
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | April 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 686

OWASP Top 10 Web Attacks (2017) with Prevention Methods

Prasad Patole1, Aditya Totade2, Piyush Patil3, Prof. Renuka Nagpure4

[1][2][3]Student, Department of Information Technology, Atharva College of Engineering, Mumbai
[4]Professor, Department of Information Technology, Atharva College of Engineering

---***---
Abstract - In today’s world as everyone is using some kind
of device that connects to internet, it is very important to take
care of internet security. It does not mean that you should dive
deeper and learn all the aspects of cyber-security; but you
should at least learn about cyber hygiene and practice them
while you are connected to the internet. The internet is the
ultimate source of knowledge but, it is also habitat of a small
percentage of hackers (malicious actors to be specific). This
paper will help you to understand on very basic level how the
most performed attacks are carried out and what a developer
can do to avoid and mitigate these attacks. According to
OWASP (Open Web Application Security Project) these are the
top 10 attacks that were the most critical security risks to web
applications.

Key Words: Cyber-Hygiene, Cyber-Security, OWASP Top
10, Malicious Actors

1. INTRODUCTION

In this day and age the usage and requirement of the internet
is increasing day by day. There are a lot of reasons for this,
maybe because of pandemic or maybe because of ease of
access; whatever be the reason but internet is here to stay
and it is a fact! As the use of internet is increasing the threats
posed by malicious actors are also increasing. To tackle the
situation we should learn basics of cyber-hygiene and cyber-
security. There are a lot of web developers who may forget
to take precautionary measures to mitigate the security risks
which resulted into the cyber-attacks. The cyber-attacks are
increasing as new technologies are emerging per year [1]. In
this paper we demonstrated all the top 10 attacks and
showed how the attacker may attack a particular site with a
particular type of vulnerability. The actual steps may change
but the general approach is usually stays same. It will show
how a certain type of vulnerability van be leveraged to gain
control of the web application.

1.1 MOTIVATION

In today’s modern lifestyle everything you can imagine is
digital and somehow connected to the internet from your
watch to toilets! Yes, even toilets (thanks to IOT); Because of
this ever growing need of internet the internet security is a
big question; since people are using internet but do not
know how to keep themselves safe on the internet. As an
aspiring team web developers we thought that not a lot of
developers take care of writing safe and secure code while

developing web applications or any application in general.
This was the sole reason for us to choose this path and since
it is fairly a virgin territory and a lot of things are yet to be
uncovered.

1.2 AIM and OBJECTIVE

The main aim of this project is to demonstrate all possible
attacks from OWASP Top 10 and writing down all the
findings of said demonstrations.

Following are the Objectives:

1. To demonstrate the attacks on the vulnerable virtual
machines provided by tryhackme.com (since this is one of
the only legal way to learn and demonstrate web attacks).

2. To construct and publish paper from the findings of
demonstrations.

1.3 BASIC CONCEPT

In these demonstrations the basic concept is that we will
perform the web attacks using the dedicated Linux
distribution named “KALI Linux” which is a Linux
distribution that comes with a lot of tools to perform
Penetration Testing; there is another famous distribution
named Parrot OS, we chose KALI since it is most up-to-date
distribution. Using KALI Linux virtual machine and
tryhackme.com (which provides users with vulnerable
machines and even explanations for learning) we will
demonstrate attacks and all the screenshots are taken from
these demonstrations.

2. OWASP TOP 10

2.1 INJECTION

Injection attacks are one of the most performed and are one
of the most dangerous attack according to OWASP. Injection
attacks such as SQL, OS, NoSQL injection, occurs when a
malicious data is sent to an interpreter as the part of
command/query. When the interpreter processes the query
it will trigger the malicious code and the attacker can get
access to the database which contains sensitive data such as
admin login, user login and may contain personal
information.

https://tryhackme.com/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | April 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 687

2.1.1 DEMONSTRATION

Fig. 1: SQL Injection Payload

As you can see in Fig.1 above while exploring we found a
vulnerability in the news tab. The payload used in this case
was – ‘http://10.124.211.96/newsdetails.php?id=26 and
1=2’

Fig. 2: Result of SQLMap

Using a tool named ‘SQLMap’ we were able to exploit this
vulnerability and was able to gain the database information.

