
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1602

Permission based Android Malware Detection using Random Forest

Sonal pandey1, Satyasheel2

1 NITTTR Chandigarh, India,
2ADRDE DRDO, India.

---***---
Abstract - Due to the open architecture of the Android
operating system, there has also been a huge increase in
mobile malware. With the growth in amount, variants,
diversity and sophistication in malware, conventional methods
often fail to detect malicious applications. Signatures based
technologies work efficient for known malware but fail to
detect unknown or new malware. In this paper author will
appliance an approach to detect the unfamiliar Android
malware using machine learning techniques. In our approach,
we extract permissions (AOSP and third party permissions)
features for getting high accuracy. Then features were selected
along with separate apks (malware and benign files) in
training and testing classifiers. We evaluate our method on
AndroZoo dataset (15000 malware and 15000 benign Apks)
We use Random forest classifiers for classification of Android
malware and achieved 91.1% accuracy with AOSP and 72.3%
accuracy with Third Party Permission.

Key Words: Malware, Metamorphic malware, Android,
Machine Learning, Random forest.

1. INTRODUCTION

Malware is malicious software that enters your computer
Perform unnecessary tasks while compromised computer
system security policy in data terms Confidentiality,
Integrity and Availability. Malware has the ability to do so
modify or remove software packages from your system. The
direction of intentionally destroying the essence of the
system function. Examples of malware are Trojan horses,
spyware, adware, worms.

2. OBJECTIVE

 To study the existing malware detection techniques.

 To extract prominent features (requested AOSP
permissions, requested third-party permissions.) from
executable of the allocated dataset by performing static
analysis.

 To adopt a Random Forest machine learning model for
the classification of malware.

3. LITERATURE REVIEW

Allix et al. [18] proposed a novel approach in 2014 to
extract the control flow graph from the application program
that is a more meaningful way than n-gram representation.

The authors used a sizeable dataset (over 50000) of android
application and implemented using machine learning
classifiers viz. Random Forest, J48, LibSVM and JRip using
10-fold cross-validation.

Sanjeev Das et al. [25] used field-programmable gate arrays
and processors in their proposed hardware-enhanced
architecture i.e. GuardOL. Authors used system call as the
feature to detect malicious apps. The importance of the
author's design was that the approach in the first 30% of the
execution recognizes 46% of the malware, and after 100% of
execution, 97% of the samples have been identified with 3%
FP.

Bahman Rashidi et al. [26] proposed an android resources
usage risk assessment called XDroid. In real-time their model
can inform users about the risk level of the application, and
can dynamically update the parameters of the model by the
client's preferences and from the on-line algorithm. They
have used the Drebin malware dataset and demonstrated
that their approach could estimate the risk levels of the
malware up to 82% accuracy and with the user input it can
provide an adaptive risk assessment [1].

Recently, Sharma and Sahay et al. [28] examined the five
classifiers on the Drebin dataset using the opcodes
occurrence as a feature and got an accuracy of 79.27% by
functional tree classifier for malicious application detection.

Sahin et al. [29] proposed a permission-based Android
malware system to detect malicious applications. Unlike
other studies, the authors proposed a permission weight
approach. Each of the permissions is given a different score
using this approach. Then, K-nearest Neighbor (KNN) and
Naïve Bayes (NB) algorithms are applied and got 90.76%
accuracy. According to the Authors, the proposed approach
has better results than the other ones.

Coban et al. [30] proposed a static malware detection
system by using text categorization techniques. Authors
applied text mining techniques like feature extraction by
using bag-of-words, n-grams, etc. from manifest content of
suspicious programs, then apply text classification methods
to detect malware. Their approach is capable of detecting
malicious applications with an accuracy between 94.0% and
99.3%.

Xiuting et al. [31] proposed AMDroid that uses function call
graphs (FCGs) representing the behaviors of applications

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1603

and applies graph kernels to learn the structural semantics
of applications from FCGs automatically. The authors
evaluated AMDroid on the Genome Project, and the
experimental results show that AMDroid is effective in
identifying Android malicious applications with 97.49%
detection accuracy.

Taheri et al. [32] proposed the second part of their
CICAndMal2017 dataset publicly accessible which
incorporates permissions and intents as static features,
and API calls as dynamic features. The authors examined
these features with our two-layer Android malware
analyzer. Consistent with their approach, they succeeded
in achieving 95.3% precision in Static-Based Malware
Binary Classification at the primary layer, 83.3%
precision in Dynamic-Based Malware Category
Classification and 59.7% precision in Dynamic-Based
Malware Family Classification at the second layer.

