
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1073

A Literature Review on Plagiarism Detection in Computer

Programming Assignments

Keerthana T V 1, Pushti Dixit 2, Rhuthu Hegde 3, Sonali S K 4, Prameetha Pai5

1,2,3,4Students, Department of Computer Science and Engineering, Dayananda Sagar College of Engineering,
Bengaluru, Karnataka, India

5Assistant Professor, Department of Computer Science and Engineering, Dayananda Sagar College of Engineering,
Bengaluru, Karnataka, India

---***--
Abstract - Our research aims to detect plagiarism in
computer programming assignments. Plagiarism has been a
problem for a long time and the problem has evolved with
time. With the rise of the internet the theft of intellectual
property has risen significantly and recognizing these thefts
has become difficult. With this survey we have identified
techniques used in detecting plagiarism. With changing times,
the tools needed to detect plagiarism have to be evolved.
However, to develop a tool with an ability to achieve high
accuracy and greater accessibility of data has always been a
demand. A comparative study on plagiarism checking tools
with the technology used is presented in this paper. This study
would help us determine the algorithm and methodology to
proceed with the development of code to detect plagiarism.

Key Words: plagiarism detection; machine learning;
artifcial intelligence; deep learning; neural network

1.INTRODUCTION

Programming assignments play an important role to hone
and evaluate programming skills of a student. But the
process of finding a solution to the assignments seems
frustrating to the majority of students that they borrow
solutions from classmates or from external sources.
‘Plagiarism’ is presenting someone else’s work or ideas as
your own, with or without their consent, by incorporating it
into your work without full acknowledgement. The
increasing plagiarism cases in academics hinders fair
evaluation of students, hence raises the need for plagiarism
detection. Manual plagiarism detection takes a lot of time
and effort, in the case of a large number of assignments.
Hence, reliable automatic plagiarism detection techniques
are necessary.

 During this literature review, we came across several
approaches that previous researchers have developed. The
approaches were similarity-based, logic-based, machine
learning based etc. Several comparison algorithms such as
the Greedy String Tiling algorithm, winnowing algorithm etc.
have been used in similarity-based detection. While logic-
based algorithms try to find out one dissimilarity in terms of
output and execution paths. For a system, which involved
multiple submissions of a single exercise, similarity of
consecutive submissions made by a student were considered

which eliminates the need for finding similarity between all
the source codes submitted by all the students. Machine
learning techniques such as XGBoost, SVM, random forest,
decision trees have also been used in some approaches. The
take away and limitations of each of them have been briefed
in this review. This review gives us an idea of what areas to
work on while building a plagiarism detection system.

2. MOTIVATION

The practice of plagiarism is not a strange thing anymore.
Students, programmers and even lecturers plagiarize or copy
the source code from different sources before submitting it
to the evaluator. This isn't just limited to schools and
colleges but also in the industries. Detecting plagiarism
practices is a solution that should be done so that the
fraudulent actions can be minimized. Detection of plagiarism
clusters is very important to find out how many students or
groups accomplishing program homework independently. It
gives instructors more opportunity to enhance or modify
education. Using the software can be a deterrent for students
to plagiarism. However, using this software does not provide
the final answer, which is why the authors have come up
with an idea of using two approaches and comparing them to
find out which performs better, the first technique is to use
machine learning techniques like XGBoost algorithm, SVM
classifier and the second technique is to make use of
Artificial Neural Network and backpropagation on the
dataset to identify if there is plagiarism in code.

3. RELATED WORK

This paper by K.J.Ottenstein[1] talks about one of the earliest
approaches to solving the problem of detecting similarities
in student’s computer programming assignments. This
feature-based approach was designed for and tested on
programs written in FORTRAN. It considers Halstead’s
metrics [2] - number of unique operators (n1), number of
unique operators (n2), Total number of occurrences of
operators(N1), Total number of occurrences of
operands(N2). If n1 and n2 is found to occur exactly N1 and
N2 times respectively in two assignments then those
assignments are flagged as plagiarized.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1074

This paper by John L Donaldson et al. [3] designed a
plagiarism detection system that analyses the input
programs in two phases. In the first, i.e., the Data collection
phase the system keeps track of eight features. This
information is stored in a two-dimensional array. The second
phase is the Data Analysis phase which is further subdivided
into 2 phases:

Phase 1.1 determines similarity using the information stored
in the counters that keep track of the eight features. The
three techniques used here are Sum of Differences, count of
similarity and weighted count of similarity.

Phase 1.2 The input program is transformed to a statement
order sequence and sequences of the pair of assignments
are compared to detect similarity.

[1][3] are feature based methods that use software metrics
to convert the input program into a feature vector that can
be mapped to a point in an n-dimensional cartesian space.

The distance between the points determines the similarity of
the two programs. It is observed by Lutz Prechelt et al. [8]
that feature based systems do not consider valuable
structural information of the programs and also observed
that adding further metrics for comparison does not improve
the accuracy.

Alan Parker et al [4] has given us a glimpse to the algorithms
that can be used to detect plagiarism. The paper focuses on
an algorithm that is based on string comparisons. It removes
the comments, blank spaces, compares string and maintains
count of the percentage where the characters are the same.
The authors described six levels of plagiarism and their
examples are shown in the paper. These algorithms have
been developed on the theories of Halstead’s metrics which
brings out strong relation with software metrics.

Since this was an old paper, the research in this brought out
automating the textual plagiarism thereby reducing human
efforts.

Plagiarism in assignments by students has posed a lot of
difficulties for the evaluators and to avoid that the author
Michael J. Wise et .al [5] has proposed a system known as
YAP3 which is the third version of YAP which works in two
phases primarily. It removes the comments and string
constants, converts from uppercase to lowercase, maps the
synonyms to a common form, reorders the function in their
calling order and also removes the token which is not a
reserved word from the program. Also, the paper focuses on
Running-Karp-Rabin Greedy-String-Tiling (RKR-GST) which
was made after the observation of YAP and other systems for
detection. The method can be used to detect transposed
subsequence too. Also, the paper talks about usage on YAP
on English texts which was a success.