2.1.2 PREVENTION

1. Preventing SQL injection and Injection attacks in general is
rather easy if you understand how this attack is executed;
basically, to prevent injection attack you have to prevent it
from triggering any malicious code or any code that is
entered as an input.

2. Keeping the data separate from commands and queries.
The preferred way is to use a safe API, it avoids the use of the
interpreter entirely or provides a parameterized interface.

2.2 BROKEN AUTHENTICATION

Broken authentication is a vulnerability in any web app or
any app which occur when functions related to
authentication and session management are implemented
incorrectly, allowing malicious actor to compromise
passwords, keys(such as RSA keys), session tokens and gain
access to accounts and profiles of victims.

2.2.1 DEMONSTRATION

Fig. 3: Brute-force attack to gain the credentials

In above fig. 3 we performed a ‘dictionary-based’ brute-force
attack using a password file named ‘rockyou.txt’ which was
uploaded by hacker who hacked a company ‘RockYou’ back
in 2009; since they stored their passwords in unencrypted
form. The attacker got 32 million passwords, but the
rockyou.txt used in this demo is provided by Kali and
contains 12 Million passwords.

Fig. 4: Gaining Access with found credentials

In fig.4 you can see that we were able to gain the access to
the victim’s device using ‘ssh’. The tool used was ‘Hydra’ we
could have used other tools or other approach (e.g tools such
as Gobuster, Burp Suit, etc.) but we have to choose the tools
and approach according to the situation, since not all
situations will be identical or it is highly unlikely.

2.2.2 PREVENTION

1. First of all stop using passwords; instead use ‘passphrases’
with numbers, letters and special symbols, e.g.
‘Il1k3r41Nb0W$’.
2. Always change default credentials as the part of initial
setup of any device especially routers and IOT devices
(further discussed in 2.6).
3. Implementation of multi-factor authentication or at least
two-factor authentication wherever possible.

2.3 SENSITIVE DATA EXPOSURE

Often many web applications do not properly hide the
sensitive data, such as database files, it a very rookie mistake

http://10.124.211.96/newsdetails.php?id=26
https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://www.kaspersky.com/resource-center/definitions/brute-force-attack

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | April 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 688

to make but still is a mistake so that it is a possibility. This
mistake can result in data is visible to anyone that is
accessing the public page which they should not be able to
access in the first place.

2.3.1 DEMONSTRATION

Fig. 5: Exposed Sensitive Data

In fig. 5 we can see a particular file named ‘webapp.db’ which
is actual database file; which contains sensitive information.
The folder is not harder to find we can easily find all the
related files using tools such as gobuster and dirbuster
which finds all types of files e.g. folders, .php, .js, .bak files
etc.

Fig. 6: contents of ‘webapp.db’ file

Fig. 7: decrypting the password

As demonstrated in fig. 6 we can read the content of file
using sqlite3 and found that it contains credentials of users
including ‘admin’ and using ‘crackstation’ (which is a useful
tool to unhash the passwords) we can crack the password as
shown in fig. 7 above.

2.3.2 PREVENTION

1. Use strong and up-to-date frameworks to implement the
web app.
2. Always classify the data stored, processed and transmitted
by an application; e.g. if you are not that advanced user then
you can use third party hosts to host the web app; they have
different containers to store files.
3. Apply controls as per classification.
4. Always use encryption methods to encrypt the data if you
need to store them.
5. Always use SSL (secure socket layer) protection which
encrypts the response and request so that, even if they can
be intercepted but malicious actor cannot read.

2.4 XML EXTERNAL ENTITIES (XEE)

Many older or poorly configured XML processors evaluate
external entity references within XML documents. External
entities can be used to disclose internal files using the file
URI handler, internal file shares, internal port scanning,
remote code execution, and denial of service attacks. [1]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | April 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 689

2.4.1 DEMONSTRATION

Fig. 8: XML Payload

As shown in fig. 8 by adding small XML code it actually
triggers interpreter’s XML framework and it processes it;
which is absurd behavior.

Fig. 9: XML Payload Output

By processing the XML code snippet we were able to get the
contents of ‘/etc/passwd’ file which contains the information
about the users of an operating system (in this case the site
was hosted on Linux server). Exposing sensitive information
of users, their privileges and other data as illustrated in fig. 9
above.