Huang et al. [33] focused on the application programming
interface as features and proposed methods to detect
Android malicious applications. First, the Authors
proposed a selection method for API features associated
with the malware class. Second, they further explored
structure relationships between these APIs and map to a
matrix interpreted because the hand refined API-based
feature graph. Third, a CNN-based classifier is trained for
the API-based feature graph classification. Authors used a
dataset containing 3,697 malware applications and 3,312
benign apps demonstrate that the chosen API feature is
effective for Android malware classification, just the
highest 20 APIs got 94.3% detection accuracy under
Random Forest classifier.

Neha et al. [41] focused on different machine learning based
analysis methods used for the classification of Android
malware applications. In this paper, Opcode-based Android
malware analysis approach has been proposed and applied
different machine learning algorithm (Naïve Bayes,
AdaBoost, Random Tree, Bagging & SMO) then achieved
99.5% accuracy with a 0.995 TPR.

4. PROPOSED METHODOLOGY

Author defines the methodology for detecting fraudulent
Android packages. Figure 1 explain the proposed technique,
which includes the following advancements:

 Collecting the data set

 Extracting the permissions

 Classification of malware and benign application

4.1 Dataset Collection

We collect malicious and benign Android applications from
AndroZoo [6], which is a growing repository of Android
apps. AndroZoo contains the applications that are collected
from the various sources, including the Google play store
marketplace. The dataset we use for the analysis contains
15000 malware and 15000 benign APKs. We also check the
Secure Hash Algorithm (SHA) value of the applications to
ensure the unique sample for analysis.

 Figure 1: Flow chart of the approach

4.2 Feature Extraction

In this phase, we extract the features from the dataset that
we have collected. For the extraction of features, we use
Apktool and Androguard [1] reverse engineering tools. We
extract seven categories of features, namely requested
Android Open Source Project (AOSP) permissions, requested
third-party permissions. During the initial stage of feature
extraction, we extract a huge number of features. Then we
first filter the features with the top frequency of occurrence
in the dataset.

• Permissions: Permissions are used to protect the
privacy of an Android user, and a few applications also need
permission to access users' sensitive data like SMS, contact,
etc. Some applications also request third part permission
which is not mentioned in the android open source project.
The combination of permission sometimes reflects the
malicious behavior. Therefore, we extract two types of
permission as features AOSP and third party permission.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1604

4.3 Classification

This section discusses the machine learning classifiers which
is used in our work. For the classification, we use Random
forest supervised machine learning classifiers.

• Random forest: A random forest is a supervised
machine learning algorithm for classification. It creates a
decision tree on data sample and gets the prediction from
each of them and finally select best of them by means of
voting. It's anything but a stowing strategy that takes
perceptions in an arbitrary way and chooses all sections
which are unequipped for addressing huge factors at the
root for all choice trees.

Table -1: Random forest confusion metrics

 Actual Class

Predictive
Class

21 5

5 186

The data set is split into 70%-30% ratio for training and
testing. “Author used 10 fold cross validation to validate the
performance of the model. In the basic approach, called k-
fold cross validation”, the training set is parted into k more
modest sets the ensuing strategy is followed for everything
about k "folds" [2]:

 A model is prepared utilizing of the folds as preparing
information;

 The subsequent model is approved on the excess a piece
of the data (i.e., it's utilized as a test set to process an
exhibition measure like precision) [2].

5. RESULT AND ANALYSIS

Measurement Metrics Accuracy (AC) is the proportion of
the total number of corrected predictions. Overall, how
often is the classifier correct?

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 % = (𝑻𝑷+𝑻𝑵)/ (𝑻𝑴+T𝑩) ×𝟏𝟎𝟎

Table -2: Confusion metrics

 Actual Class

Positive Negative

Predictive
Class

Positive True Positive
(TP)

False Positive
(FP)

Negative False
Negative (FN)

True
Negative
(TN)

5.1 Performance Results

As a final point, author perceives the result based on
Random Forest classifier.

Table -3: Performance result

Features/classifier Random Forest

AOSP (206) 0.911312

Third party permissions
(8939)

0.723896

6. CONCLUSIONS

The approach is based on detection of Android applications
by identifying the most relevant category of permissions to
discriminate the malicious and benign application. Random
forest classification algorithm is used and achieved 91.1%
accuracy with AOSP and 72.3% accuracy with Third Party
Permission. The methodology has the potential to discover
new anomalous applications. This approach is based on
static feature.