This paper by Alex Aiken et al. [6] describes the idea behind
MOSS (Measure of Software Similarity) a tool that automates
detecting plagiarised programming assignments. MOSS
accepts the programs as input and returns HTML pages
illustrating parts of the accepted programs that it detects to
be similar. The paper describes the winnowing algorithm.

The input is converted into k-grams (a continuous substring
of length k) where the value of k is chosen by the user. Each
k gram is hashed. A subset of the hashes is chosen to be the
document's fingerprint and this paper describes the
winnowing to select the hashes. A window of size w is
created and, in each window, minimum hash value is chosen.
If there is more than one minimum then the rightmost hash
is selected. This algorithm was found to be efficient by the
authors.

Then, Karp Rabin algorithm for string matching [7] is used to
compare all pairs of k- grams in the two documents.

This approach was found to be language specific [18]

This paper by Richard M Karp and Michael O Rabin [7] gives
us insightful information on the development of the Karp
Rabin Algorithm, transitioning from the older techniques
and identifying the underlying problem which led to the
development of the algorithm. This is a string-matching
algorithm in which fingerprint functions are used in the
algorithm to identify the patterns. This algorithm is also
suitable for multi-dimensional rectangular arrays. This
algorithm short expected computed time with negligible
probability of error and has a wide range of applications
suitable for checking textual plagiarism.

Prechelt et al. [8] have described JPlag’s architecture, it’s
evaluation results, among others. JPlag is a web service
which detects plagiarism, given a set of programs as input.
Firstly, it takes a set of programs as input, and then
compares the programs in pairs, calculating total similarity
value and a set of similarity regions for each pair. They have
modified Wise’s Greedy String Tiling algorithm by applying
the basic idea of Karp-Rabin pattern matching algorithm, to
compare programs. The output is a set of HTML pages which
allows us to understand the similarity regions in detail.

They have evaluated JPlag against both original and artificial
programs. It was found that JPlag was able to perfectly
identify more than 90% of the 77 plagiarisms and the rest
were at least termed suspicious. Runtime is also just a few
seconds for around 100 programs of several 100 lines each.
JPlag is limited to languages like Java and supports languages
such as C, C++ and Scheme; support for other languages is
still an area of concern.

Sven Meyer zu Eissen and Benno Stein [9] have focused their
research on the intrinsic plagiarism method. Their research
on previously used methods have led to the usage and
analysis of intrinsic plagiarism. They have divided the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1075

document into sentences, paragraphs or sections, and
analyzing various features like stylometric features and
averaged word frequency class. Their experimental analysis
was on the computer science articles in ACM digital library,
represented in the XML form and plagiarism checked with
XML documents. They have represented their analysis with
the help of the graph and tabular form. This paper has
clarified us with the intrinsic method and its usage, which
can be applied only for the textual documents.

This paper proposed by Liang Zhang et. al [10] uses a metric
Information distance to measure the similarity between two
programs and also detects the plagiarism clusters which
helps in finding out how many of them have written the code
independently and helps the course setters and instructors
to enhance and modify the way education is communicated
to the students. The detection system in the paper works in 3
phases particularly, parsing programming codes and
translation into token sequences, calculating pairwise
distance or similarity and clustering analysis work on
similarity matrices in phase 2.

The system is pretty robust according to the author and is
effective in clustering. They plan to implement fuzzy
clustering in the detection system and support more
programming languages such as Java, Basic and Delphi.

In the following paper by Cynthia Kustanto et.al [11], they
have developed ‘Deimos’ a web application interface that
receives input and then triggers background process to
display the result on the application. Deimos detects
plagiarism for source code written in Pascal, Lisp and C
programming languages. Deimos performs following
functions a) Detects plagiarism b) Displays the result in
readable form c) Deletes the result. The application parses
the source code and transforms it into tokens and then
compares each pair of tokens using Running Karp-Rabin
Greedy String Tiling algorithm. The advantages of this is that
it detects plagiarism efficiently, can be accessed from any
computer system, and can be used on other programming
languages too. We can also set the detection sensitivity and it
can process more than 100 source code. The method
proposed might work on long programs and not so
accurately on small codes. Also processing multiple
programming assignments at a time might take longer than
expected. A lot of mechanisms can be added to this to make it
better and more efficient.

Dejan Sraka et al [12] focuses on the plagiarism done at the
education levels and identifies the reasons behind
plagiarism. The authors have also conducted various surveys
and brought out the results which help us understand the
reasons and analyse the type of plagiarism that are generally
conducted. They have drawn conclusions from the survey
such that there must be formal rules and regulations for the
procedures and students and teachers must be educated to
understand the importance of authorship, intellectual rights

and rules of proper references. Also, the teachers must frame
questions such that it has multiple solutions. This paper
however does not focus on the plagiarism tools, it rather is
just identifying the reasons and sources.

Martin Potthast et al [13] have presented an evaluation
framework for plagiarism detection. The performance of the
plagiarism detection is measured with the help of the
plagiarism detection algorithm and measure to quantify the
precision and granularity. The authors have come up with
the corpus where there are three layers for plagiarism
authenticity that is real plagiarism, artificial plagiarism and
simulated plagiarism. The integration of these PAN
plagiarism corpus is done by the authors in the PAN-PC10
corpus. The corpus features various kinds of plagiarism
cases which help in validation which is done by 10 different
retrieval models. They have aimed for a realistic test bed so
that better performance can be achieved.

