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Abstract - Due to the open architecture of the Android 
operating system, there has also been a huge increase in 
mobile malware. With the growth in amount, variants, 
diversity and sophistication in malware, conventional methods 
often fail to detect malicious applications. Signatures based 
technologies work efficient for known malware but fail to 
detect unknown or new malware. In this paper author will 
appliance an approach to detect the unfamiliar Android 
malware using machine learning techniques. In our approach, 
we extract permissions (AOSP and third party permissions) 
features for getting high accuracy. Then features were selected 
along with separate apks (malware and benign files) in 
training and testing classifiers. We evaluate our method on 
AndroZoo dataset (15000 malware and 15000 benign Apks) 
We use Random forest classifiers for classification of Android 
malware and achieved 91.1% accuracy with AOSP and 72.3% 
accuracy with Third Party Permission. 
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1. INTRODUCTION  

Malware is malicious software that enters your computer 
Perform unnecessary tasks while compromised computer 
system security policy in data terms Confidentiality, 
Integrity and Availability. Malware has the ability to do so 
modify or remove software packages from your system. The 
direction of intentionally destroying the essence of the 
system function. Examples of malware are Trojan horses, 
spyware, adware, worms. 

2. OBJECTIVE 

 To study the existing malware detection techniques. 

 To extract prominent features (requested AOSP 
permissions, requested third-party permissions.) from 
executable of the allocated dataset by performing static 
analysis.  

 To adopt a Random Forest  machine learning model for 
the classification of malware. 

3.  LITERATURE REVIEW 

Allix et al. [18] proposed a novel approach in 2014 to 
extract the control flow graph from the application program 
that is a more meaningful way than n-gram representation. 

The authors used a sizeable dataset (over 50000) of android 
application and implemented using machine learning 
classifiers viz. Random Forest, J48, LibSVM and JRip using 
10-fold cross-validation. 

Sanjeev Das et al. [25] used field-programmable gate arrays 
and processors in their proposed hardware-enhanced 
architecture i.e. GuardOL. Authors used system call as the 
feature to detect malicious apps. The importance of the 
author's design was that the approach in the first 30% of the 
execution recognizes 46% of the malware, and after 100% of 
execution, 97% of the samples have been identified with 3% 
FP.  

Bahman Rashidi et al. [26] proposed an android resources 
usage risk assessment called XDroid. In real-time their model 
can inform users about the risk level of the application, and 
can dynamically update the parameters of the model by the 
client's preferences and from the on-line algorithm. They 
have used the Drebin malware dataset and demonstrated 
that their approach could estimate the risk levels of the 
malware up to 82% accuracy and with the user input it can 
provide an adaptive risk assessment [1]. 

Recently, Sharma and Sahay et al. [28] examined the five 
classifiers on the Drebin dataset using the opcodes 
occurrence as a feature and got an accuracy of 79.27% by 
functional tree classifier for malicious application detection. 

Sahin et al. [29] proposed a permission-based Android 
malware system to detect malicious applications. Unlike 
other studies, the authors proposed a permission weight 
approach. Each of the permissions is given a different score 
using this approach. Then, K-nearest Neighbor (KNN) and 
Naïve Bayes (NB) algorithms are applied and got 90.76% 
accuracy. According to the Authors, the proposed approach 
has better results than the other ones. 

Coban et al. [30] proposed a static malware detection 
system by using text categorization techniques. Authors 
applied text mining techniques like feature extraction by 
using bag-of-words, n-grams, etc. from manifest content of 
suspicious programs, then apply text classification methods 
to detect malware. Their approach is capable of detecting 
malicious applications with an accuracy between 94.0% and 
99.3%. 

Xiuting et al. [31] proposed AMDroid that uses function call 
graphs (FCGs) representing the behaviors of applications 
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and applies graph kernels to learn the structural semantics 
of applications from FCGs automatically. The authors 
evaluated AMDroid on the Genome Project, and the 
experimental results show that AMDroid is effective in 
identifying Android malicious applications with 97.49% 
detection accuracy. 

Taheri et al. [32] proposed the second part of  their 
CICAndMal2017 dataset publicly accessible which 
incorporates permissions and intents as static features, 
and API calls as dynamic features. The authors examined 
these features with our two-layer Android malware 
analyzer. Consistent with their approach, they succeeded 
in achieving 95.3% precision in Static-Based Malware 
Binary Classification at the primary layer, 83.3% 
precision in Dynamic-Based Malware Category 
Classification and 59.7% precision in Dynamic-Based 
Malware Family Classification at the second layer.  

