
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 619

Application Layer Security for IoT: The Case Study of a Smart Home

Rasha Ghadeer1, Ahmad Mahmoud Ahmad 2, Radwan Dandah 3

1PhD Student, Dept. of System and Computer Networks Engineering, Tishreen University, Latakia, Syria.
2Assistant Professor, Dept. of System and Computer Networks Engineering, Tishreen University, Latakia, Syria.

3Professor, Dept. of System and Computer Networks Engineering, Tishreen University, Latakia, Syria.
---***--
Abstract - The Internet of Things is composed of objects
with distinct identities that communicate with one another
via the internet. This paved the door for a variety of
applications, including home automation, which improves
human comfort and security. Security is considered as one of
the most important topics that must be taken into
consideration. In this paper an application layer security is
provided to a smart home system, and that is a set of sensors
communicating with the cloud using a constrained
application protocol (CoAP). These sensors protected by
using two protocols, the first one is Object Security for
Constrained RESTful Environments (OSCORE) protocol
which provides authenticated encryption for the payload
data, while the second one is Ephemeral Diffie-Hellman Over
COSE (EDHOC) protocol which provides the symmetric
session keys required for OSCORE. We simulate the CoAP
protocol without security using the Contiki-NG operating
system, then we simulate the EDHOC with OSCORE protocols
over CoAP. A comparison between the two experiments was
made in terms of memory footprint and energy consumption
since these two factors are the most concerning factors in
constrained devices in any IoT environment. The results
showed that the current implementation gives small
overhead compared to other security solutions.

Key Words: Smart Home, Security, CoAP, OSCORE,
Contiki-NG, Cooja, EDHOC.

1.INTRODUCTION

In recent years, Internet has grown rapidly and
changed human's life by providing better connectivity and
communication. Internet technology can be extended to
connect objects that are used in day-to-day life. This
expansion of internet services is called Internet of Things
(IOT)[1]. The term "smart home" refers to a subset of the
Internet of Things (IoT) paradigm that combines home
automation and security. Homeowners can remotely
monitor and control devices in a normal household by
connecting them to the Internet. From timer-controlled
lamps that can be turned off from anywhere to smart
thermostats that can control the temperature in a home
while also producing detailed energy usage information.
The widespread availability of low-cost smartphones,
microcontrollers, and other open-source hardware, as well
as the growing use of cloud services, has enabled the
development of low-cost smart home security systems.
[2].

However, there exist a number of issues with IoT devices,
two of them are security and restrictions on resource
consumption. Due to the low-resources nature of such
devices, complex security protocols are often not viable,
and that results in a vast amount of easily hacked targets.
Also using old, unencrypted protocols for communication
can be a vector of attack as well, leaving the traffic open to
examination and manipulation. This is the area we focused
on, by implementing a new standard designed to protect a
lightweight application protocol commonly used for
constrained devices in IoT networks. One way to approach
this problem is to use protocols specifically designed for
the use case, with energy efficiency in mind while still
guaranteeing security [3].

 CoAP [4] is a customized web transfer protocol
designed for usage with confined nodes and constrained
networks (e.g., low-power, lossy). Datagram Transport
Layer Security (DTLS) [5] is the only way to enable secure
communication for CoAP, according to the CoAP definition.
DTLS, in particular, creates a secure channel at the
transport layer across unreliable datagram protocols like
UDP, and provides hop-by-hop security by encrypting all
CoAP communications. Most researches about DTLS
protocol show that using DTLS as a security protocol
increase the burden on the objects. Thus, it is important to
optimize the current implementation of this protocol to
have an efficient and reliable IoT devices, or we can search
for alternative protocols to achieve security [6].

Building on CoAP protocol, OSCORE protocol offers an
end-to-end encrypted security layer while staying
compatible with nodes, such as proxies [7]. However,
OSCORE has only been standardized very recently (July
2019) and thus, unsurprisingly, there didn’t exist
implementations on all the operating systems that it uses
in IoT objects. Closely related to OSCORE, there exists
another new protocol called EDHOC [8]. It is intended to
complement OSCORE and extend it with the functionality
to allow secure key exchanges.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 620

2.THE IMPORTANCE OF THE RESEARCH AND ITS
OBJECTIVES

 The importance of the research comes through
implementing a new standard designed to protect a
lightweight application protocol (CoAP) commonly used
for constrained devices in IoT Operating system (Contiki-
NG). This protocol is globally used in a lot of IoT
applications. In addition, this is the first implementation of
the EDHOC protocol with the OSCORE protocol built in
Contiki-NG OS.