2.4.2 PREVENTION

1. This XXE often occurs when the data formats used are not
that known to the developer and because of its complexity
using it in unnecessary places may result in this
anomaly/absurd behavior.
2. That’s why whenever possible, using less complex data
formats such as JSON is a much easy and secure option.
3. Also avoid serialization of sensitive data.

2.5 BROKEN ACCESS CONTROL

In many web applications generally have certain ‘Access
Control’ some boundaries between admin, public user and
developer. Basically, this vulnerability arises when

restrictions on what authenticated users are allowed to do
are often not properly enforced. Attackers can leverage this
vulnerability to access unauthorized functionality or data
also can access other user’s accounts, change access rights,
etc.

2.5.1 DEMONSTRATION

Fig. 10: Normal landing page for authenticated user

Broken access control may seem like a small flaw but
actually can be a very dangerous security threat. Let’s take a
simple example; you are accessing your online net banking
portal, after logging in you see the URL it shows something
like ‘user=2268’ at the end of the URL. You thought that let’s
just change ‘user=2268’ to ‘user=2070’ (as shown in fig.11)
and after changing the URL you reload the page and you see
that now you have logged in as someone else having full
control over that user account. You have just found a
security vulnerability.

Fig. 11: User accessing unauthorized page

Now, you can see how dangerous it can be if the access
control is not there.

2.5.2 PREVENTION

1. Access control is only effective only if enforced in trusted
server-side code API, where cannot modify access control.
[1]
2. Only exception of public resources deny all requests by
default. Like in above example the change in URL should not
yield any result rather it should throw an error.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | April 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 690

3. There should be consistency in the implementation of
access control mechanisms (like only implement once and
re-use them throughout the application to ensure
consistency).

2.6 SECURITY MISCONFIGURATION

Security misconfiguration is the most commonly seen
vulnerability as it can happen very often. This is a result of
insecure default configurations. Most common example is
IOT devices that come with default credentials such as
‘user/password’ or ‘admin/admin123’, etc. It is very
important to change these credentials as soon as possible
since, IOT devices are everywhere and can give a lot of
sensitive information away to any malicious actor who is
skillful enough to exploit these vulnerabilities.

2.6.1 DEMONSTRATION

Fig. 12: Default Credentials

Fig. 13: Gaining access using default credentials

In the demo we performed we were easily able to find
default credentials of the web application as shown in fig. 12
the highlighted area highlights the default credentials and
we were able to gain access to the web application as
illustrated in fig.13, it may look harmless but is actually a

very dangerous security risk.

2.6.2 PREVENTION

1. Always check for updates not just on the OS level but also
the frameworks/library used, e.g. updating PHP version if
you used PHP as back-end language.
2. Always change default credentials as soon as possible and
preferably use strong username and ‘passphrase’
combination.
3. Install only the used features and framework, rather than
installing unused features/libraries as it may give you hard
time while updating all the components.

2.7 CROSS SITE SCRIPTING (XSS)

XSS attacks occur when an application includes untrusted
data without validating, especially when data is given by
user using a browser API that can create HTML or JS.

XSS allows attackers to execute scripts on victim’s browser
which can hijack user sessions, or redirect the user to
malicious sites. It may look similar XEE vulnerability, but it
differs from it in terms of origin. XSS vulnerability arises
from not handling the user-supplied data correctly.

2.7.1 DEMONSTRATION

There are various different forms of XSS named Reflected
XSS, Stored XSS, and DOM XSS. In this demo we have shown
how stored XSS works, since it is often considered a high or
critical risk.

