
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3075

Backend for Frontend in Microservices

Hariom Sharma1, Dr. Nagaraj Bhat2

1Student, Department of Electronics and Communication engineering, RVCE, Bengaluru, Karnataka, India
2Assistant Professor, Department of Electronics and Communication engineering, RVCE, Bengaluru, Karnataka,

India
---***---
Abstract - Web based application or desktop based
application has quite distinctive requirements as that of
mobile based applications moreover with the evolution in
technologies and tools, and the constant shift in end users'
requirements, the overall process to serve both mobile and
work-station based applications using same back-end micro
services has also complicated over times. Amidst individual
teams working on their corresponding interfaces of front end
application, it requires an exclusive narrowing at the back-end
to detail the development if it fails to meet the requirement of
the application. So this complexity is a kind of loophole further
any misalignment and error can cause atrocious experience
for the end-users. This paper focuses on overcoming these
challenges and improve the user experience.

 Key Words: API, API gateway, Monolithic, Request,
Response .

1. INTRODUCTION

Earlier most of the application were targeted to meet
requirement of desktop web UI. To meet the requirement of
web user interface backend services was made in parallel. As
the technology evolved backend services are used to serve
both web and mobile users. But the requirements of desktop
user interface are different from the requirement of mobile
user interface as screen size, performance, and display differ.
Any changes done in the backend services to meet the
requirement of a user interface will impact the working of
other UI and due to this conflicting requirement there are
separate teams for different interfaces working on a shared
backend which results in unnecessary use of resources,
efforts and money. To get rid of this tight coupling,
additional layer for different user interface is developed
between backend and frontend which act as a gateway
between frontend and backend.

An effective way is to identify the business boundaries first
then separate the API gateway on this basis and utilize an
API gateway per client. As allocation of multiple API
gateways, one per client will help to fulfill demands of each
client. This procedure is called the “back-end for front-end”
or BFF pattern. Decoupling of frontend and backend
eliminates the chances of conflicting upgrade requirements
and helps to improve performance, reliability and
consistency

LITERATURE REVIEW

[1] gave detailed analysis on decisions models for choosing
patterns and approaches when it comes to selecting
microservices architecture. Detailed analysis on decision in
microservices models pattern selection and strategies was
done. It also identified that there is still a lack in terms of
having an apt decision models that can be used to leverage
patterns and strategies as employable comprehension to
have relevant design in microservices based systems. They
further narrowed down to four decision model which could
be used based upon the requirements .

[2] gave detailed analysis on DevOps, cloud and
virtualization as an important factors in the microservice
ecosystem and gave analysis on the role of these factors. It
also covered the areas in which research on microservices to
be conducted. It also explored the relationship of
microservices with Service-Oriented Architecture and
Domain-driven design which are highly used to develop
microservices. It also identified that to overcome the
hardware limitation containerization as an effective method
apart from speeding up the delivery process.

[3] gave a data driven approach to compare microservices
and monolithic architectures. There are many reports,
research papers and studies which contradicts one another
when it comes to making a comparison between
microservices architecture and monolithic architecture. So a
detailed comparison is being discussed and key performance
is being analyzed. While comparing the load testing scenario
both architectures performed almost equally well. And in
concurrency testing scenarios monolithic showed enhanced
performance in terms of latency. Additionally examining
microservices applications built with distinct services
discovery techs such as Eureka and Consul showed that
applications built with Consul have better throughput.

[4] highlighted API gateway as the one of key component for
the working of application. It gave detailed analysis on API
gateway management for a microservice based architecture.
It also gave analysis on the common functions API gateway
bypasses which is needed in the microservices and also
summarized the certain interior implementation and
interface of the system as the exclusive entrance for
microservices.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3076

They further wind up by giving a latest resolution for the
obstructions in managing API gateway, flow control and
reverse proxy function, API gateway gives resolution to the
issue of how a client can be designated to an exclusive
service and hence enhancing the development competence.

[5] highlighted the evolution of cloud computing in
information technology domain and a lot has has been
changed and improved when it comes to follow standards,
rules and regulations. They gave analysis about how
microservices architecture is the preferred and apt choice
for on-demand memory, horizontally and vertically scalable,
flexible, elastic, and rapidly evolving cloud applications. They
followed systematic mapping study for microservices to find
out the current trends related to microservices.