Duric and Gasevic [14] addresses the problem of making
structural modifications to source code which can make
detecting plagiarism very difficult and have presented a
source code similarity detection system (SCSDS) which uses
a combination of two similarity measurement algorithms
such as RKR-GST algorithm and Winnowing algorithm. The
approach consists of five phases, which are: 1) Pre-
processing: In this phase, all sorts of comments from the
source code file are removed. 2) Tokenization: Converting
the source code into tokens, and these tokens are chosen in a
way difficult for the plagiarists to modify, but still maintains
the essence of the program. 3) Exclusion: In this phase,
template code is excluded which can avoid many false
positives. 4) Similarity measurement: RKR-GST and
Winnowing algorithm are used to measure similarity. This
phase is repeated twice due to the implementation of two
algorithms. 5) Final similarity calculation: This calculation
is performed on the results obtained in the previous phase.

The performance of SCSDS similarity measurement had
shown promising results in comparison with JPlag. The
tokenization phase and the usage of several similarity
measurement algorithms contributes to the promising
results obtained, but it’s slower due to the usage of several
similarity measurement algorithms which needs to be
improved.

This paper by Bandara et al. [15] describes source code
plagiarism detection using an attribute counting technique
and uses a meta-learning algorithm to improve the accuracy
of the machine learning model. Naive Bayes, K nearest
neighbour algorithms were used for research and Adaboost
algorithm was used for meta learning. Nine metrics were
chosen to identify each source code and trained on a dataset
of 904 java source code files and tested on a validation set of
741 files. The accuracy achieved was 86.64%. The authors
plan to use other machine learning and meta learning
algorithms in the future to improve the accuracy.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1076

This survey by Prasanth S et al [16] tells us about the various
techniques and tools used for plagiarism detection and
various types of plagiarism detection. This survey gives us a
complete understanding of different plagiarism methods and
brings out the comparison between these methods which
helps us choose the technique as per our need. This survey
paper has just focused on the basic techniques and with the
evolution of the Internet the challenge to plagiarism from
these sources is still a big concern.

This paper by Weijun Chen et al. [17] proposes a source code
plagiarism detection system that aims to combine feature-
based and structure-based plagiarism detection methods
into a single system. A system consisting of four components
was designed by the authors. The components are: - Pre-
Processor: This component removes the noise elements such
as header files, comments, whitespaces, any input- output
statement and any string literals as these elements could be
used to fool the plagiarism detector.

Feature Based Component: This component considers two
different categories of features i.e., Physical features and
Halstead’s Software metrics and builds a feature vector of
the program given as input. Number of words and the
number of source code lines are the two physical features
considered in this component. Six Halstead’s software
metrics are considered namely arithmetic operator metrics,
relational operator metrics, logical operator metrics,
execution flow metrics, operand metrics and number of
different operands.

The feature vectors of the two programs are compared to
calculate the similarity. A sensitivity coefficient is used to
define the strictness of the comparison. This component
considers both Physical similarity(S1) and Halstead
similarity(S2) along with weights w1 and w2. The authors
have considered the weights w1=0.2 and w2 = 0.8.

Structure Based Component: This component uses a set of
rules pre-defined by the authors to substitute the identifiers
in the source program to a set of standard tokens to ensure
that changes to names of variables or functions doesn’t fool
the plagiarism detector. To increase the efficiency further
the token is further mapped to a single character using a
mapping table defined by the authors resulting in a token
string. The token string (separated into different blocks by
the curly braces) is compared to derive a similarity score
using the Longest Common Subsequence (LCS) Algorithm.

Integration Component: Combines the result of both feature
and structure-based components using the integration
algorithm. The authors tested the system by changing the
variable names, adding useless statements and header files
and the similarity score reported was 1.0. The similarity
score reported after changing the structure of the program
was 0.9. The system was also tested using the programs
submitted by the students of an Introductory programming
class of Tsinghua University, China and it was observed that

if two programming assignments received a similarity score
of 0.7 or above then there were enough code blocks that
looked similar and is most likely plagiarised. The results are
presented in an excel sheet that is difficult to understand.

Zhang et al. [18] proposed a program logic-based approach
to software plagiarism detection (LoPD), which is both
effective and efficient. In place of detecting similarity
between two programs, LoPD detects dissimilarity. As long
as it can find one dissimilarity i.e., in the form of either
different output states or semantically different execution
paths, it is not a case of plagiarism; it is, otherwise. An input
is given to two suspected programs. If, a) Output States are
different, it's not a plagiarism case. If they are the same, then
check for path deviation. b) Execution paths are the same, try
for another input. If, after many iterations, we cannot find an
input for which either the output or the execution path is
different, the programs are likely to be a plagiarism case. If
they are different, check path equivalence to ensure true
semantic deviation and not merely caused by code
obfuscation.

While path characterization is done using techniques such as
symbolic execution, weakest precondition and constraint
solving to detect path deviation and measure semantics
equivalence; constraint solver can lead to false positives and
hence is bound by limitations.

This paper by Giovanni Acampora and Gerogina Cosma [19]
describes a fuzzy-based approach to detect similarities in
source code. First the source code is preprocessed to remove
unnecessary information, after which a vector space model is
created which is a matrix A that holds the frequency of the
terms present in the source code after preprocessing. This
frequency is normalised by a global weighing function. As
the next step the dataset size is further reduced using
Singular Value decomposition and the result is a matrix
V.Neuro Fuzzy learning algorithm is applied on this matrix V
which is a two-step process. Step 1: Fuzzy C-means
clustering which groups the source code having similar
identifiers together and generates a Fuzzy Inference system
(FIS) that describes the rule for a particular cluster. Step 2:
ANFIS algorithm [19] is used to tune the FIS to optimise the
model. The System was tested on Java files and
outperformed Self-Organising maps (SOM) approach and
Fuzzy-C Means approach (FCM) and RKR-GST used in J-Plag.