Fig. 14: Stored XSS

Triggering Stored XSS is quite easy, only thing that has to be
done is put HTML/JS code in the input field. As we can see in
fig. 14, we given a simple Alert tag in JavaScript as input and
it processed and given result shown in fig. 15 in this case it
was a simple alert tag but attacker will not use such simple
tag. Attacker can pose threat to the very balance of
application with this vulnerability present in the web
application or they may retrieve any trivial information such
as OS of the victim’s device using ‘navigator.userAgent
property’

https://www.geeksforgeeks.org/detect-the-operating-system-of-user-using-javascript/
https://www.geeksforgeeks.org/detect-the-operating-system-of-user-using-javascript/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | April 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 691

Fig. 15: Output of XSS attack

2.7.2 PREVENTION

In basic terms, avoiding XSS requires separation of untrusted
data (user-supplied) data from active browser content. This
can achieved by:

1. Escaping untrusted HTTP request data based on context in
the HTML output (such as body, attribute, CSS, JS, etc.). It will
resolve Reflected and Stored XSS vulnerabilities. [1]
2. Using frameworks that are designed to escape/avoid XSS
by default; such as Ruby on Rails, and most common React
JS. [1]
3. Even if you do not want to use these frameworks; learning
about framework’s limitations and data handling will help
you to avoid the vulnerabilities, e.g. in the above demo the
input should have thrown an error instead of triggering the
script.

2.8 INSECURE DESERIALIZATION

Applications and APIs is vulnerable if they de-serialize
hostile or tampered objects supplied by an attacker. This can
result in RCE (Remote Code Execution) if not, it can result in
other attacks including injection attacks, and privilege
escalation attacks.

2.8.1 DEMONSTRATION

Fig. 16: Cookies

Above figure (fig. 16) shows exactly how attacker can tamper
with the sensitive data and overwrite the values to gain

admin privileges; just by changing the value (in this case
user type). These cookies should have been hidden from any
public interface.

Fig. 17: Gaining Admin Privileges

Anyone can gain access to the admin page which is
equivalent to gaining root access of an Operating System and
is equally dangerous. But since, first attacker should know all
these vulnerabilities and how to leverage this vulnerability
and it is quite hard thing to pick that’s why probability of this
attack occurring is quite less; hence this vulnerability has
exploitability rating of 1 out of 3 (which is severe).

2.8.2 PREVENTION

The basic thing to do is not to accept serialized objects from
untrusted sources or to use serialization mediums that only
permit primitive data types. If this is not possible then
consider one or more of the following:

1. Isolating and running code that de-serializes in low
privilege environments when possible. In simple terms avoid
using high privilege environments to run code whenever
possible.
2. Restricting or monitoring the incoming and outgoing
network traffic from containers/servers that de-serialize.
3. Implementing integrity checks such as digital signatures
on any serialized objects to prevent hostile object creation or
data tampering. [1]

2.9 USING COMPONENTS WITH KNOWN
VULNERABILITIES

Components used such as libraries, frameworks, and other
modules run with same privileges as the application. If even
one of the component (not the actual application itself) is
vulnerable and is exploited, it may result in data loss or
server hijack; which will affect the web application/API.
Using such components or not updating them as soon as
possible may damage/lower the overall security of the
application. Following demonstration will show how
attacker may leverage security vulnerability just by
searching on the internet. Prime and latest example of this
vulnerability is recent ‘log4j vulnerability’ which was first
discovered in 9th December 2021 in a Computer Game
named ‘Minecraft’ ‘JAVA edition’ to be specific.

https://www.minecraft.net/nl-nl/article/important-message--security-vulnerability-java-edition

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | April 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 692

2.9.1 DEMONSTRATION

Fig. 18: Vulnerable Application

Fig. 19: Searching for known exploit

Fig. 20: Downloading the exploit

Fig. 21: Execution of exploit script

As the name suggests; this vulnerability is easiest to find but,
is massive hit or miss. As illustrated in fig. 19 luckily we
found working and unpatched exploit using internet,
especially on website named ‘exploit-db’. This site consists of
all the known vulnerabilities and if they are patched or not.
After finding the exploit (fig. 20), it is as simple as running
simple python script (fig. 21). It may require some slight
modifications to work.

2.9.2 PREVENTION

To prevent this vulnerability there are two important steps
to perform; detecting the vulnerable dependencies and
patching them or if possible removing them as soon as
possible.

1. To detect the vulnerable dependencies of both client-side
and server-side, tools like DependencyCheck, retire.js
(especially for unused JS dependencies).
2. Remove unused dependencies, unnecessary features,
components, files, and documentation.
3. Patch the bugs and vulnerabilities.