 This research aims to provide application layer security
to the smart home system designed in cooja simulator in
Contiki-NG OS and study the impact of using this type of
security on the constrained objects (light bulbs,
thermometer, air conditioner ...) in terms of memory
footprint and power consumption.

3. RELATED WORK

 Different techniques were done in research to achieve
security on IOT based Smart Homes. In [9] a brief
overview of using voice assistants like Amazon Alexa,
Google Home, Apple Siri, or Microsoft Cortana to detect
voice commands from a person with speaking disabilities
in a much more natural way to control ordinary electrical
appliances, and analysing the method of security. While
the authors of [10] try to identify the best hash function
that can be introduced to the CoAP protocol to improve
security without compromising efficiency. The CoAP
protocol takes into account three different hash functions:
SHA-1, SHA224, and SHA256. The upgraded protocol was
tested on a smart home application using the Contiki OS
simulation tool, and the findings reveal that SHA 224 is the
optimum hash algorithm in terms of performance. In [11],
a blockchain-based method to data privacy and security in
a smart home is offered. To provide a safe foundation for
IoT devices in smart home systems, they propose an
authentication strategy that integrates attribute-based
access control with smart contracts and edge computing.

On the other hand, the OSCORE protocol was achieved
with the EDHOC protocol in different programming
languages and systems. In paper [12] the researchers
presented the first implementation of the EDHOC and
OSCORE protocols using the Rust programming language,
as they showed applicability in a real client and resource
server scenario on restricted STM32 devices. While in
[13], they implement the two protocols designed for
embedded devices on GitLab. The new libraries, which
implement the mentioned protocols, were written and
tested with the assistance of the Continuous Integration
pipeline. In [14] describes the design of the uOSCORE and
uEDHOC libraries for ordinary microcontrollers, as well as
the uOSCORE-TEE and uEDHOC-TEE libraries for
microcontrollers that have a Trusted Execution

Environment (TEE), such as ARM TrustZone-M
microcontrollers.

 To the best of our knowledge, no prior studies have
thoroughly secured smart home systems using application
layer OSCORE protocol, or evaluated OSCORE with EDHOC
together in Contiki-NG OS in terms of device memory
footprint and energy consumption.

4. Technical background

This part introduces the background principles that will
be discussed throughout the article.

4.1. The Constrained Application Protocol:

CoAP is a RESTful application layer protocol especially
designed for the IoT domain. It takes into account two
sorts of devices: clients and servers, both of which
communicate via requests and responses. Sensors and
actuators, for example, are stored on the servers. Clients
can use the PUT, GET, POST, and DELETE methods to
access those resources. A Uniform Resource Identifier
(URI) identifies each resource. Each CoAP packet begins
with a fixed 4-byte header carrying the method type (PUT,
GET, POST, DELETE) or a response code, among other
information. The header is followed by an optional token
used to correlate requests and responses. The token is
followed by optional options that contain additional
parameters for the requests/responses. These are
followed by an optional payload, prefixed with the payload
[4].

4.2. Object Security for Constrained RESTful
Environments:

OSCORE [7] uses CBOR Object Signing and
Encryption (COSE) [15] to provide application-layer
protection for the CoAP protocol. CoAP endpoints can use
OSCORE to create an end-to-end security system. As a
result, pre-shared keys or keys created using a key
exchange protocol such as EDHOC may be used.
Converting CoAP or HTTP messages to OSCORE messages
then allows for secure communication. HTTP messages are
translated to CoAP messages initially in this procedure.
The CoAP message is protected using COSE encryption in
order to construct an OSCORE message. The OSCORE
parameters as well as the message fields of the COSE-
Encrypt object are then included in the encrypted
message's header fields. OSCORE is used to establish a
security context in the implementation employed in this
research.

