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Abstract - The Internet of Things is composed of objects 
with distinct identities that communicate with one another 
via the internet. This paved the door for a variety of 
applications, including home automation, which improves 
human comfort and security. Security is considered as one of 
the most important topics that must be taken into 
consideration. In this paper an application layer security is 
provided to a smart home system, and that is a set of sensors 
communicating with the cloud using a constrained 
application protocol (CoAP). These sensors protected by 
using two protocols, the first one is Object Security for 
Constrained RESTful Environments (OSCORE) protocol 
which provides authenticated encryption for the payload 
data, while the second one is Ephemeral Diffie-Hellman Over 
COSE (EDHOC) protocol which provides the symmetric 
session keys required for OSCORE. We simulate the CoAP 
protocol without security using the Contiki-NG operating 
system, then we simulate the EDHOC with OSCORE protocols 
over CoAP. A comparison between the two experiments was 
made in terms of memory footprint and energy consumption 
since these two factors are the most concerning factors in 
constrained devices in any IoT environment. The results 
showed that the current implementation gives small 
overhead compared to other security solutions. 

Key Words: Smart Home, Security, CoAP, OSCORE, 
Contiki-NG, Cooja, EDHOC. 

1.INTRODUCTION 

In recent years, Internet has grown rapidly and 
changed human's life by providing better connectivity and 
communication. Internet technology can be extended to 
connect objects that are used in day-to-day life. This 
expansion of internet services is called Internet of Things 
(IOT)[1]. The term "smart home" refers to a subset of the 
Internet of Things (IoT) paradigm that combines home 
automation and security. Homeowners can remotely 
monitor and control devices in a normal household by 
connecting them to the Internet. From timer-controlled 
lamps that can be turned off from anywhere to smart 
thermostats that can control the temperature in a home 
while also producing detailed energy usage information. 
The widespread availability of low-cost smartphones, 
microcontrollers, and other open-source hardware, as well 
as the growing use of cloud services, has enabled the 
development of low-cost smart home security systems. 
[2]. 

However, there exist a number of issues with IoT devices, 
two of them are security and restrictions on resource 
consumption. Due to the low-resources nature of such 
devices, complex security protocols are often not viable, 
and that results in a vast amount of easily hacked targets. 
Also using old, unencrypted protocols for communication 
can be a vector of attack as well, leaving the traffic open to 
examination and manipulation. This is the area we focused 
on, by implementing a new standard designed to protect a 
lightweight application protocol commonly used for 
constrained devices in IoT networks. One way to approach 
this problem is to use protocols specifically designed for 
the use case, with energy efficiency in mind while still 
guaranteeing security [3]. 

      CoAP [4] is a customized web transfer protocol 
designed for usage with confined nodes and constrained 
networks (e.g., low-power, lossy). Datagram Transport 
Layer Security (DTLS) [5] is the only way to enable secure 
communication for CoAP, according to the CoAP definition. 
DTLS, in particular, creates a secure channel at the 
transport layer across unreliable datagram protocols like 
UDP, and provides hop-by-hop security by encrypting all 
CoAP communications. Most researches about DTLS 
protocol show that using DTLS as a security protocol 
increase the burden on the objects. Thus, it is important to 
optimize the current implementation of this protocol to 
have an efficient and reliable IoT devices, or we can search 
for alternative protocols to achieve security [6]. 

Building on CoAP protocol, OSCORE protocol offers an 
end-to-end encrypted security layer while staying 
compatible with nodes, such as proxies [7]. However, 
OSCORE has only been standardized very recently (July 
2019) and thus, unsurprisingly, there didn’t exist 
implementations on all the operating systems that it uses 
in IoT objects. Closely related to OSCORE, there exists 
another new protocol called EDHOC [8]. It is intended to 
complement OSCORE and extend it with the functionality 
to allow secure key exchanges. 
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2.THE IMPORTANCE OF THE RESEARCH AND ITS 
OBJECTIVES  

 The importance of the research comes through 
implementing a new standard designed to protect a 
lightweight application protocol (CoAP) commonly used 
for constrained devices in IoT Operating system (Contiki-
NG). This protocol is globally used in a lot of IoT 
applications. In addition, this is the first implementation of 
the EDHOC protocol with the OSCORE protocol built in 
Contiki-NG OS. 