2. BACKGROUND OVERVIEW

1. Existing System

Figure-1 Single API gateway

In microservices based applications, the user interface
usually connects with multiple microservices. And this type
of interaction can become complex if having many
microservices. These microservices could be invoked which
in turn makes interaction more complex. So there might be
a need to process scissoring concerns in an exclusive or
inter-medial place. This is correct place to use API gateway.
API gateway serves as an alternate proxy between backend
microservices and client applications. The requests
initiating from the client apps to the corresponding
microservices are being redirected by API gateway and at
the same time it manages the scissoring features(reliability,
safety, logging and caching).

By aggregation of numerous microservices, delay or lag can
also be reduced. This method is suitable for exclusive client
systems.

2. Drawback

 Some of the drawbacks of a single API gateway are :-

 It's not an effective and efficient approach of having a
single API gateway that handles the requests and
responds to all microservices for various user
interface. Because this has a tendency to make API
gateway service inflated over time which in turn can
make it inflexible or monolithic.

 Single API gateway acts as single point of entry and
failure in it will bring the entire system down.

 A single API Gateway also impacts the speed and
reliability of the system since all the device users
request goes to same API gateway and response also
comes from the same gateway

 One of the most principal drawbacks is that when an
API gateway is implemented, then that particular tier is
being coupled with the internal microservices. And this
might lead to some challenging difficulties for the
application with passage of time.

 Along with API Gateway an additional network call also
occurs which in turn can cause increased response
time. But, this additional call has less implications than
having a client interface as this client interface directly
calls microservices.

 API Gateway must be scaled out properly if not then it
can act as a bottleneck to derail the progress made in
case it fails to meet application’s requirements.

 There are possibilities of having development
obstruction in case API Gateway is being developed by
an exclusive team.

3. BFF ARCHITECTURE

To improve and enhance user experience, BFF plays an
important role. Regardless of the platform the frontend
application is running on, it gives seamless user interaction
which is one the main advantages of BFF pattern. It consists
of multiple backends to address the requirements of
different frontend user interface, like desktop, browser, and
native-mobile apps. It enhances the overall performance of
the system as the browser resources are utilized efficiently.
It allows user to have a seamless interaction as there are
well defined API’s for specific uses.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3077

Fig - 2: BFF Architecture

A simple solution to this is to create a intermediate layer for
all types of user interface and depending on the needs of the
user interface write the logic in the BFF layer. It can be
optimized regularly as per our requirements as every type of
interface is connected to a specific BFF layer. It is faster than
a single API gateway which is shared by all kinds of
interfaces. It allows interface team flexibility in terms of
language selection while implementing the BFF layer for any
interface

4. BFF Working

The user interface layer contains the essential logic to
suitably organize the data coming from the backend
microservices as the data delivered by backend may not be
structured or filtered as per the requirement of user
interface. Implementing this logic in the user interface layer
has a damaging effect on system’s performance as it
consumes a lot of browser’s resources and eventually affects
performance of system.

BFF layer doesn’t run on browser’s server so the logic
executed in the BFF layer doesn’t take up browser’s
resources. To take advantage of this, the logic implemented
in user interface layer previously is moved to BFF layer. So,
when the user interface calls an API to retrieve the data, the
call first goes to the intermediate layer and the intermediate
layer invokes the relevant backend microservices. The data
transferred by the backend microservices is passed to BFF
layer where data is formatted or filtered as per the
requirement of the user interface. BFF layer for mobile and
web UI users are different and all the layers are connected
to same backend services.

5. Implementation of BFF

Implementation is decided based on several factors. There is
not an absolute solution for this. Generally either Java or
NodeJs is being preferred. Mostly it's based on the technical
stack of the organization, skill set of employees, and what
enhancements are being focused on like(development

expenses, production, performance, cache, memory, security
etc). Comparing these two working language :

1. Java

 It is highly appropriate when there is a limitation in
terms of CPU.

 Java has been in the industry for quite so long now
and it comes with huge potential for mathematical
computation and others. It has quite developed IDE
and remote debugging features has its own
advantages.

 Java runs as an exclusive process based on threads.
This thread is responsible for managing each request.

2. NodeJs

 It is highly appropriate when there is a limitation in
terms of IO.

