
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3024

ReactCodemod: An automated approach for refactoring class based

components to Hooks

Shubham Ghule1, Nikita Aware2, Nishant Pandey3, Kiran Mahajan4, Prof. Anant Bagade5

1,2,3,4Dept. Information Technology, SCTR'S Pune Institute of Computer Technology, Pune, Maharashtra,
India

5Head of Information Technology, Dept. of SCTR'S Pune Institute of Computer Technology, Pune, Maharashtra,
India

---***---
Abstract - React is a popular front-end framework for
creating online interfaces. With React version 16.8, Facebook
has introduced concepts of Hooks and started promoting it as
an efficient alternative to class based components. The current
method to convert class-based into hooks relies on manual
refactoring. This paper proposes reactCodemod an automated
solution for refactoring of class-based components to
equivalent hooks. ReactCodemod, uses jscodeshift API by
Facebook for manipulating of abstract syntax tree. Jscodeshift
takes class-based react code as input generates an abstract
syntax tree, identifies the required code that needs to be
refactored using filters and logic runs over the source code,
transforms the code by manipulating the abstract syntax tree.
In the end, output code is generated. Output code is equivalent
function based code.

Key Words: React.js, Class-Based Components, Function-
Based Components, Hooks, Refactoring, Jscodeshift

1.INTRODUCTION

React is the most widely used open-source, modern
JavaScript library for creating the front end of websites,
which comprises web pages, layouts, and content. From
version 16.8.0 React is gradually moving towards popularly
known as hooks. As a result, there will be a lot of classbased
code that has to be refactored into hooks. The existing
approach relies on manual refactoring of class-based
components into equivalent hooks which is cumbersome and
time consuming. Hence there is a need of automated solution
to tackle this problem. The proposed method,
ReactCodemod, takes react code which consists of class-
based components and needs to be refactored. First an AST
will be created for code by babel/eslint parser after that a
transform file which contains the filter and logic that
manipulates the AST nodes will run over the source code and
will convert the necessary class�based code to function
based code. ReactCodemod makes use of jscodeshift API by
Facebook. The recast and ast-types packages are wrapped in
the jscodeshift package. Ast-types manages the low-level
interface with the AST nodes, whereas Recast performs the
source to AST and back conversion. Jscodeshift enables us to
perform complicated transformations over a large codebase
in seconds, allowing us to make code changes quickly.

Jscodeshift API takes source code file as input and replaces it
accordingly. Inside transform source code gets parsed into
Abstract Syntax Tree. Babel parser is used for generation of
AST. The AST is a tree-based data structure that contains all
the variables, calls, and flow control structures in your code.
When the application runs, the JavaScript engine iterates
through the tree and executes the commands represented by
each node. All the transformation work is done on AST and
then the altered AST is used to regenerate source code. As
opposed to manual refactoring of react class-based code this
automated approach ReactCodemod looks promising and
offers various advantages. It will save developers time and
efforts which are required for manual refactoring [5].

2. LITERATURE SURVEY

Existing class components were refactored into
function components, which was thought to have some value
and to be necessary in some but not all circumstances. While
the developers mentioned the benefits of refactoring, such as
increased readability and maintainability, the ability to
accommodate new developers unfamiliar with old styles,
and more learning resources, their main objection to
refactoring components from class components to function
components was a lack of time and budget [1].

The traditional technique of refactoring react class-

based components to hooks necessitates rewriting the whole
codebase, developers with necessary expertise of react and
JavaScript, such as components, props, state, context, refs,
and top-down data flow, are required. Developers needs to
have understanding of a class without state or lifecycle
methods.

Over the course of five years of creating and
managing tens of thousands of components, hooks have
solved a wide range of seemingly unrelated problems in
React. The main problems which were solved by release of
hooks in React includes Wrapper Hell, classes and side effect.
Before the appearance of React hooks, there was no way to
reuse the logic of behavior to the component. Stateful logic is
difficult to reuse between components. Classes make
complex components difficult to understand. React class-
based components are easier to maintain at initially, but as
the complexity of the class grows, they become

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3025

unmanageable. Classes become unreadable as they grow and
often store different logic in one place. Hooks let you achieve
the same thing by splitting down the logic between
components into simple functions that can then be used
within the components. Hooks allows extracting stateful
logic from a component and allows independent testing and
reuse. Reusing stateful logic without changing the hierarchy
of its components is made possible by hooks. This makes it
easy to share links between many components. Comparing
hooks with class-based components of equivalent
complexity, hooks provide considerably cleaner, easier-
to�understand components. This way React Hooks assists us
in resolving a variety of issues.

2.1 ReactJS

ReactJS is a JavaScript toolkit for creating reusable
user interface components that is declarative, fast, and
adaptable [8]. ReactJs is a component-based, open-source
front-end library that's just responsible for the application's
front-end. A ReactJS application consists of several
components, each of which is responsible for producing a
tiny, reusable piece of HTML code. All React apps are built
around components. These Components may be layered with
one other to create sophisticated applications from simple
building blocks [7].