 This research aims to provide application layer security 
to the smart home system designed in cooja simulator in 
Contiki-NG OS and study the impact of using this type of 
security on the constrained objects (light bulbs, 
thermometer, air conditioner ...) in terms of memory 
footprint and power consumption. 

3. RELATED WORK 

     Different techniques were done in research to achieve 
security on IOT based Smart Homes. In [9] a brief 
overview of using voice assistants like Amazon Alexa, 
Google Home, Apple Siri, or Microsoft Cortana to detect 
voice commands from a person with speaking disabilities 
in a much more natural way to control ordinary electrical 
appliances, and analysing the method of security. While 
the authors of [10] try to identify the best hash function 
that can be introduced to the CoAP protocol to improve 
security without compromising efficiency. The CoAP 
protocol takes into account three different hash functions: 
SHA-1, SHA224, and SHA256. The upgraded protocol was 
tested on a smart home application using the Contiki OS 
simulation tool, and the findings reveal that SHA 224 is the 
optimum hash algorithm in terms of performance. In [11], 
a blockchain-based method to data privacy and security in 
a smart home is offered. To provide a safe foundation for 
IoT devices in smart home systems, they propose an 
authentication strategy that integrates attribute-based 
access control with smart contracts and edge computing. 

On the other hand, the OSCORE protocol was achieved 
with the EDHOC protocol in different programming 
languages and systems. In paper [12] the researchers 
presented the first implementation of the EDHOC and 
OSCORE protocols using the Rust programming language, 
as they showed applicability in a real client and resource 
server scenario on restricted STM32 devices. While in 
[13], they implement the two protocols designed for 
embedded devices on GitLab. The new libraries, which 
implement the mentioned protocols, were written and 
tested with the assistance of the Continuous Integration 
pipeline. In [14] describes the design of the uOSCORE and 
uEDHOC libraries for ordinary microcontrollers, as well as 
the uOSCORE-TEE and uEDHOC-TEE libraries for 
microcontrollers that have a Trusted Execution 

Environment (TEE), such as ARM TrustZone-M 
microcontrollers. 

       To the best of our knowledge, no prior studies have 
thoroughly secured smart home systems using application 
layer OSCORE protocol, or evaluated OSCORE with EDHOC 
together in Contiki-NG OS in terms of device memory 
footprint and energy consumption. 

4. Technical background 

This part introduces the background principles that will 
be discussed throughout the article. 

4.1. The Constrained Application Protocol: 

CoAP is a RESTful application layer protocol especially 
designed for the IoT domain. It takes into account two 
sorts of devices: clients and servers, both of which 
communicate via requests and responses. Sensors and 
actuators, for example, are stored on the servers. Clients 
can use the PUT, GET, POST, and DELETE methods to 
access those resources. A Uniform Resource Identifier 
(URI) identifies each resource. Each CoAP packet begins 
with a fixed 4-byte header carrying the method type (PUT, 
GET, POST, DELETE) or a response code, among other 
information. The header is followed by an optional token 
used to correlate requests and responses. The token is 
followed by optional options that contain additional 
parameters for the requests/responses. These are 
followed by an optional payload, prefixed with the payload 
[4]. 

4.2. Object Security for Constrained RESTful 
Environments: 

OSCORE [7] uses CBOR Object Signing and 
Encryption (COSE) [15] to provide application-layer 
protection for the CoAP protocol. CoAP endpoints can use 
OSCORE to create an end-to-end security system. As a 
result, pre-shared keys or keys created using a key 
exchange protocol such as EDHOC may be used. 
Converting CoAP or HTTP messages to OSCORE messages 
then allows for secure communication. HTTP messages are 
translated to CoAP messages initially in this procedure. 
The CoAP message is protected using COSE encryption in 
order to construct an OSCORE message. The OSCORE 
parameters as well as the message fields of the COSE-
Encrypt object are then included in the encrypted 
message's header fields. OSCORE is used to establish a 
security context in the implementation employed in this 
research. 