In the following work by A. Chitra et. al [21] a support
vector-based paraphrase recognizer is used which extracts
lexical, syntactic and semantic features on text passages. The
sentence-level paraphrase recognition system has been
modified by the author to handle the text passages. There are
2 different approaches that have been used:

In the first approach, the input and the suspicious passages
are split into sentences and it determines the closest
matching source sentence. An SVM classifier is used to label
the pairs.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1077

In the second approach, paraphrase recognition features are
extracted directly from the source and suspicious passage
and the features extracted are used to determine if the
suspicious passage is plagiarised from the source passage.
The evaluation measures considered here are Accuracy,
Precision, Recall, and F-measure. The system gave a good
performance in both passage level and sentence level
approach. It falls short in recognition of inputs having
greater lexical variation also in handling very similar input
phrases or passages.

The following paper by Matija Novak et. al [22] gives a
review of the source code detection in academia. According
to the paper, no similarity detection engine is powerful
enough to be able to detect all the plagiarised code. Using
text similarity detection can be useful at times to detect the
plagiarism in the source code though not entirely. The
author says, there should be more study on different
similarity detection engines on the same dataset. The tools
currently which are used for detection and stand out are
jPlag, MOSS, SIM, Sherlock, and Piggie. To improve the
accuracy of the detection one can, do pre-processing of the
data or clean the code from unnecessary parts. There are
many other tools like GATE and Gplag which haven’t been
compared more by the authors and should be the future
scope for research.

Plagiarism detection is a difficult task as different
programming languages could have different syntax and
they are not only found in academic works but also in
industry software codes. In the following paper by Mayank
Agrawal et. al [23], the author describes two types of
plagiarism techniques, textual and source code plagiarism.
There are different tools which are described in the paper
for both. The author has also explained about many other
papers which have used techniques like Natural Language
Processing (NLP), Machine Learning Technique, Running-
Karp-Rabin Greedy String-Tiling algorithm, Character N-
Grams, Data Mining, Latent Semantic Analysis (LSA) and
Greedy String-Tiling. A comparative analysis is performed on
the techniques, methods and the objectives and outcomes
have been listed. The literature tells that copying is a
dynamic process and is a danger to educational
organisations.

In the following paper proposed by author Ahmed Hamza
Osman et. al [24], it uses Semantic Role Labelling (SRL) and
Support Vector Machine (SVM) for predicting and detecting
plagiarised text passages. The algorithm analyses the text
based on semantic position for the text. Text pre-processing
is done on the input original text and the suspected text
which includes text segmentation, stemming process and
stop word removal.SRL procedure is then followed to find
and name terms in text documents and passages. Precision
and recall are the execution measures for the algorithms.
The dataset used by the authors is PAN-PC-10 dataset. The
proposed method is better than the other methods and has

better execution. The authors later plan on including an
integration of SRL-SVM with a translator method to remove
the limitation of the previous proposed method.

Mirza et al. [25] analysed a Black Box dataset, which contains
genuine student programming assignments (BlackBox is a
project that collects data from the users of BlueJ online
educational software), to check if the dataset was rich
enough to apply coding style metrics to detect plagiarism.
They considered random samples of 250 Java files each
downloaded from the dataset. The files were pre-processed
to remove white space and file headers.

They designed a small Java program which at first fetches
random samples from the dataset, as the dataset contains
duplicate files, only one file with the same ID is fetched out of
the many with same IDs, to prevent duplication. Then, the
number of lines and size of each source code file is
measured(counted). Followed by measurement of
complexity by counting the number of loops based on
common loop words such as for, while etc. Ultimately, they
are grouped into five subgroups based on the above features.

 It was found that two out of the five subgroups could be
ignored by any detection techniques (since they represent
incomplete and template files), while the rest were rich
enough for coding style metrics to be applied to detect
plagiarism.

Jitendra Yasaswi et al [26] uses deep learning and natural
language processing (NLP) to detect plagiarism. The authors
have used char-RNN for feature extraction with an attempt
to attain high accuracy. They have focused on statistical
language modelling by training the char-RNN model on
Linux Kernel codes. The LSTM (Long short-term memory)
units have been added in char-RNN so that the learn features
from C programs can be captured and used for comparison.
Overall, the char-RNN model is trained first, then it is fine-
tuned with some C programs which leads to obtaining
embeddings for programming assignments that are
submitted and use these embeddings (learn units) to detect
plagiarism. However, they have used sequence-prediction
which in fact can be directly applied on the different dataset
without the need to fine tune each problem-set.

This paper by Jitendra Yasaswi et.al [27] describes a method
which takes student’s submissions to programming
assignments as input and extracts the static features from
the intermediate representation of the program using the
MILEPOST GCC feature extraction plugin [28]. This plugin is
capable of extracting 65 features. This feature is mapped to
an n-dimensional space where n=55. The similarity between
two different submissions is calculated using the Euclidean
Distance formula and based on the similarity these
submissions are clustered together. The results are
consistent with the results obtained from MOSS on the same
dataset. Mostly, [27] performs better and five cases
illustrating this are described in the paper. The paper does

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1078

not identify any dynamic features and also does not consider
the case of partially plagiarised submissions.

Tahaei and Noelle [29] have presented an approach which
doesn’t require the potential plagiarism sources in order to
compare similarity, instead assumes an online system which
allows for submission of multiple solutions for a single
exercise, providing formative feedback with each
submission. It compares pairs of submissions by an
individual student, for similarity. They have used the ‘diff’
algorithm, which gives the minimum number of additions or
deletions needed to transform one file into another. This was
taken as a submission difference between two consecutive
submissions, a vector of n – 1 dimensionality is created from
the submission differences of each pair of consecutive
submissions, starting from the submission difference
between first and second submissions. Several features such
as number of submissions; average, maximum, minimum
and last differences were considered. For each examined
subset of features, logistic regression was performed,
identifying logistic sigmoid parameters which maximised
plagiarism classification accuracy over the training set. The
parameters were then used to calculate a plagiarism
probability score. The results were evaluated against data
collected from actual students enrolled in an undergraduate
computer programming class at a research university.
Though it couldn’t perfectly classify plagiarism cases, there
was strong correlation between these scores and actual
cases of plagiarism. However, this method would fail if a
student makes a single submission and also if the students
(who intend to plagiarise) are aware of the features based on
which plagiarism will be detected, as they will try to bypass
detection.