REFERENCES

[1]IDC,“Smartphone market share,” 2019. [Online].
Available: ttps://www.idc.com/promo/%0Asmartphone-
market-share/os. [Accessed: 02-Aug-2019].

[2]E. Protalinski, “Android passes 2.5 billion monthly ac- tive
devices - Venturebeat.,” 2019. [Online]. Available:
https://venturebeat.com/2019/05/07/%0Aandroid-passes-
2-5-billion-monthly-active-devices/. [Accessed: 15-Sep-
2019].

[3]Q. Heal, “QUARTERLY THREAT REPORT Q2-2019,” 2019.

[4] Android, “Platform Architecture Agenda,”
Architecture, 2018. [Online]. Available:
https://developer.android.com/guide/%0Aplatform.
[Accessed: 22-Sep-2019].

[5]Neil, “An Overview of The Android Architecture.”
Available:
https://www.techotopia.com/index.php/An_Overview_of_th
e_Android_Architecture . [Accessed: 15-Sept-2019]

[6]P. Szor, “The Art of Computer Virus Research and
Defense,” Symantec Press Publisher, vol. 43, no. 03, pp. 180-
200, 2005.

[7]A. Govindaraju, “Exhaustive Statistical Analysis for
Detection of Metamorphic Malware,” 2010.

[8]H. Florian, “Introduction to Malware Analysis
Techniques,” 2015.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1605

[9]A. Sharma and S. K. Sahay, “Evolution and Detection of
Polymorphic and Metamorphic Malwares: A Survey,” Int. J.
Comput. Appl., vol. 90, no. 2, pp. 7–11, 2014.

[10]K. Griffin, S. Schneider, X. Hu, and T. C. Chiueh,
“Automatic generation of string signatures for malware
detection,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2009, vol. 5758 LNCS, pp. 101–120.

[11]I. A. Saeed, A. Selamat, and A. M. A. Abuagoub, “A Survey
on Malware and Malware Detection Systems,” vol. 67, no. 16,
pp. 25–31, 2013.

[12]J.-Y. Xu, a. H. Sung, P. Chavez, and S. Mukkamala,
“Polymorphic malicious executable scanner by API sequence
analysis,” Fourth Int. Conf. Hybrid Intell. Syst., pp. 0–5, 2004.

[13]A. Sharma and S. K. Sahay, “An effective approach for
classification of advanced malware with high accuracy,” Int.
J. Secur. its Appl., vol. 10, no. 4, pp. 249–266, 2016.

[14]S. K. Sharma, Sanjay and Krishna, C Rama and Sahay,
“Detection of advanced malware by machine learning
techniques,” in Soft Computing: Theories and Applications,
2019, pp. 333–342.

[15]A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer,
“Detection of malicious code by applying machine learning
classifiers on static features: A state-of-the-art survey,” Inf.
Secur. Tech. Rep., vol. 14, no. 1, pp. 16–29, 2009.

[16]M. G. Schultz, E. Eskin, and S. J. Stolfo, “Data Mining
Methods for Detection of New Malicious Executables,” 2001.

[17]D. Bilar, “Opcodes As Predictor for Malware,” Int. J.
Electron. Secur. Digit. Forensic, vol. 1, no. 2, pp. 156–168,
2007.

[18]K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and
Y. Le Traon, “Large-scale machine learning-based malware
detection,” in Proceedings of the 4th ACM conference on
Data and application security and privacy - CODASPY ’14,
2014, pp. 163–166.

[19]C. Wang, Z. Qin, J. Zhang, and H. Yin, “A malware variants
detection methodology with an opcode based feature
method and a fast density based clustering algorithm,” pp.
481–487, 2016.

[20]F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani,
“Evaluation of machine learning classifiers for mobile
malware detection,” Soft Compuing, vol. 20, no. 1, pp. 343–
357, 2016.

[21]J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye,
“Significant Permission Identification for Machine-Learning-
Based Android Malware Detection,” IEEE Trans. Ind.
Informatics, vol. 14, no. 7, pp. 3216–3225, 2018.

[22] R. H. D. Ke Xu, Yingjiu Li, “Iccdetector: Icc-based
malware detection on android,” in Information Forensics and
Security, 2016, pp. 1252–1264.

[23]K. Wain and Y. Au, “by A thesis submitted in conformity
with the requirements Graduate Department of Electrical
and Computer Engineering c Copyright 2012 by Kathy Wain
Yee Au,” 2012.