Security Context: A security context must be established
before both the sender and the receiver can encrypt and
decrypt communications exchanged. This security context
corresponds to a set of parameters that are required for
cryptographic operations in OSCORE. The security context

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 621

consists of three sub contexts: the "common context", the
"sender context" and the "recipient context" as shown in
figure 1.

Fig -1: Matching of Contexts, from [7]

 The common context is derived first, then is used
together with additional data in order to derive the sender
and recipient context. Two endpoints that want to
communicate over an OSCORE secured channel derive
each a sender and a receiver context. In order to receive
asymmetric keys, the sender and receiver IDs are used in
reverse so that the sender context of the first endpoint is
matching the receiver context of the second endpoint and
vice versa [7].

4.3. Ephemeral Diffie-Hellman Over COSE:

EDHOC [8] is a Diffie-Hellman key exchange
protocol for constructing a shared secret based on an
ephemeral key, which provides perfect forward secrecy,
identity protection, and mutual authentication. The
protocol, which implements the Elliptic Curve Diffie–
Hellman (ECDH) algorithm, is detailed in [8] as a work-in-
progress IETF draft recently endorsed by the IETF LAKE
Working Group. In this protocol, COSE [15], CBOR [16],
and CoAP [4] are also used for cryptography, encoding,
and transport.

For key generation and security parameter
negotiation, EDHOC employs a three-message protocol.
The parties exchanging messages are the initiator (I) and
responder (R). For each session, they create a new
ephemeral ECDH key pair, exchange the public part of
their ECDH keys, calculate the shared secret, and generate
symmetric application keys. To authenticate
communications, raw public keys (RPK) with signature
keys or static ECDH keys, as well as public key certificates,
can be utilized.

5. EXPERIMNET AND RESULTS

 We simulate our experiment on Contiki-NG OS [17].
which is an open-source operating system for IoT, it
connects tiny low-power, low-cost microcontrollers to the
Internet. Contiki-NG OS provides low-consumption
Internet communication and supports many low-power
wireless standards. We used the Cooja simulator provided
by Contiki. It's a network simulator that allows developers
to test their apps on completely simulated devices before
deploying them to real hardware.

 Our work in this paper is divided into three parts. First,
we design a smart home system on Contiki-NG OS. Second,
we add application layer security to the proposed system
using OSCORE and EDHOC protocols. Third, we evaluate
the impact of applying security to the nodes in terms of
energy consumption and memory footprint in both plain
scenarios without security on one hand, and with applying
security on the other hand.

5.1. Designing the smart home system:

 For the real-time simulation, the sensor nodes (motes)
are implemented in Contiki-NG OS and run in the Cooja
simulator as shown in Figure 2, which provides the set of
sensors, and a border router (BR).

Fig -2: the network simulation of the smart home

 On the simulator, each node has TX range of 50m and
INT range of 100m where TX range means that the
transmitted packet can be received easily by any node
which is inside of the range while INT range is the range
where the transmission of packets can be heard but cannot
receive the transmitted packet. The sensor nodes are
actually the end devices which only send data to its
neighbor sensors and BR. As shown in Table 1 there are 6
types of smart devices emulated in the smart home as 12
cooja motes distributed in the network.

Table -1: Cooja motes descriptions

Mote
number

Mote role

1 Border Router

2,3,4 Lightbulb

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 622

5,6,7 Motion sensor

8,9,10 Thermometer
11 Heater

12 Air Conditionar

 A border router is used to connect a regular IP with the
RPL 6LoWPAN network. In the Contiki–Cooja simulation
environment, a network's border router is located at the
network's edge. The BR is also working as a gateway to
connect two different networks. In our simulation we
should write a command line, for starting connection
between BR and the cloud as shown in Figure 3, this
command line is:

make TARGET=cooja connect-router-cooja

Fig -3: Command line for starting connection between BR
and cloud

 After starting the simulation each node follows some
steps to get connected with each other. (From Figure 4) at
the first step, a set of custom lightweight networking
protocol rime stack starts. When one node comes to the
stack it automatically gets an abstract address. On the
second step, the node gets a mac address and is assigned
with a node id. After that, the radio channel and channel
band were set. The values are the same for all nodes of the
network. Next, the node is assigned with a tentative IPv6
address and at last the node starts transmitting or
receiving data.