2.2 JavaScript

JavaScript is a text-based programming language
that allows you to build interactive web pages on both the
client and server side. Web browsers and web-based
applications are the most common places where JavaScript is
used. ReactJS uses JSX which is just a syntactic extension of
JavaScript. JavaScript is also used in metaprogramming.
Metaprogramming is a programming method that allows
computer programs to treat other Programs like data. For
the scope of this research jscodeshift toolkit is used for
metaprogramming.

2.3 JSX

The abbreviation for JavaScript XML is JSX. It's
merely a syntactic extension for JavaScript. JSX allows you to
write HTML/XML-like structures in the same file where we
write JavaScript code. (e.g., DOM-like tree structures), and
the preprocessor will turn these expressions into actual
JavaScript code. JSX tags contain a tag name, attributes, and
children, much like XML/HTML tags. ReactJS heavily relies
on JSX for development, allowing us to build HTML directly
in the browser (within JavaScript code).

2.4 JScodeshift

The Jscodeshift toolbox allows you to perform code
mods across several JavaScript or TypeScript files.

Jscodeshift is a runner that applies the transform provided to
each file it receives. Programmers can use the Jscodeshift
toolkit to input a batch of source files through a transform
and then replace them with the results. Programmers scan
the source code into an abstract syntax tree (AST), make
modifications, then regenerate the source code from the new
AST. It also provides a summary of how many files have been
converted (or have not). It’s a wrapper for recasting with a
new API. Recast is an AST-to-AST conversion tool that
attempts to preserve the original code's style as much as
possible.

3. METHODOLOGY

Rewriting class-based components involves steps like
changing class declarations to function declaration,
removing constructors, replacing render with return, adding
const keyword before all methods, removing this.state
throughout the component and removing all references to
‘this’ throughout the component. Developers have to spend
extra time to do these tasks such as set initial state with
useState(), replace compentDidMount with useEffect,
replace componentDidUpdate with useEffect. All these tasks
are done by developers, which costs time and efforts [2].

3.1 General Identified Steps for Refactoring

1. Import required hooks we will need in the hook
based component. Remove the render() function.

2. Remove state object and replace it with useState
hook.

3. Add const before all classProperties.
4. Remove this.state throughout the component.
5. Remove all references to ‘this’ throughout the

component.
6. Replace this.setState with newly defined setter

function.
7. Replace lifecycle methods with the corresponding

hooks.

A codemod is a piece of code that alters original source code.
In this proposed method we are developing a codemod
named ReactCodemod based on the same identified steps
with the help of metaprogramming libraries.
Metaprogramming is a programming technique that allows
computers to treat other computers as data. It means that a
program may be designed to read, produce, generate, or
convert other programs as well as modify itself while it is
running [3]. There are various libraries available which are
helpful for developing codemods. The two popular options
are namely comby and jscodeshift. For this codemod we are
using jscodeshift because comby is more general library for
converting codes from various languages, jscodeshift is more
focused towards building codemods. It is a toolkit for
running codemods over multiple JavaScript or TypeScript
files. Jscodeshift includes a runner that runs the supplied

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3026

transform on each file it receives. It also shows the number
of files that haven't been updated. A wrapper for recast that
exposes an alternative API. Recast is an abstract syntax tree
to abstract syntax tree transform tool that tries to preserve
as much of the current code's style as possible. Jscodeshift is
a toolbox. It combines a variety of parsers, ast types for node
construction, and recast for pretty-printing to assure code
that follows particular formatting constraints. It neatly
bundles these tools and gives a cohesive API for finding,
filtering, mapping, and replacing the AST nodes. It also
contains a runner feature that allows thousands of files to be
transformed at once.

4. SYSTEM ARCHITECTURE

Reactcodemod lets you perform a transform on a set
of class based source files and replace them with the results.
You parse the source into an abstract syntax tree (AST),
change the AST according to the filters, and then build the
hook-based source file from the updated AST within the
transform.

Fig. 1: ReactCodemod Block Diagram

Reactcodemod achieves the transformation of class-based
components to hook based components using jscodeshift
library and performs following steps:

1. Generate an Abstract Syntax Tree (AST) from given
react source file.

2. Traverse the AST and look out for matches.
3. Make the appropriate changes to the AST.
4. Regenerate the source file with function based code.

Jscodeshift is the refactoring tool, created by Facebook. It
allows us to run ReactCodemod across different documents.
Jscodeshift is a straightforward and simple to-utilize API that
is controlled by Recast. Recast is an AST (Abstract Syntax
Tree) to AST (Abstract Syntax Tree) refactoring tool.

4.1 Transform Module

The transform module just exports a function. The
fileinfo, api, and options parameters are accepted by the
transform module. The location and source of the file to be
handled are included in Fileinfo. The source relates to the

contents of the file, while the path refers to its location. The
transform module's jscodeshift api object has three
properties: jscodeshift, stats, and report. Jscodeshift is a
jQuery-like AST navigation and transformation API. Stats is
a dry-run function that reports the number of times a
certain value has been called; this data is important in
transformation. The report command prints a string to
stdout, which may then be used by other applications.
Option stores all the options given to the runner, enabling
the user to give the transform more possibilities. The state
of the transformation is determined by the value returned
from the Transform Module. The transformation was
successful if the return value differed from the file provided
to it; if the return value was the same as the original file, the
transformation failed. If the Transform module returns
nothing, the transformation is considered successful.