Norman Meuschke et al [30] have published the prototype
Hyplag which is able to detect strong textual plagiarism.
Their target reviewers were reviewers of such work such as
journal editors or PhD advisors. The Hyplag has the multi-
stage detection process where there is candidate retrieval,
detailed comparison and human inspection. They have taken
into consideration mathematical similarity, image similarity,
citation similarity and text similarity. The Hyplag prototype
consists of the backend server which is realised in Java using
the Spring Boot framework and a web-based frontend
coupled via REST web service interface. They demonstrated
their work by showing results overview as well as a detailed
comparison view. The authors were able to demonstrate the
hybrid analysis of the retracted source having the content
features and bring out interactive visualisations that would
help the reviewers in assessing the legitimacy of documents.

Budiman and Karnalim [31] have proposed an approach to
draw hints from seating position and source code creation
process to detect plagiarism as well as the plagiarists with an
accuracy of at least 80.87% and 76.88% respectively. The
approach consists of two modules, they are: Student module:
This module is installed as a plug-in in the student’s

programming workspace. It frequently captures the source
code snapshots which are compressed using Huffman coding
algorithm for space efficiency. The capturing period and
seating position ID are set before module installation. After
assessment completion, all snapshots are merged as an
archive and sent to the examiner module. Examiner module:
It filters code pairs based on seating position which reduces
pairs to be investigated by 80.87% and suggests suspected
code pairs and plagiarists based on snapshots. In the future,
they plan to use versioning systems such as GitHub to record
snapshots and implement advanced similarity algorithms.

Siddharth Tata et al [32] have worked on the extrinsic
plagiarism detection where the assignments and projects are
copied from external sources like the Internet or fellow
students. The authors have focused on generating n-grams
and using the Karp-Rabin algorithm which generates the
hash values. The winnowing algorithm is used to select the
specific hash values and uses Jaccard similarity on the
fingerprints generated from the passages to detect the
plagiarism. The authors are yet to work on the content
available on the Internet. They have currently worked on
text files and would extend working on the programs.

This paper by Huang Quibo et al [33]. describes a method to
extract features from submitted programs and uses a
combination of Random Forest algorithm and Gradient
Boosting Decision Tree. The authors propose two
algorithms. Algorithm 1: A Similarity Degree Threshold
(SRT) is set along with a Top limit. If the similarity (sim) of
the programs is less than SRT then the program is not
plagiarised. If sim is greater than Top limit then the program
is suspected to be plagiarised and the student is asked to
confirm if they want to submit the assignment. If they
confirm then the program is sent for further review to the
course instructor. If they decline, they system assumes that
the program was plagiarised. If the sim value is between SRT
and Top limit then some more features need to be extracted
and the program is evaluated using the Random Forest and
Gradient Boost Decision tree models to calculate plagiarism
suspect level. Algorithm 2: The authors constructed a
Random Forest containing multiple decision trees using
entropy as criteria for classification and a Gradient boosting
decision tree where each tree is a regression tree.
Experiments show that algorithm 2 achieved a greater
accuracy compared to algorithm 1 and the accuracy rate can
reach up to 95.9%.

The following paper by K.K. Chaturvedi et. al[34] analyses
and scrutinises the dataset, techniques and tools used to
mine the software engineering data. The authors have
basically categorised different tools used in Mining Software
Repositories. The categorization of the tools is done based
on the ones which are newly developed, traditional,
prototype implemented and scripts. In most of the papers,
studies by the author data retrieval, data pre-processing and
post processing are most widely used and are important. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1079

tools which are used most of the time depend on the
availability and most of them use a combination of many
tools for the task. The authors further plan to study functions
of all the tools used in Mining software Repositories and
their applications which can help researchers in getting tools
for their applications and for more research.

Mining repository is one of the techniques which is
employed in the project and the following paper by Thai-Bao
Do et. al [35] highlights more on the same. The paper
proposes a method to detect forks and duplicates in the
repository and also checks any correlation between the
forking patterns, software health, risks and success
indicators. There are more and more data which are being
pushed into version control systems like GitHub, GitLab,
Bitbucket, PyPI for Python and Debian for open-source
software and the paper talks about the method which can be
used to extract the metadata from the repositories hosted on
platforms like GitHub, GitLab and Bitbucket. The study is
done on Software Heritage dataset which consists of more
than three million software repositories from many version
control systems. The data extracted from the dataset is
stored which can be used for future investigations the
approach used by the authors work well and shows possible
correlation between the metrics. But there is no concrete
conclusion on the relationship which is also a part of their
future works.

Nishesh Awale et al [36] says that the accuracy of detecting
plagiarism is high by using the xgboost model with Support
Vector Machine (SVM). The author says that they focused on
the machine learning technique by working on feature-based
extraction done by recurrent neural networks. The xgboost
algorithm is trained with the features extracted and the
results can be used with Support Vector Machine (SVM) to
detect plagiarism. With the advantage of high accuracy, they
are still working on incorporating compiler-based features.

Michael Duracik et al [37] has published the paper to detect
the fraudulent activity done by the students in submitting
computer programs. The author researched tools like JPlag,
MOSS, Plaggie and designed an anti-plagiarism system based
on that. The input source code is processed with abstract
syntax tree (AST) and vectorization is done underlying the
concepts of Deckard Algorithm. They have designed an
algorithm for vectorization to add multiple vectors. Post this
the vectors are sent for clustering, where apart from
incremental algorithm they have also optimised the K-means
algorithm. The plagiarism can be detected once the merging
between the matching vectors takes place. For the best
efficiency this method is compared with MOSS and JPlag
systems and the results are noted. They faced few problems
in bringing out the normalisation of inputs and bringing out
an efficient algorithm for annotation of non-significant code.