Huang et al. [33] focused on the application programming 
interface as features and proposed methods to detect 
Android malicious applications. First, the Authors 
proposed a selection method for API features associated 
with the malware class. Second, they further explored 
structure relationships between these APIs and map to a 
matrix interpreted because the hand refined API-based 
feature graph. Third, a CNN-based classifier is trained for 
the API-based feature graph classification. Authors used a 
dataset containing 3,697 malware applications and 3,312 
benign apps demonstrate that the chosen API feature is 
effective for Android malware classification, just the 
highest 20 APIs got 94.3% detection accuracy under 
Random Forest classifier. 

Neha et al. [41] focused on different machine learning based 
analysis methods used for the classification of Android 
malware applications. In this paper, Opcode-based Android 
malware analysis approach has been proposed and applied 
different machine learning algorithm (Naïve Bayes, 
AdaBoost, Random Tree, Bagging & SMO) then achieved 
99.5% accuracy with a 0.995 TPR. 

4. PROPOSED METHODOLOGY 

Author defines the methodology for detecting fraudulent 
Android packages. Figure 1 explain the proposed technique, 
which includes the following advancements: 

 Collecting the data set 

 Extracting the permissions 

 Classification of malware and benign application 

 

 

4.1 Dataset Collection 

We collect malicious and benign Android applications from 
AndroZoo [6], which is a growing repository of Android 
apps. AndroZoo contains the applications that are collected 
from the various sources, including the Google play store 
marketplace. The dataset we use for the analysis contains 
15000 malware and 15000 benign APKs. We also check the 
Secure Hash Algorithm (SHA) value of the applications to 
ensure the unique sample for analysis. 

                     Figure 1: Flow chart of the approach 

 

4.2 Feature Extraction 

In this phase, we extract the features from the dataset that 
we have collected. For the extraction of features, we use 
Apktool and Androguard [1] reverse engineering tools. We 
extract seven categories of features, namely requested 
Android Open Source Project (AOSP) permissions, requested 
third-party permissions. During the initial stage of feature 
extraction, we extract a huge number of features. Then we 
first filter the features with the top frequency of occurrence 
in the dataset. 

• Permissions: Permissions are used to protect the 
privacy of an Android user, and a few applications also need 
permission to access users' sensitive data like SMS, contact, 
etc. Some applications also request third part permission 
which is not mentioned in the android open source project. 
The combination of permission sometimes reflects the 
malicious behavior. Therefore, we extract two types of 
permission as features AOSP and third party permission.  
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4.3 Classification 

This section discusses the machine learning classifiers which 
is used in our work. For the classification, we use Random 
forest supervised machine learning classifiers. 

• Random forest: A random forest is a supervised 
machine learning algorithm for classification. It creates a 
decision tree on data sample and gets the prediction from 
each of them and finally select best of them by means of 
voting. It's anything but a stowing strategy that takes 
perceptions in an arbitrary way and chooses all sections 
which are unequipped for addressing huge factors at the 
root for all choice trees. 

Table -1: Random forest confusion metrics 

 Actual Class 

Predictive 
Class 

21 5 

5 186 

 
The data set is split into 70%-30% ratio for training and 
testing. “Author used 10 fold cross validation to validate the 
performance of the model. In the basic approach, called k-
fold cross validation”, the training set is parted into k more 
modest sets the ensuing strategy is followed for everything 
about k "folds" [2]: 

 A model is prepared utilizing of the folds as preparing 
information; 

 The subsequent model is approved on the excess a piece 
of the data (i.e., it's utilized as a test set to process an 
exhibition measure like precision) [2]. 

5. RESULT AND ANALYSIS 

Measurement Metrics Accuracy (AC) is the proportion of 
the total number of corrected predictions. Overall, how 
often is the classifier correct?  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 % = (𝑻𝑷+𝑻𝑵)/ (𝑻𝑴+T𝑩) ×𝟏𝟎𝟎  

Table -2: Confusion metrics 

                     Actual Class 

Positive Negative 

 

Predictive 
Class 

Positive True Positive 
(TP) 

False Positive 
(FP) 

Negative False 
Negative (FN) 

True 
Negative 
(TN) 

 

5.1 Performance Results  

As a final point, author perceives the result based on 
Random Forest classifier. 

Table -3: Performance result 

Features/classifier Random Forest 

AOSP (206) 0.911312 

Third party permissions 
(8939) 

0.723896 

 

6. CONCLUSIONS 

The approach is based on detection of Android applications 
by identifying the most relevant category of permissions to 
discriminate the malicious and benign application. Random 
forest classification algorithm is used and achieved 91.1% 
accuracy with AOSP and 72.3% accuracy with Third Party 
Permission. The methodology has the potential to discover 
new anomalous applications. This approach is based on 
static feature.  
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