Security Context: A security context must be established 
before both the sender and the receiver can encrypt and 
decrypt communications exchanged. This security context 
corresponds to a set of parameters that are required for 
cryptographic operations in OSCORE. The security context 
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consists of three sub contexts: the "common context", the 
"sender context" and the "recipient context" as shown in 
figure 1. 

 

Fig -1: Matching of Contexts, from [7] 

       The common context is derived first, then is used 
together with additional data in order to derive the sender 
and recipient context. Two endpoints that want to 
communicate over an OSCORE secured channel derive 
each a sender and a receiver context. In order to receive 
asymmetric keys, the sender and receiver IDs are used in 
reverse so that the sender context of the first endpoint is 
matching the receiver context of the second endpoint and 
vice versa [7]. 

4.3. Ephemeral Diffie-Hellman Over COSE: 

EDHOC [8] is a Diffie-Hellman key exchange 
protocol for constructing a shared secret based on an 
ephemeral key, which provides perfect forward secrecy, 
identity protection, and mutual authentication. The 
protocol, which implements the Elliptic Curve Diffie–
Hellman (ECDH) algorithm, is detailed in [8] as a work-in-
progress IETF draft recently endorsed by the IETF LAKE 
Working Group. In this protocol, COSE [15], CBOR [16], 
and CoAP [4] are also used for cryptography, encoding, 
and transport. 

For key generation and security parameter 
negotiation, EDHOC employs a three-message protocol. 
The parties exchanging messages are the initiator (I) and 
responder (R). For each session, they create a new 
ephemeral ECDH key pair, exchange the public part of 
their ECDH keys, calculate the shared secret, and generate 
symmetric application keys. To authenticate 
communications, raw public keys (RPK) with signature 
keys or static ECDH keys, as well as public key certificates, 
can be utilized. 

5. EXPERIMNET AND RESULTS 

 We simulate our experiment on Contiki-NG OS [17]. 
which is an open-source operating system for IoT, it 
connects tiny low-power, low-cost microcontrollers to the 
Internet. Contiki-NG OS provides low-consumption 
Internet communication and supports many low-power 
wireless standards. We used the Cooja simulator provided 
by Contiki. It's a network simulator that allows developers 
to test their apps on completely simulated devices before 
deploying them to real hardware. 

 Our work in this paper is divided into three parts. First, 
we design a smart home system on Contiki-NG OS. Second, 
we add application layer security to the proposed system 
using OSCORE and EDHOC protocols. Third, we evaluate 
the impact of applying security to the nodes in terms of 
energy consumption and memory footprint in both plain 
scenarios without security on one hand, and with applying 
security on the other hand. 

5.1. Designing the smart home system: 

 For the real-time simulation, the sensor nodes (motes) 
are implemented in Contiki-NG OS and run in the Cooja 
simulator as shown in Figure 2, which provides the set of 
sensors, and a border router (BR).  

 

Fig -2: the network simulation of the smart home 

 On the simulator, each node has TX range of 50m and 
INT range of 100m where TX range means that the 
transmitted packet can be received easily by any node 
which is inside of the range while INT range is the range 
where the transmission of packets can be heard but cannot 
receive the transmitted packet. The sensor nodes are 
actually the end devices which only send data to its 
neighbor sensors and BR. As shown in Table 1 there are 6 
types of smart devices emulated in the smart home as 12 
cooja motes distributed in the network. 