P Ashwin et al [38] says that for plagiarism detection to be
successful, one must use machine learning algorithms. The

authors were specific with the software tools and algorithms
they used for developing the plagiarism detection tool. They
have used Anaconda Navigator cloud, Django and node.js for
creating a local environment for hosting online assessments
and contests. The dataset is obtained from the user and is
used for testing and for training they use from the inbuilt
libraries. They worked on normalisation using Natural
Language Processing (NLP) and tokenization for the pre-
processing. They focused on the cosine similarity and N-
gram algorithms for detecting plagiarism. However, they
were not able to scrap the data from the web content and are
working on it.

Hussain K Chowdhury and Dhrubha K Bhattacharyya [39]
have presented a taxonomy of various plagiarism forms,
tools and various machine learning methods employed to
detect the same. The authors have identified various types of
plagiarism, bringing out clarity to extreme extents in which
the former can be achieved. They also give us a detailed
explanation on various types of plagiarism detection
methods and a wide range of tools used. With clear
diagrams, their survey brings out the clarity on its methods
and tools to identify plagiarism. They have also highlighted
the issues. They have identified all the major requirements of
plagiarism and can help a developer to develop a code aptly
by referring and identifying all the previously used methods
and aim to improvise the accuracy.

4. FLOW DIAGRAM

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1080

5. TABLE

Table -1: Surveyed Papers

Author

Model description
Algorith
m/featu
res

Advantages
Disadvanta
ges

Duric and
Gasevic

RKR-GST
algorith
m and
Winnowi
ng
algorith
m

Promising
results in
comparison
with JPlag

Slow, due to
the usage of
several
similarity
measureme
nt algorithm

Bandara et
al.

Naive
Bayes, K
nearest
neighbo
ur
algorith
ms

Accuracy
achieved was
86.64%.

Authors
plan to
improve the
accuracy

Weijun
Chen et al.

Six
Halstead’
s
software
metrics,
Longest
Common
Subsequ
ence
(LCS)
Algorith
m

Plagiarized
assignments
received high
similarity
scores (above
0.7) using this
method

The results
are
presented in
an excel
sheet that is
difficult to
understand

Zhang et al.

LoPD,
detectin
g
dissimila
rity

Resilience
against most
types of
obfuscation
techniques

Constraint
solver may
lead to false
positives

Giovanni
Acampora
and
Georgina
Cosma

Fuzzy C-
means
clusterin
g,
ANFIS
algorith
m

Overcame
problems of
language
dependency,
misdetection
due to code
re-shuffling

Has not
been tested
on
languages
other than
Java

A. Chitra et.
al

SVM
classifier

Good
performance
in both
passage level
and sentence
level
approach

Falls short
in
recognition
of inputs
having
greater
lexical
variation
and in
handling
very similar

Author

Model description
Algorith
m/featu
res

Advantages
Disadvanta
ges

input
phrases or
passages.

Ahmed
Hamza
Osman et.
al

Semantic
Role
Labelling
(SRL)
and
Support
Vector
Machine
(SVM)

Consequences
of T-Tests
found the
advantages of
proposed
strategy
examined in
the paper
were
measurably
huge

The time
efficiency is
O(n^2)
cannot
detect the
cross-
language
semantic
plagiarism

Jitendra
Yasaswi et
al

Char-
RNN,
 LSTM
(Long
short-
term
memory
) units

Can be
directly
applied on
different
datasets, no
need to fine
tune for each
dataset.

Jitendra
Yasaswi
et.al

Static
features
obtained
using
MILEPOS
T GCC
feature
extractio
n plugin,
Euclidea
n
Distance

Performs
better
compared to
MOSS

Does not
identify any
dynamic
features,
does not
consider the
case of
partially
plagiarised
submissions

Tahaei and
Noelle

‘diff’
algorith
m
 logistic
regressio
n,
logistic
sigmoid
paramet
ers

Online
system,
allows for
submission of
multiple
solutions for a
single
exercise

Method fails
if a student
makes only
a single
submission

Norman
Meuschke
et al

Relative
distance
measure,
Discrete
Cosine
Transfor
m
(DCT),Bi
bliograp

Online
system,
Considers
mathematical
similarity,
image
similarity,
citation
similarity and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1081

Author

Model description
Algorith
m/featu
res

Advantages
Disadvanta
ges

hic
Coupling
(BC),Lon
gest
Common
Citation
Sequenc
e
(LCCS),G
reedy
Citation
Tiling
(GCT),Cit
ation
Chunkin
g
(CC),full
string
matchin
g, the
Encoplot
algorith
m.

text similarity

Budiman
and
Karnalim

Huffman
coding
algorith
m

Accuracy of at
least 80.87%
and 76.88%,
Considers
seating
position and
source code
creation
process

Does not
make use of
versioning
systems

Siddharth
Tata et al

Winnowi
ng
algorith
m,
Karp-
Rabin
algorith
m,
Jaccard
similarit
y

Works on text
files

Yet to work
on the
content
available on
the Internet,
Yet to
extend the
system to
work on
programs

Huang
Quibo et al

Combina
tion of
Random
Forest
algorith
m and
Gradient
Boosting
Decision
Tree,

Accuracy rate
can reach up
to 95.9%

Author

Model description
Algorith
m/featu
res

Advantages
Disadvanta
ges

Similarit
y Degree
Threshol
d(SRT)

Nishesh
Awale et al.

XGBoost
model
with
Support
Vector
Machine
(SVM)

High accuracy

Yet to work
on
compiler-
based
features

Michael
Duracik et
al.

Deckard
algorith
m,
Abstract
Syntax
Tree, K-
means
algorith
m

Better results
than MOSS
and JPlag

Issues
regarding
normalizati
on of inputs
and with
annotation
of non-
significant
code

P Ashwin et
al.

Cosine
similarit
y and N-
gram
algorith
ms

Promising
results

Yet to work
on web
scraping

6. CONCLUSIONS

Plagiarism is a ubiquitous problem faced by practitioners of
different fields like academia, journalism, literature, art and
so on for decades. The field has been researched intensively
since the 1970’s. With the advances in technology and the
pervasiveness of the world wide web, everyone has all the
information they need at their fingertips. Especially in
academia, this poses a problem to fair evaluation of the
students and also inhibits the student’s learning process.