 It provides features that minimizes complexity and at
the same time enhances development speed.

 NodeJs works on one principal thread which in turn
utilizes background threads for tasks. Here the
principal/head thread is responsible for changing all
your data so it cut short the issues like threading,
locks & consistency of data

Because of the asynchronous performance of NodeJs it is
being said that it is quite faster but Java is also not behind.
Both asynchronous and non-blocking things can be done at a
time with the spring reactor after choosing the correct
server(Tomcat NIO or other servers developed on top of the
NIO connector).

6. Results

Fig – 3 : Average response time in different UIs

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3078

Figure-3 shows different user interface average response
time before and after the implementation of BFF when
frontend calls to backend services. For android users
average response time is 3 seconds before BFF layer was
introduced in the system and it improved by 1 second after
the implementation of BFF. Similarly for ios users average
response time improved by 750 milliseconds and for
desktop web users it improved from 5 seconds to 3.75
seconds before and after the implementation of BFF
respectively.

Fig – 4 : Successful requests for different UIs

Figure-4 shows total number of successful requests when
10000 requests are made to backend services for each user
interface before and after the implementation of BFF. For
android users the number of successful requests increased
from 7645 to 8324 before and after implementation of BFF.
Similarly for ios users total number of successful requests
increased from 7913 to 8637 and for desktop web users
successful requests increased to around from 7362 to 8012.

7. The Challenges in BFF

It is evident that a BFF layer has many advantages but it’s
important to know about the challenges before
implementing BFF. These are :-

 Fan Out: A breakdown of the single service will
impact the users who have the same type of device
interface to access backend microservices. Fig-5
represents breakdown in the BFF layer for web users
which affects all the users who uses desktop browser.

Fig – 5 : BFF Anti-pattern Fan Out

 Fuse: Any failure in the microservices that responds to
requests of multiple BFFs can bring down the whole
system. Fig-6 shows failure in the microservices which
will impact all the users who want to access
microservices.

Fig – 6 : BFF Anti-pattern Fuse

 Duplication and Lower Reuse: The cost of
development will be more since there will be
deployment of multiple BFFs having similar
capabilities with different teams. Faster response time
and increased consistency may decree this
interruption.

8. Overcoming challenges

Resolve issue of Fan out:- Fault isolation needs to be
implemented as there shouldn't be any exclusive
corresponding services which BFF synchronizes that would
take it down entirely. Preferably each and every posterior
services will have their own termination point of BFF for
each module. This will highly improve availability and fault
isolation with a little cost in terms of increased number of
deployments. Between all downstream components if we
need interaction and coordination then we have to rethink

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3079

the cause of splitting each corresponding service as in when
to split components.

Rectify fuses:- In order to resolve this we need a dedicated
service to each BFF interface. The possibility of dedicating
services is only feasible if corresponding services do not
need to share a database because in that case the database
itself will become a fuse. Henceforth if a service requires a
database then it is preferable to have separate deployments
to enhance availability. In case databases are needed by the
service then there will be technical debt that will be only
partially remediated by eliminating fan out.

Reuse:- Depending upon the implementation this problem
may or may not occur. However if there are possibilities that
there could be overlapping of functionalities between
different modules there it is preferable to ensure that teams
are recognising larger efforts which should be shared. If
these larger requirements are implemented in reusable
libraries it will help to lower down the development
expenses and at the same time there will be reduction in
time to market for other features.

Multiplication:- In the above points we have already
discussed if the teams own their services via the service
lifecycle and executes easier releases and communications
using automation then it will rectify all the problems of large
number of deployable services.

9. Conclusion

Backend For Frontend is design pattern created to improve
the user experience. With time every application needs to be
upgraded as the requirements of customers changes rapidly.
So, BFF as an intermediate layer is an efficient way to solve
various user interface conflicting upgrade requirements and
also provide consistency to the application. The smaller size,
extensibility and re-usability of microservices architectures
add scalability, flexibility power to development as well as
operations team. This paper focuses on problems developers
face while working on a single API gateway and how
multiple gateway helps to tackle the challenges and
problems developers might face and how different language
can be used to implement the intermediate layer depending
upon the requirements of user interface and backend
microservices.