Table -1: Cooja motes descriptions 

Mote 
number 

Mote role 

1 Border Router 

2,3,4 Lightbulb 
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5,6,7 Motion sensor 

8,9,10 Thermometer 
11 Heater 

12 Air Conditionar 

 A border router is used to connect a regular IP with the 
RPL 6LoWPAN network. In the Contiki–Cooja simulation 
environment, a network's border router is located at the 
network's edge. The BR is also working as a gateway to 
connect two different networks. In our simulation we 
should write a command line, for starting connection 
between BR and the cloud as shown in Figure 3, this 
command line is: 

make TARGET=cooja connect-router-cooja 

 

Fig -3: Command line for starting connection between BR 
and cloud 

 After starting the simulation each node follows some 
steps to get connected with each other. (From Figure 4) at 
the first step, a set of custom lightweight networking 
protocol rime stack starts. When one node comes to the 
stack it automatically gets an abstract address. On the 
second step, the node gets a mac address and is assigned 
with a node id. After that, the radio channel and channel 
band were set. The values are the same for all nodes of the 
network. Next, the node is assigned with a tentative IPv6 
address and at last the node starts transmitting or 
receiving data. 

 

Fig -4: Mote output 

 These sensor nodes are able to interface with a cloud 
application, which has A CoAP server that registers the 
smart nodes and starts monitoring them through the CoAP 
observing. Also, there is a command line interface (CLI) 
that the user can exploit to send request to each node of the 
network. As shown in figure 5, the cloud shows the 11-
motes available in a smart home. 

 

Fig -5: Command line for the HomeIoT-Cloud 

5.2. Adding application layer security to the proposed 
smart home system: 

We use the OSCORE version presented in the 
research study [18], which included an open-source 
implementation of the OSCORE protocol found on github 
[19]. In this implementation, there is no algorithm or 
protocol used to exchange keys between the client and the 
server. The Master Secret and Master Salt are manually 
placed in the code, in addition to the Sender ID and 
Receiver ID from the client side whose values are set 
opposite to the Sender ID and the Receiver ID of the server 
side.  
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On the other hand, we implement EDHOC protocol to 
generate keys and exchange them between the client and 
the server to start creating the OSCORE security context. 
EDHOC protocol generates a Master Secret, Master Salt, 
Sender ID, and Recipient ID for both the client and server. 
The Master Secret and Master Salt are shared by both 
parties, while the Sender ID and Recipient ID are placed 
inversely between the client and server. This setting is 
used in OSCORE to derive content encryption keys and 
decryption keys that are then used to encrypt and decrypt 
message traffic between the client and the server. In this 
implementation, CoAP is used for transport [4], COSE for 
encryption [15], and CBOR for encoding [16]. 

5.3. Result Analysis: 

Our simulation's main purpose is to simulate the 
CoAP protocol without security and then simulating the 
EDHOC with OSCORE protocol over CoAP. Comparing the 
two experiments in terms of memory footprint and energy 
consumption, because these two characteristics are the 
most concerning in restricted devices. 

5.3.1 Energy consumption: 

We use the Energest library [20] to measure energy 
consumption. Contiki-NG includes the Energest module 
which can be used to implement lightweight, software-
based energy estimation approaches for resource-
constrained IoT devices. The Energest module keeps track 
of how much time a system has spent in different stages. 
The researcher can estimate the system's energy usage by 
combining this information with the hardware power 
consumption model. We categorize energy consumption 
into four categories: 

 tx - the number of ticks the radio was in transmit 
mode (ENERGEST_TYPE_TRANSMIT) 

 rx - the number of ticks the radio was in receive 
mode (ENERGEST_TYPE_LISTEN) 

 cpu - the number of ticks in active mode for the 
CPU (ENERGEST TYPE CPU) 

 cpu idle - the amount of ticks in which the CPU has 
been idle (ENERGEST TYPE LPM) 

 Tx and rx, as well as cpu and idle, are mutually 
exclusive; the system can never be in both modes at the 
same time. Other combinations are possible, for example, it 
might be in cpu and tx at the same time. The overall uptime 
of the system is the sum of cpu and idle. The RTIMER ARCH 
SECOND constant defines the duration of a timer tick, 
which is platform-dependent. 