While many efforts were concentrated towards detecting
textual plagiarism, significant strides have been made in the
field of source code plagiarism detection. We can observe the
leap from manual plagiarism checking to algorithm-based,
automatic plagiarism checking made possible by
advancements in technology. We can also observe the shift
from using local client applications to web-based
applications and now to cloud-based applications, making
plagiarism detection systems easy to use and available
everywhere. The detection methods started from simple
feature-based approach, structure-based approach, then
moved on to hybrid approaches that used similarity
measurement and string-matching algorithms as students
started to evade these systems. Recent approaches using

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1082

Machine Learning and Deep Learning algorithms and
techniques have shown some promising results to improve
the accuracy and automating the process of plagiarism
detection.

REFERENCES

[1] Karl J Ottenstein, “An algorithmic approach to the
detection and prevention of plagiarism”, ACM SIGCSE
Bulletin, Volume 8, Issue 4, Dec. 1976, pp 30–41.

[2] Joseph L.F. De Kerf, “APL and Halstead's theory of
software metrics”, APL '81: Proceedings of the international
conference on APL, October 1981, Pages 89–93.

[3] John L Donaldson, Ann Marie Lancaster and Paula H
Sposato, “A plagiarism detection system”, SIGCSE '81:
Proceedings of the twelfth SIGCSE technical symposium on
Computer science education, February 1981, Pages 21–25.

[4] Alan Parker and James O. Hamblen, “Computer
Algorithms for Plagiarism Detection”, IEEE Transactions On
Education, Vol. 32, No. 2. May 1989.

[5] Michael J Wise, “YAP3: improved detection of
similarities in computer program and other texts”, SIGCSE
'96: Proceedings of the twenty-seventh SIGCSE technical
symposium on Computer science education, March 1996,
Pages 130–134.

[6] Saul Schleimer, Daniel S. Wilkerson and Alex Aiken,
“Winnowing: Local Algorithms for Document
Fingerprinting”, SIGMOD 2003, June 9-12, 2003, San Diego,
CA. Copyright 2003 ACM 1-58113-634-X/03/06.

[7] Richard M. Karp and Michael O. Rabin, “Efficient
randomized pattern-matching algorithms”, Published in: IBM
Journal of Research and Development (Volume: 31, Issue: 2,
March 1987), Page(s): 249 - 260.

[8] Lutz Prechelt and Guido Malpohl, “Finding
Plagiarisms among a Set of Programs with JPlag”, March
2003, Journal Of Universal Computer Science 8(11).

[9] Sven Meyer zu Eissen and Benno Stein, “Intrinsic
Plagiarism Detection”, M. Lalmas et al. (Eds.): ECIR 2006,
LNCS 3936, pp. 565–569, 2006.

[10] Liang Zhang, Yue-ting Zhuang and Zhen-ming Yuan,
“A Program Plagiarism Detection Model Based on
Information Distance and Clustering”, Published in: The
2007 International Conference on Intelligent Pervasive
Computing (IPC 2007), Date Added to IEEE Xplore: 22
January 2008,Print ISBN:978-0-7695-3006-2.

[11] Cynthia Kustanto and Inggriani Liem, “Automatic
Source Code Plagiarism Detection”, 2009 10th ACIS
International Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed

Computing, Date Added to IEEE Xplore: 13 October 2009,
Print ISBN:978-0-7695-3642-2.

[12] Dejan Sraka and Branko Kauþiþ, “Source Code
Plagiarism”, Proceedings of the ITI 2009 31st Int. Conf. on
Information Technology Interfaces, June 22-25, 2009, Cavtat,
Croatia.

[13] Martin Potthast, Benno Stein, Alberto Barrón-
Cedeño and Paolo Rosso, “An Evaluation Framework for
Plagiarism Detection”, Coling 2010: Poster Volume, pages
997–1005, Beijing, August 2010.

[14] Zoran Đurić and Dragan Gašević, “A Source Code
Similarity System for Plagiarism Detection”, The Computer
Journal, Volume 56, Issue 1, January 2013, Pages 70–86,
https://doi.org/10.1093/comjnl/bxs018, Published: 13
March 2012.

[15] Upul Bandara and Gamini Wijayrathna, “Detection of
Source Code Plagiarism Using Machine Learning Approach”,
International Journal of Computer Theory and Engineering,
Vol. 4, No. 5, October 2012.

[16] Prasanth. S,Rajshree. R and Saravana Balaji B, “A
Survey on Plagiarism Detection”, International Journal of
Computer Applications (0975 – 8887) , Volume 86 – No 19,
January 2014.

[17] Weijun Chen, Chenling Duan, Li Zheng and Youjian
Zhao, “A Hybrid Method for Detecting Source-code
Plagiarism in Computer Programming Courses”, The
European Conference on Education 2013, Official Conference
Proceedings 2013.

[18] Fangfang Zhang,Dinghao Wu,Peng Liu and Sencun
Zhu, “Program Logic Based Software Plagiarism Detection”,
ISSRE '14: Proceedings of the 2014 IEEE 25th International
Symposium on Software Reliability Engineering, November
2014, Pages 66–77.

[19] Giovanni Acampora and Georgina Cosma, “A Fuzzy-
based Approach to Programming Language Independent
Source-Code Plagiarism Detection”, Published in: 2015 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), 30
November 2015.

[20] J.-S.R. Jang, “Input selection for ANFIS learning”,
Proceedings of IEEE 5th International Fuzzy Systems, 06
August 2002, 0-7803-3645-3,New Orleans, LA, USA.

[21] A. Chitra and Anupriya Rajkumar, “Plagiarism
Detection Using Machine Learning-Based Paraphrase
Recognizer”, From the journal Journal of Intelligent Systems,
https://doi.org/10.1515/jisys-2014-0146.