Fig -4: Mote output

 These sensor nodes are able to interface with a cloud
application, which has A CoAP server that registers the
smart nodes and starts monitoring them through the CoAP
observing. Also, there is a command line interface (CLI)
that the user can exploit to send request to each node of the
network. As shown in figure 5, the cloud shows the 11-
motes available in a smart home.

Fig -5: Command line for the HomeIoT-Cloud

5.2. Adding application layer security to the proposed
smart home system:

We use the OSCORE version presented in the
research study [18], which included an open-source
implementation of the OSCORE protocol found on github
[19]. In this implementation, there is no algorithm or
protocol used to exchange keys between the client and the
server. The Master Secret and Master Salt are manually
placed in the code, in addition to the Sender ID and
Receiver ID from the client side whose values are set
opposite to the Sender ID and the Receiver ID of the server
side.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 623

On the other hand, we implement EDHOC protocol to
generate keys and exchange them between the client and
the server to start creating the OSCORE security context.
EDHOC protocol generates a Master Secret, Master Salt,
Sender ID, and Recipient ID for both the client and server.
The Master Secret and Master Salt are shared by both
parties, while the Sender ID and Recipient ID are placed
inversely between the client and server. This setting is
used in OSCORE to derive content encryption keys and
decryption keys that are then used to encrypt and decrypt
message traffic between the client and the server. In this
implementation, CoAP is used for transport [4], COSE for
encryption [15], and CBOR for encoding [16].

5.3. Result Analysis:

Our simulation's main purpose is to simulate the
CoAP protocol without security and then simulating the
EDHOC with OSCORE protocol over CoAP. Comparing the
two experiments in terms of memory footprint and energy
consumption, because these two characteristics are the
most concerning in restricted devices.

5.3.1 Energy consumption:

We use the Energest library [20] to measure energy
consumption. Contiki-NG includes the Energest module
which can be used to implement lightweight, software-
based energy estimation approaches for resource-
constrained IoT devices. The Energest module keeps track
of how much time a system has spent in different stages.
The researcher can estimate the system's energy usage by
combining this information with the hardware power
consumption model. We categorize energy consumption
into four categories:

 tx - the number of ticks the radio was in transmit
mode (ENERGEST_TYPE_TRANSMIT)

 rx - the number of ticks the radio was in receive
mode (ENERGEST_TYPE_LISTEN)

 cpu - the number of ticks in active mode for the
CPU (ENERGEST TYPE CPU)

 cpu idle - the amount of ticks in which the CPU has
been idle (ENERGEST TYPE LPM)

 Tx and rx, as well as cpu and idle, are mutually
exclusive; the system can never be in both modes at the
same time. Other combinations are possible, for example, it
might be in cpu and tx at the same time. The overall uptime
of the system is the sum of cpu and idle. The RTIMER ARCH
SECOND constant defines the duration of a timer tick,
which is platform-dependent.

Simple-energest is a system service included with Contiki-
NG. We add this line to every sensor's makefile to activate
the simple-energest service:

MODULES += os/services/simple-energest

Once the Simple Energest service is enabled, it will print a
summary message once per minute. An example message
taken from mote output on our emulated BR node shown
in Figure 6.

Fig -6: From Mote output, BR Energest output in one
minute

To compute the average current consumption (in
milliamperes, mA) we can use this equation

state_avg_current_mA = (ticks * current_mA) /
(RTIMER_ARCH_SECOND * period_sec) = (ticks *
current_mA) / period_ticks

Then we can compute charge consumption (in
millicoulumbs, mC) :

state_charge_mC = (ticks * current_mA) /
RTIMER_ARCH_SECOND

where:

 ticks - the number of ticks spent in a state

 RTIMER_ARCH_SECOND - the number of ticks per
second

 period_sec - the duration of the accounting period
in seconds

 period_ticks - the duration of the accounting
period in period_ticks

 current_mA - the current consumption in that state
in mA

 voltage - the voltage provided by the system to the
component (radio or CPU)

Finally, to compute the energy consumption (in millijoules,
mJ), multiply the power with the duration in seconds or
multiply the charge with the voltage of the system:

state_energy_mJ = state_charge_mC * voltage

 After running the simulation for the smart home system
described in section 5.1 for 1 hour, we save the mote

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 624

output in a file. This file contains the output of the simple
Energest every minute for all the 12 nodes. Then
depending on the script in [21], which uses the upper
equations we compute the energy consumption in both
scenarios, one without security and the second one when
applying security. The results shown in Chart 1.