[24]G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, “MalPat: Mining
Patterns of Malicious and Benign Android Apps via
Permission-Related APIs,” IEEE Trans. Reliab., vol. 67, no. 1,
pp. 355–369, 2018.

[25] M. C. Sanjeev Das, Yang Liu, Wei Zhang, “Semantics-
based online malware detection: Towards efficient real-time
pro- tection against malware,” in Information Forensics and
Security, 2016, pp. 289–302.

[26] E. B. Bahman Rashidi, Carol Fung, “Android resource
usage risk assessment using hidden Markov model and
online learning,” in Computers & Security, 2017, pp. 90–107.

[27]H. J. Zhu, Z. H. You, Z. X. Zhu, W. L. Shi, X. Chen, and L.
Cheng, “DroidDet: Effective and robust detection of android
malware using static analysis along with rotation forest
model,” Neurocomputing, vol. 272, pp. 638–646, 2018.

[28]A. Sharma and S. K. Sahay, “An investigation of the
classifiers to detect android malicious apps,” 2016.

[29]D. Ö. Şahin, O. E. Kural, S. Akleylek, and E. Kiliç, “New
results on permission based static analysis for Android
malware,” 6th Int. Symp. Digit. Forensic Secur. ISDFS 2018 -
Proceeding, vol. 2018-Janua, pp. 1–4, 2018.

[30]J. Rudy, “Early rd Early bi rd,” vol. 19, no. 3, pp. 257–279,
2018.

[31]X. Ge, Y. Pan, Y. Fan, and C. Fang, “AMDroid: Android
Malware Detection Using Function Call Graphs,” Proc. -
Companion 19th IEEE Int. Conf. Softw. Qual. Reliab. Secur.
QRS-C 2019, pp. 71–77, 2019.

[32]L. Taheri, A. F. A. Kadir, and A. H. Lashkari, “Extensible
android malware detection and family classification using
network-flows and API-calls,” Proc. - Int. Carnahan Conf.
Secur. Technol., vol. 2019-October, no. Cic, 2019.

[33]N. Huang, M. Xu, N. Zheng, T. Qiao, and K. K. R. Choo,
“Deep android malware classification with API-based feature
graph,” Proc. - 2019 18th IEEE Int. Conf. Trust. Secur. Priv.
Comput. Commun. IEEE Int. Conf. Big Data Sci. Eng. Trust.
2019, pp. 296–303, 2019.

[34]Z. Zhang, C. Chang, P. Han, and H. Zhang, “Packed
malware variants detection using deep belief networks,”
MATEC Web Conf., vol. 309, p. 02002, 2020.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1606

[35]Hernandez Jimenez and K. Goseva-Popstojanova,
“Malware Detection Using Power Consumption and Network
Traffic Data,” Proc. - 2019 2nd Int. Conf. Data Intell. Secur.
ICDIS 2019, pp. 53–59, 2019.

[36]Y. Zhang, Q. Huang, X. Ma, Z. Yang, and J. Jiang, “Using
multi-features and ensemble learning method for
imbalanced Malware classification,” Proc. - 15th IEEE Int.
Conf. Trust. Secur. Priv. Comput. Commun. 10th IEEE Int.
Conf. Big Data Sci. Eng. 14th IEEE Int. Symp. Parallel Distrib.
Proce, pp. 965–973, 2016.

[37]M. Kruczkowski and E. Niewiadomska-Szynkiewicz,
“Comparative study of supervised learning methods for
malware analysis,” J. Telecommun. Inf. Technol., vol. 2014,
no. 4, pp. 24–33, 2014.

[38]I. Firdausi, C. Lim, A. Erwin, and A. S. Nugroho, “Analysis
of machine learning techniques used in behavior-based
malware detection,” Proc. - 2010 2nd Int. Conf. Adv. Comput.
Control Telecommun. Technol. ACT 2010, pp. 201–203,
2010.

[39]N. Milosevic, A. Dehghantanha, and K. K. R. Choo,
“Machine learning aided Android malware classification,”
Comput. Electr. Eng., vol. 61, pp. 266–274, 2017.

[40] Ke Xu, Yingjiu Li, Robert H. Deng “ICC Detector: ICC
Based Malware Detection on Android,” IEEE Transactions on
Information Forensics and Security, vol: 11, Issue: 6, pp.
1252–1264, 2016.

[41] Neha Tarar, Shweta Sharma, Dr. C. Rama Krishna
“Analysis and Classification of Android Malware using
Machine Learning Algorithms,” IEEE 3rd international
conference on Inventive Computation Technologies, vol: 10,
Issue: 3, 2018.