[22] Matija Novak, “Review of source-code plagiarism
detection in academia”, 2016 39th International Convention

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1083

on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 28 July 2016,978-953-233-
086-1,Opatija, Croatia,DOI:10.1109/MIPRO.2016.7522248.

[23] Mayank Agrawal and Dilip Kumar Sharma, “A state
of art on source code plagiarism detection”, 2016 2nd
International Conference on Next Generation Computing
Technologies (NGCT), 16 March 2017, 978-1-5090-3257-0,
Dehradun, India, DOI:10.1109/NGCT.2016.7877421.

[24] Ahmed Hamza Osman and Omar M. Barukab, “SVM
significant role selection method for improving semantic text
plagiarism detection”, International Journal of Advanced and
Applied Sciences, 4(8) 2017, Pages: 112-122.

[25] Olfat M. Mirza, Mike Joy and Georgina Cosma, “Style
Analysis for Source Code Plagiarism Detection — An
Analysis of a Dataset of Student Coursework”, 2017 IEEE
17th International Conference on Advanced Learning
Technologies (ICALT), 08 August 2017, 978-1-5386-3870-5,
Timișoara, Romania,DOI: 10.1109/ICALT.2017.117.

[26] Jitendra Yasaswi, Suresh Purini and C. V. Jawahar,
“Plagiarism Detection in Programming Assignments Using
Deep Features”, 2017 4th IAPR Asian Conference on Pattern
Recognition, 17 December 2018, 978-1-5386-3354-0,
Nanjing, China, DOI:10.1109/ACPR.2017.146.

[27] Jitendra Yasaswi, Sri Kailash,Anil Chilupuri, Suresh
Purini and C. V. Jawahar, “Unsupervised Learning Based
Approach for Plagiarism Detection in Programming
Assignments”, ISEC '17: Proceedings of the 10th Innovations
in Software Engineering Conference, February 2017, Pages
117–121,DOI:10.1145/3021460.3021473.

[28] Reference publications about cTuning.org long-term
vision: GCC Summit' 09, ACM TACO'10 journal and IJPP'11
journal,
https://ctuning.org/wiki/index.php/CTools:MilepostGCC.

[29] Narjes Tahaei and David C. Noelle, “Automated
Plagiarism Detection for Computer Programming Exercises
Based on Patterns of Resubmission”, ICER '18: Proceedings
of the 2018 ACM Conference on International Computing
Education Research,August 2018, Pages 178–186,
DOI:10.1145/3230977.3231006.

[30] Norman Meuschke, Vincent Stange, Moritz Schubotz
and Bela Gipp, “HyPlag: A Hybrid Approach to Academic
Plagiarism Detection”, SIGIR '18: The 41st International ACM
SIGIR Conference on Research & Development in
Information Retrieval, June 2018, Pages 1321–1324,
DOI:10.1145/3209978.3210177.

[31] Ariel Elbert Budiman and Oscar Karnalim,
“Automated Hints Generation for Investigating Source Code
Plagiarism and Identifying The Culprits on In-Class
Individual Programming Assessment”, Computers 2019,

8(1), 11, DOI:10.3390/computers8010011,Published: 2
February 2019

[32] Siddharth Tata, Suguri Charan Kumar and
Varampati Reddy Kumar, “Extrinsic Plagiarism Detection
Using Fingerprinting”,International Journal of Computer
Science And Technology (IJCST) Vol. 10, Issue 4, Oct - Dec
2019.

[33] Huang Qiubo, Tang Jingdong and Fang Guozheng,
“Research on Code Plagiarism Detection Model Based on
Random Forest and Gradient Boosting Decision Tree”,
ICDMML 2019: Proceedings of the 2019 International
Conference on Data Mining and Machine Learning, April
2019, Pages 97–102, DOI:10.1145/3335656.3335692.

[34] K.K. Chaturvedi, V.B. Sing and Prashast Singh, “Tools
in Mining Software Repositories”, 2013 13th International
Conference on Computational Science and Its
Applications,12 December 2013, 978-0-7695-5045-9, Ho Chi
Minh City, Vietnam,DOI: 10.1109/ICCSA.2013.22.

[35] Thai-Bao Do, Huu-Nghia H. Nguyen, Bao-Linh L. Mai
and Vu Nguyen, “Mining and Creating a Software
Repositories Dataset”, 2020 7th NAFOSTED Conference on
Information and Computer Science (NICS), 02 February
2021, 978-0-7381-0553-6, Ho Chi Minh City, Vietnam, DOI:
10.1109/NICS51282.2020.9335894.

[36] Nishesh Awale, Mitesh Pandey, Anish Dulal and
Bibek Timsina, “Plagiarism Detection in Programming
Assignments using Machine Learning”, Journal of Artificial
Intelligence and Capsule Networks
(2020),21.07.2020,Vol.02/ No. 03, Pages: 177-184,
DOI:10.36548/jaicn.2020.3.005.

[37] Michal Duracik , Patrik Hrkut , Emil Krsak, (Member,
IEEE) and Stefan Toth, “Abstract Syntax Tree Based Source
Code AntiPlagiarism System for Large Projects Set”, October
6, 2020, Volume 8, 2020,Digital Object
Identifier:10.1109/ACCESS.2020.3026422.

[38] P.Ashwin, M.B.Boominathan and G.Suresh,
“Plagiarism Detection Tool for Coding Platform using
Machine Learning”, International Research Journal of
Engineering and Technology (IRJET), Volume: 08 Issue: 05 |
May 2021, Tamil Nadu, India.

[39] Hussain A Chowdhury and Dhruba K Bhattacharyya,
“Plagiarism: Taxonomy, Tools and Detection
Techniques”,Paper of the 19th National Convention on
Knowledge, Library and Information Networking (NACLIN
2016) held at Tezpur University, Assam, India from October
26-28, 2016, ISBN: 978-93-82735-08-3.