Chart -1: Energy consumption for nodes in 3600 second

We can see from the Chart 1 that using EDHOC and
OSCORE protocols results in energy consumption about
10% higher than in COAP. If we compare these results
with reference studies [18] and [22], which study the
impact of using DTLS as security protocol on the energy
usage of the node. It results that using DTLS protocol
consumes energy about 50% higher than in COAP. Our
experimental results show that OSCORE displays
moderately better performance than DTLS in important
metric like energy usage.

5.3.2 Memory footprint:

We use the following command to measure the memory
[23]:

size <binary file name>. elf

We measure the RAM using the bss and data.

RAM = data + bss

We measure the ROM using the text and data.

 ROM = data + text

The bss represents the uninitialized variables storage,
data represents the initialized variable area and the text
represents the code and constants.

Chart -2: Memory Footprint (RAM Usage)

We can see in Chart 2 and Chart 3 that OSCORE only uses
3% more RAM and 14% more ROM than CoAP. Comparing
with [18] , DTLS protocol uses 17% more RAM and 27%
more ROM than CoAP. So, while OSCORE uses more
memory compared to CoAP, but it outperforms DTLS
protocol in conserving nodes resources.

Chart -3: Memory Footprint (ROM Usage)

6. CONCLUSIONS

 IoT security is gaining a lot of attention these
days from both academia and industry. Due to significant
energy consumption and computational overhead, existing
security solutions are not always ideal for IoT. We
previously developed an application layer security
solution that secures the CoAP protocol, which overcomes
these issues. A smart home was used as an example case
study to discuss the concept. The results showed that
applying security creates a small overhead, the energy
usage overhead is about 10%, the RAM overhead is 3 %
and the ROM overhead is about 14% higher than in COAP,
which is still acceptable for the majority of IoT
applications, and it is less than when we use DTLS
protocol to secure CoAP protocol.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 625

Our implementation is able to run on limited RAM sizes,
such as the one in the IoT devices with limited resources.
Our evaluation demonstrates the applicability of the
EDHOC implementation as an effective way for
establishing an end-to-end application layer security
context including resource constrained embedded devices.

ACKNOWLEDGEMENT

The authors wish to acknowledge the Faculty of
Information Engineering at Tishreen University for their
support of this research.

REFERENCES

[1] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a
survey,” Inf. Syst. Front., 2015, doi:10.1007/s10796-
014-9492-7.

[2] Hoque, Mohammad Asadul, and Chad Davidson.
"Design and Implementation of an IoT-Based Smart
Home Security System." Int. J. Networked Distributed
Comput. 7.2 (2019): 85-92.‏

[3] Von Raumer, Marco. "Continuous integration of
embedded security software." (2020).‏

[4] Shelby, Z., Hartke, K., & Bormann, C. (2014). The
constrained application protocol (coap)(rfc 7252).
Jun-2014 Available online. http://www. rfc-editor.
org/info/rfc7252.‏

[5] E. Rescorla, N. Modadugu, Datagram Transport Layer
Security Version 1.2, RFC, RFC Editor, Fremont, CA,
USA, 2012, doi: 10.17487/RFC6347 .