Simple-energest is a system service included with Contiki-
NG. We add this line to every sensor's makefile to activate 
the simple-energest service: 

MODULES += os/services/simple-energest 

Once the Simple Energest service is enabled, it will print a 
summary message once per minute. An example message 
taken from mote output on our emulated BR node shown 
in Figure 6. 

 

Fig -6: From Mote output, BR Energest output in one 
minute 

To compute the average current consumption (in 
milliamperes, mA) we can use this equation  

state_avg_current_mA = (ticks * current_mA) / 
(RTIMER_ARCH_SECOND * period_sec) = (ticks * 
current_mA) / period_ticks 

Then we can compute charge consumption (in 
millicoulumbs, mC) : 

state_charge_mC = (ticks * current_mA) / 
RTIMER_ARCH_SECOND 

where: 

 ticks - the number of ticks spent in a state 

 RTIMER_ARCH_SECOND - the number of ticks per 
second 

 period_sec - the duration of the accounting period 
in seconds 

 period_ticks - the duration of the accounting 
period in period_ticks 

 current_mA - the current consumption in that state 
in mA 

 voltage - the voltage provided by the system to the 
component (radio or CPU) 

Finally, to compute the energy consumption (in millijoules, 
mJ), multiply the power with the duration in seconds or 
multiply the charge with the voltage of the system: 

state_energy_mJ = state_charge_mC * voltage 

 After running the simulation for the smart home system 
described in section 5.1 for 1 hour, we save the mote 
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output in a file. This file contains the output of the simple 
Energest every minute for all the 12 nodes. Then 
depending on the script in [21], which uses the upper 
equations we compute the energy consumption in both 
scenarios, one without security and the second one when 
applying security. The results shown in Chart 1. 

 

Chart -1: Energy consumption for nodes in 3600 second 

We can see from the Chart 1 that using EDHOC and 
OSCORE protocols results in energy consumption about 
10% higher than in COAP. If we compare these results 
with reference studies [18] and [22], which study the 
impact of using DTLS as security protocol on the energy 
usage of the node. It results that using DTLS protocol 
consumes energy about 50% higher than in COAP. Our 
experimental results show that OSCORE displays 
moderately better performance than DTLS in important 
metric like energy usage. 

5.3.2 Memory footprint: 

We use the following command to measure the memory 
[23]: 

size <binary file name>. elf 

We measure the RAM using the bss and data. 

RAM = data + bss 

We measure the ROM using the text and data. 

 ROM = data + text 

The bss represents the uninitialized variables storage, 
data represents the initialized variable area and the text 
represents the code and constants. 

 

 

Chart -2: Memory Footprint (RAM Usage) 

We can see in Chart 2 and Chart 3 that OSCORE only uses 
3% more RAM and 14% more ROM than CoAP. Comparing 
with [18] , DTLS protocol uses 17% more RAM and 27% 
more ROM than CoAP. So, while OSCORE uses more 
memory compared to CoAP, but it outperforms DTLS 
protocol in conserving nodes resources. 

 

Chart -3: Memory Footprint (ROM Usage) 

6. CONCLUSIONS 

 IoT security is gaining a lot of attention these 
days from both academia and industry. Due to significant 
energy consumption and computational overhead, existing 
security solutions are not always ideal for IoT. We 
previously developed an application layer security 
solution that secures the CoAP protocol, which overcomes 
these issues. A smart home was used as an example case 
study to discuss the concept. The results showed that 
applying security creates a small overhead, the energy 
usage overhead is about 10%, the RAM overhead is 3 % 
and the ROM overhead is about 14% higher than in COAP, 
which is still acceptable for the majority of IoT 
applications, and it is less than when we use DTLS 
protocol to secure CoAP protocol. 
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Our implementation is able to run on limited RAM sizes, 
such as the one in the IoT devices with limited resources. 
Our evaluation demonstrates the applicability of the 
EDHOC implementation as an effective way for 
establishing an end-to-end application layer security 
context including resource constrained embedded devices. 
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