2.10 INSUFFICIENT LOGGING AND MONITORING

This vulnerability poses threat in damage-control phase. As
the name suggests; insufficient logging may result in more
loss of data and capital in general. Logging is a method of
storing all the actions performed in periodic and sometimes
chronological (timely) manner. It helps in many ways for
maintenance and most importantly, gaining back the access
from attacker after being attacked. It plays important role in
Disaster recovery, because logs are the first things that
professionals should be referring to. That’s why insufficient
logging may cost more than what is already been damaged.

2.10.1 DEMONSTRATON

Fig. 22: Example of log

The figure provided above (fig. 22) is self-explanatory that
what kind of content a log file may contain. In this case if
observed carefully, we can see a series unauthorized access
to the secure infrastructure. Well, this is an example of well-

https://www.exploit-db.com/
https://owasp.org/www-project-dependency-check/
https://github.com/retirejs/retire.js/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | April 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 693

functioning log file. Lack of useful and important logs and
insufficient user context may pass as an insufficient logging
vulnerability.

2.10.2 PREVENTION

According to the risk of data stored or processed by
application following can be done to prevent this
vulnerability:

1. Ensuring that all login, access control failures, and server-
side input validation failures (e.g. failed authentication
attempts) should be logged with sufficient user context to
identify any suspicious or malicious activity.
2. Ensuring that logs are generated in a format that can be
easily consumed by a centralized log management solutions.

3. CONCLUSION

As mentioned before in the introduction cyber-hygiene is
most important thing to follow whenever having online
presence and for various developers, taking care of
application security should be on top of their priority list.
These attacks were the only top 10 most critical
vulnerabilities, there are more attacks than these.

On very rare occasions, there is chance of attackers may use
combination of more than two or three attacks.

One of the recent example of this incident was data breach at
EA (Electronic Arts) game development and publishing
company which is infamous for such titles as Battlefield (1, 2,
3, 4, 5 and 2047) and FIFA. In short what happened was that
in June of 2021; first, the hackers purchased stolen cookies
linked to EA’s Slack channel for $10, and logged in as the
compromised employee, and message the IT department,
telling them that they lost their phone and needed help with
multifactor authentication to log into the corporate network.
They stole roughly 750 – 800 GB of source code, luckily none
of the user data was breached/leaked.

IT professionals and any users of internet should stay
vigilant. In this cyberpunk world the data exposed to the
outer world through internet may pose danger to anyone’s
personal presence.

This can be avoided with good internet usage habits/cyber-
hygiene.

ACKNOWLEDGEMENT

A big thanks to tryhackme.com for providing us and over
1million (currently in April 2022) learners a platform to
learn and understand different aspects of cybersecurity with
very interactive manner.

OWASP.org for providing all the theoretical information of
the attacks and vulnerabilities.

REFERENCES

[1] OWASP – owasp.org.

[2] Hasan Alsobhi, Reem Alshareef “SQL Injection

Countermeasures Methods” IEEE, 2020.

[3] Limei Ma, Yijun Gao, Dongmei Zhao, Chen Zhao,
“Research on SQL Injection Attack and Prevention
Technology Based on Web”, IEEE, 2019.

[4] Arvind Goutam, Vijay Tiwari, “Vulnerability Assessment
and Penetration Testing to Enhance the Security of Web
Application” IEEE, 2019.

[5] Ajjarapu Kusuma Priyanka, Siddemsetty Sai Smruthi,
“Web Application Vulnerabilities: Exploitation and
Prevention” IEEE, 2020.

[6] Murat Aydos, Ilker Kara “Detection and Analysis of
Attacks against Web Services by the SQL Injection
Method” IEEE, 2019.

https://owasp.org/www-project-top-ten/2017/Top_10
https://ieeexplore.ieee.org/document/9213748
https://ieeexplore.ieee.org/document/9213748
https://ieeexplore.ieee.org/document/8912016
https://ieeexplore.ieee.org/document/8912016
https://ieeexplore.ieee.org/document/9036175
https://ieeexplore.ieee.org/document/9036175
https://ieeexplore.ieee.org/document/9036175
https://ieeexplore.ieee.org/document/9278437
https://ieeexplore.ieee.org/document/9278437
https://ieeexplore.ieee.org/document/8932755
https://ieeexplore.ieee.org/document/8932755
https://ieeexplore.ieee.org/document/8932755