[6] Alamri, Mohammed Hassan. "Securing the Constrained
Application Protocol (CoAP) for the Internet of Things
(IoT)." (2017).‏

[7] F. Palombini G. Selander, J. Mattsson and L. Seitz.
Object Security for Constrained RESTful Environments
(OSCORE). RFC 8613, July 2019. 20, 21

[8] G. Selander, J. Mattsson, and F. Palombini, “Ephemeral
diffie-hellman over cose (edhoc),” Internet Requests
for Comments, RFC Editor, RFC draft-ietf-lake-edhoc-
05 (work in progress), February 2021.
[Online].Available:
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc

[9] Ranjan, Mr Vivek, and Mr Harsh Vardhan Mishra.
"HOME AUTOMATION AND SECURITY USING
INTERNET OF THINGS."‏

[10] Halabi, Dana, Salam Hamdan, and Sufyan Almajali.
"Enhance the security in smart home applications
based on IOT-CoAP protocol." 2018 Sixth
International Conference on Digital Information,
Networking, and Wireless Communications (DINWC).
IEEE, 2018.‏

[11] Qashlan, A., Nanda, P., He, X., & Mohanty, M. (2021).
Privacy-preserving mechanism in smart home using
blockchain. IEEE Access, 9, 103651-103669.‏

[12] Disch, M. Lightweight Application Layer Protection for
Embedded Devices with a Safe Programming
Language. Diss. Ph. D. dissertation, Software
Engineering Group Department of Informatics,
Switzerland, 2020.‏

[13] von Raumer, M. Continuous integration of embedded
security software. (2020).‏ Master thesis, University of
Fribourg (Switzerland).

[14] Hristozov, S.; Huber, M.; Xu, L.; Fietz, J.; Liess, M.; &
Sigl, G. The Cost of OSCORE and EDHOC for
Constrained Devices. In Proceedings of the Eleventh
ACM Conference on Data and Application Security and
Privacy, (2021, April) , (pp. 245-250).‏

[15] J. Schaad, “Cbor object signing and encryption (cose),”
Internet Requests for Comments, RFC Editor, RFC
8152, July 2017. [Online]. Available:
https://tools.ietf.org/html/rfc7252

[16] C. Bormann and P. E. Hoffman, “Concise binary object
representation (cbor),” Internet Requests for
Comments, RFC Editor, RFC 7049, October 2013.
[Online]. Available:
https://tools.ietf.org/html/rfc7049

[17] CONTIKI-NG, 10Jun. 2022. <https://www.contiki-
ng.org/>.

[18] Gunnarsson, M.; Brorsson, J.; Palombini, F.; Seitz, L.; &
Tiloca, M. Evaluating the performance of the OSCORE
security protocol in constrained IoT environments.
2021 Internet of Things, volume 13, 100333.‏ ISSN
2542-6605.

[19] OSCORE implementation in Contiki-NG , 10Jun.
2022.<https://github.com/Gunzter/contiki-
ng/tree/master> .

[20] Tutorial: Energy monitoring - The Energest module
https://github.com/contiki-ng/contiki-
ng/wiki/Tutorial:-Energy-monitoring

[21] Instrumenting Contiki NG applications with energy
usage estimation < https://github.com/contiki-
ng/contiki-ng/wiki/Instrumenting-Contiki-NG-
applications-with-energy-usage-estimation>

[22] Kantharajan, Karnarjun, and Sahar Shirafkan.
"Efficient Security Protocol for RESTful IoT devices."
 ‏.(2020)

[23] Tutorial: RAM and ROM usage, from Contiki-NG wiki,
https://github.com/contiki-ng/contiki-
ng/wiki/Tutorial:-RAM-and-ROM-usage

https://tools.ietf.org/html/rfc7049
https://github.com/contiki-ng/contiki-ng/wiki/Tutorial:-Energy-monitoring
https://github.com/contiki-ng/contiki-ng/wiki/Tutorial:-Energy-monitoring
https://github.com/contiki-ng/contiki-ng/wiki/Instrumenting-Contiki-NG-applications-with-energy-usage-estimation
https://github.com/contiki-ng/contiki-ng/wiki/Instrumenting-Contiki-NG-applications-with-energy-usage-estimation
https://github.com/contiki-ng/contiki-ng/wiki/Instrumenting-Contiki-NG-applications-with-energy-usage-estimation
https://github.com/contiki-ng/contiki-ng/wiki/Tutorial:-RAM-and-ROM-usage
https://github.com/contiki-ng/contiki-ng/wiki/Tutorial:-RAM-and-ROM-usage