 Fig. 1: ReactCodemod Architecture

4.1.1. Parser

Jscodeshift can pick a parser to parse the source file
using this transform. Transform module exports name of the
parser as a string, which can be "babel", "stream", "Babylon",
"tsx", "ts", or some other parser compatible with recast. In
the transformation module, several architectural
components, and notions of recast and JavaScript are used.

4.2. Abstract Syntax Tree
The given code is converted to an abstract syntax tree by

the JavaScript engine. The AST is a tree-based data structure
that represents the code's variables, calls, and flow control
structure.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3027

4.2.1 AST Nodes

 A JavaScript object with a defined set of fields is known
as an AST Node. The type of a node is the most common way
to identify it, but it also has a number of additional variables
that help to identify it.

4.2.2 Path Objects

Every AST Node has a wrapper object that specifies a
method to traverse the AST. Paths also contain meta-data
and processing assistance methods for AST nodes. To
traverse the tree up AST nodes, path objects must have
enough information about parent nodes to enable an
excellent node iteration and traversal mechanism.

4.2.3 Collections

Jscodeshift is constructed around the idea of collection of
paths. a collection has strategies to process the nodes
internal a collection that often leads to a new collection.
Collections are typed which means method defined for
one type of collection will not work on any other type of
collection.

4.3 Extensibility

Jscodeshift provides API to extend collections as to make
transforms more readable. The two forms of extensions are
generic extensions and type specific extensions. Generic
extensions do not work with node data and instead traverse
the whole collection, whereas Type-specific extensions only
work with a particular node type.

5. EXPERIMENTAL RESULTS

5.1 Remove ‘this’ keyword

 Input

import React, { Component } from "react";
class Three extends Component {
 state = {
 year: 1995,
 type: "Mercedes",
 used: true,
 };
 render() {
 return (
 <div>

 {this.state.year}
 {this.state.used ? "Used Car" : "Brand
New!"}

 </div>
);
 }
}

 Transform code

export default function transformer(file, api) {
 const j = api.jscodeshift;
 let code = file.source;

 code = code.replaceAll("this.", "");
 return j(code).toSource();
}

 Output

import React, { Component } from "react";
class Three extends Component {
 state = {
 year: 1995,
 type: "Mercedes",
 used: true,
 };
 render() {
 return (
 <div>

 {state.year}
 {state.used ? "Used Car" : "Brand
New!"}

 </div>
);
 }
}

5.2 Class declaration to function declaration

 Input

class App extends Component {
 handleClick = () => {
 console.log("Hello World!");
 }
}

 Tranform code

export default function transformer(file, api) {
 const j = api.jscodeshift;
 const root = j(file.source);
 const { statement } = j.template;
 root.find(j.ClassDeclaration).replaceWith((p) =>
{
 return statement`function ${p.value.id.name}
() {
 ${p.value.body.body}
 }`;
 });
 return root.toSource();
}

 Output

function App() {
 handleClick = () => {
 console.log("Hello World!");
 };
}

6. CONCLUSION

This paper proposed a method that manipulates the AST of
the class-based code written in JSX and converts it into an
equivalent hook-based component by manipulating the AST
of the code using jscodeshift. As a result of applying
proposed method, we found that the AST of the existing
class-based component can be redesigned and manipulated

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3028

into an equivalent hookbased component. We also found
that this method may not work in all cases but will surely
reduce the efforts of anyone doing transformations
manually which in turn will save time and efforts of the
person using this tool. As React is gradually promoting
hook-based components, it will be beneficial as it is reducing
human efforts and increasing efficiency of work.

ACKNOWLEDGEMENTS

This work was done under the Krixi Ideas and Technology
Solutions mentorship program. We would like to express
our gratitude towards our mentors Mr Pankaj Lagu,Director
Product Strategy and Mr Tejas Joshi at Krixi Ideas and
Technology Solutions for their continuous support and
encouragement.

REFERENCES

[1] Tuomas Luojus, ”Usability and adaptation of react hooks”
, April 2021.

[2] Daniel Bugl, ”Learn react hooks: build and refactor
modern react.js applications using hooks”, October 2019

 [3] Robertas Damaˇseviˇcius, VytautasˇStuikys, ”Taxonomy
of the fundamental concepts of metaprogramming” ,
2008.

 [4] Mohit Thakkar, ”Unit Testing Using Jest” , April 2020.

[5] Emerson Murphy -Hill, Chris Parnin, and Andrew P.
Black, ”How WeRefactor, and How We Know It”,
February 2012 .

[6] Jaehyun Kim, Yangsun Lee, ”A Study on Abstract Syntax
Tree forDevelopment of a JavaScript Compiler” , June
2018.

 [7] Arshad Javeed, ”Performance Optimization Techniques
for ReactJS”,2019

[8] Sanja Delcev, Drazen Draskovic, ”Modern JavaScript
frameworks: ASurvey Study”, August 201.