References

[1] Muhammad Waseem, Peng Liang, Aakash Ahmad,
Mojtaba Shahin, Arif Ali Khan, Gastón Márquez “Decision
Models for Selecting Patterns and Strategies in Microservices
Systems and their Evaluation by Practitioners” in 2022 44th
International Conference on Software Engineering (ICSE)
SEIP Track, 2022

[2] Mohammad Sadegh Hamzehloui, Shamsul Sahibuddin,
and Ardavan Ashabi “A Study on the Most Prominent Areas

of Research in Microservices” in 2019 International Journal
of Machine Learning and Computing, 2019

[3] Omar Al-Debagy, Peter Martinek “A Comparative Review
of Microservices and Monolithic Architectures” in 2018 18th
IEEE International Symposium on Computational
Intelligence and Informatics, 2018

[4] J T ZHAO S Y JING and L Z Jiang “Management of API
gateway in microservices architecture” in 2018 IOP
Conference Series: Journal of Physics, 2018

[5] Hulya Vural, Murat Koyuncu, and Sinem Guney “A
Systematic Literature review on Microservices” in 2017
International Conference on Computational Science and Its
Applications, 2017

[6] H. M. Ayas, P. Leitner, and R. Hebig. 2021. Facing the
giant: A grounded the-ory study of decision-making in
microservices migrations. In Proc. of the 15thACM/IEEE Int.
Symp. on Empirical Software Engineering and Measurement
(ESEM).ACM, 1–11

[7] R. Chen, S. Li, and Z. Li “From Monolith to Microservices:-
A Data-flow-Driven Approach,” in 2017 24th Asia-Pacific
Software Engineering Conference (APSEC), 2017.

[8] Tan Yiming. Design and Implementation of Platform
Service Framework Based on Microservice Architecture
[D]. Beijing Jiaotong University , 2017.

[9] Tan Yiming. Design and Implementation of Platform
Service Framework Based on Microservice Architecture [D].
Beijing Jiaotong University , 2017.

[10] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge,
and Z. Shan. 2019. Adata ow-driven approach to identifying
microservices from monolithic applica-tions. Journal of
Systems and Software 157 (2019), 110380.

[11] R. Matt. 2020. Security Patterns for Microservice
Architectures. https://tinyurl.com/zs85z9as accessed on
2021-07-05.

[12] M. Villamizar, “Cost comparison of running web
applications in the cloud using monolithic, microservice, and
AWS Lambda architectures,” Jun. 2017.

[13] N. Dragoni, I. Lanese, S.T. Larsen, M. Mazzara, R.
Mustafin, and L. Safina. 2017.Microservices: How to make
your application scale. In Proc. of the 11th Int. AndreiErshov
Memorial Conf. on Perspectives of System Informatics (PSI).
Springer, 95–104.

[14] H. Harms, C. Rogowski, and L. Lo Iacono. 2017.
Guidelines for adopting frontendarchitectures and patterns
in microservices-based systems. In Proc. of the 11thJoint
Meeting on Foundations of Software Engineering
(ESEC/FSE). ACM, 902–907.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3080

[15] S. Haselböck and R. Weinreich. 2017. Decision guidance
models for microservicemonitoring. In Proc. of the 14th Int.
Conf. on Software Architecture Workshops(ICSAW). IEEE,
54–61.

[16] S. Haselböck, R. Weinreich,and G. Buchgeher. 2017. De
cision guidance models formicroservices: Service discovery
and fault tolerance. In Proc. of the 5th EuropeanConf. on the
Engineering of Computer-Based Systems (ECBS). ACM, 1–10.

[17] P. Raj, H. Subramanian, and A. C. Raman. 2017.
Architectural Patterns: UncoverEssential Patterns in the
Most Indispensable Realm of Enterprise Architecture.
PacktPublishing Ltd.

[18] G.A. Lewis, P. Lago, and P. Avgeriou. 2016. A decision
model for cyber-foragingsystems. In Proc. of the 13th
Working IEEE/IFIP Conf. on Software Architecture(WICSA).
IEEE, 51–60.

[19] Balalaie，Armin, Abbas Heydarnoori, and Pooyan
Jamshidi. Microservices architecture enables DevOps:
migration to a cloud-native architecture. IEEE Software,
2016. 33(3) 42-52.

