t, i.e., n ∼ at, where a ∼ 
N/T. This is Fig. 3. Comparison of the attention matrix A, 

trained with and without the guided attention loss Latt(A). 
(Left) Without, and (Right) with the guided attention. The 
test text is “icassp stands for the international conference on 
acoustics, speech, and signal processing.” We did not use the 
heuristics described in section 4.2. the prominent difference 
of TTS from other seq2seq learning techniques such as 
machine translation, in which an attention module should 
resolve the word alignment between two languages that 
have very different syntax, e.g. English and Japanese. Based 
on this idea, we introduce another constraint on the 
attention matrix A to prompt it to be ‘nearly diagonal,’ 
Latt(A) = Ent[AntWnt], where Wnt = 1 − exp{−(n/N − t/T) 2 
/2g 2 }. In this paper, we set g = 0.2. If A is far from diagonal 
(e.g., reading the characters in the random order), it is 
strongly penalized by the loss function. This subsidiary loss 
function is simultaneously optimized with the main loss 
Lspec with equal weight. Although this measure is based on 
quite a rough assumption, it improved the training efficiency. 
In our experiment, if we added the guided attention loss to 
the objective, the term began decreasing only after ∼100 
iterations. After ∼5K iterations, the attention became 
roughly correct, not only for training data, but also for new 
input texts. On the other hand, without the guided attention 
loss, it required much more iterations. It began learning after 
∼10K iterations, and it required ∼50K iterations to look at 
roughly correct positions, but the attention matrix was still 
vague. Fig. 3 compares the attention matrix, trained with and 
without guided attention loss. 4.2. Forcibly Incremental 
Attention in Synthesis Stage In the synthesis stage, the 
attention matrix A sometimes fails to look at the correct 
characters. Typical errors we observed were (1) it 
occasionally skipped several characters, and (2) it 
repeatedly read a same word twice or more. In order to 
make the system more robust, we heuristically modify the 
matrix A to be ‘nearly diagonal,’ by a simple rule as follows. 
We observed this device sometimes alleviated such 
misattentions. Let nt be the position of the character to be 
read at tth time frame; nt = argmaxnAn,t. Comparing the 
current position nt and the previous position nt−1, unless 
the difference nt − nt−1 is within the range −1 ≤ nt − nt−1 ≤ 
3, the current attention position forcibly set to An,t = 
δn,nt−1+1 (Kronecker’s delta), to forcibly make the attention 
target incremental, i.e., nt − nt−1 = 1 

 

Figure 2 : Forcibly Incremental Attention 
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Forcibly Incremental Attention in Synthesis Stage In the 
synthesis stage, the attention matrix A sometimes fails to 
look at the correct characters. Typical errors we observed 
were (1) it occasionally skipped several characters, and (2) it 
repeatedly read a same word twice or more. In order to 
make the system more robust, we heuristically modify the 
matrix A to be ‘nearly diagonal,’ by a simple rule as follows. 
We observed this device sometimes alleviated such 
misattentions. Let nt be the position of the character to be 
read at tth time frame; nt = argmaxnAn,t. Comparing the 
current position nt and the previous position nt−1, unless 
the difference nt − nt−1 is within the range −1 ≤ nt − nt−1 ≤ 
3, the current attention position forcibly set to An,t = 
δn,nt−1+1 (Kronecker’s delta), to forcibly make the attention 
target incremental, i.e., nt − nt−1 = 1. 

2. SUMMARY AND FUTURE WORK 

This paper described a novel text-to-speech (TTS) 
technique based on deep convolutional neural networks 
(CNN), as well as a technique to train the attention module 
rapidly. In our experiment, the proposed Deep Convolutional 
TTS can be sufficiently trained only in a night (∼15 hours), 
using an ordinary gaming PC equipped with two GPUs, while 
the quality of the synthesized speech was almost acceptable. 
Although the audio quality is far from perfect yet, it may be 
improved by tuning some hyper-parameters thoroughly, and 
by applying some techniques developed in deep learning 
community. We believe this handy method encourages 
further development of the applications based on speech 
synthesis. We can expect this simple neural TTS may be 
extended to other versatile purposes, such as 
emotional/non-linguistic/personalized speech synthesis, 
singing voice synthesis, music synthesis, etc., by further 
studies. In addition, since a neural TTS has become this 
lightweight, the studies on more integrated speech systems 
e.g. some multimodal systems, simultaneous training of 
TTS+ASR, and speech translation, etc., may have become 
more feasible. These issues should be worked out in the 
future. 

3. CONCLUSIONS 

This paper implements a method to clone and 
render voice using Convolutional Neural Networks instead of 
widely-used traditional complete Neural Networks which 
helps to reduce training time significantly. We also 
implement an additional system of 'attention' which helps 
increase precision in case of long sentences. Although, fine 
parametric tuning can be performed to further increase the 
output quality and accuracy, there is surely a comparable 
scope with existing systems in the near future.. 

    We are aiming to also classify the type of 
plasmodium parasite for which we would use machine 
learning technologies. 
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