
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1622

Security Integrated Scrum

Milind Daftari1, Chetan Chaku2, Archana J K3

1Software Engineer (Application Security and DevSecOps), J&K, India
2Software Engineer, J&K, India

3Technical Support Engineer, Karnataka, India
--***---

Abstract - Agile is one of the most widely used and
rapidly growing methodologies of software development. It
resolves many of the limitations of previously used methods
such as Waterfall and Spiral. Scrum framework, which is a
part of Agile, is the most widespread among growing IT
organizations due to its ability to deliver results quickly. For
a long time, the idea of software security has been alien to
the scrum framework. Therefore, security features are
implemented after the development is complete, leading to
an increase in costs. Contrary to this, implementing security
principles from the start in the software development life
cycle improves efficiency and reduces costs. The current
research and prevalent practices used to include security
within the Scrum framework modify the framework
considerably and take away the simplicity, which is central
to Scrum. To deal with these issues, we propose a model
which is minimally invasive to the concepts of the Scrum
framework and instead supplements the main framework to
enable it to handle product security alongside its
development responsibilities. Our model relies on automated
secure code reviews and organizing the detected flaws as a
part of the product security flaw backlog to include security
considerations within the development pipeline. Based on a
survey conducted involving a medium and a large-scaled IT
company, our model received an average score of seven out
of ten across six different parameters.

Key Words: Agile; Scrum; Security; Secure Code Review;
Software Development; Product Flaw Backlog

1.INTRODUCTION

Agile is a set of techniques followed by a team to
administer a project or plan by dividing it into various
stages with continuous collaboration with customers [1].
Agile methodology has become the most commonly used
practice these days because of its capability to be
adaptable, scalable, fast-paced, sustainable, and simplistic.
Previously, software development models such as the
Waterfall and Spiral were used, but they had many
limitations. A working result is not obtained in the
waterfall model until the later stages of the development
life cycle, and it is not well suited for complex projects. The
waterfall model involves a high amount of risk and cannot
handle a change in requirements after development has
started and requires a lot of documentation [2]. In the
spiral model, the whole process is complex and expensive
and is highly dependent on risk analysis. The Agile

methodology was implemented to overcome these
limitations. The most commonly used types under Agile
Methodology are Kanban, Scrum, and Extreme
Programming.

 Scrum is a lightweight framework that helps people,
teams and organizations generate value through adaptive
solutions for complex problems [6]. It promotes greater
transparency, product quality and efficiency while
reducing costs. Scrum was developed by Schwaber and
Sutherland and is described in the Scrum Guide [6]. A team
that operates based on the Scrum Framework is known as
a Scrum Team and typically has less than ten people. Less
number of people ensures better communication and
increased productivity. “Fig.1” illustrates the Scrum
Framework

1.1 Entity Types

A Scrum Team has three entity types:

 i. Product Owner (PO): The Product Owner is a person
who is responsible for maximizing the value generated by
the scrum team. Generally, the PO defines, organizes,
maintains, and prioritizes tasks and goals that need to be
completed or achieved by the Scrum Team.
 ii. Developers: In the Scrum Framework, the developers
are members of the team who work on tasks specified in
the backlogs.
 iii. Scrum Master (SM): The Scrum Master supports the
Scrum Team in implementing and maintaining the Scrum
Framework within the team. The SM is responsible for the
team’s effectiveness by improving communication and
resolving impediments.

1.2 Scrum Framework Events

The Scrum Framework consists of the following events:

 i. Sprint: A sprint is an event in which the developers
work on the tasks assigned to them. Its length is always
fixed, limited to a maximum of 4 weeks.
 ii. Sprint Planning: Sprint Planning is the event in
which the Scrum Team gets together and reviews the open
items. The Product Owner ensures that the items selected
contribute to the final product goal. The items to be
worked upon in the sprint are decided in the Sprint
Planning meeting.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1623

 iii. Daily Scrum: Daily Scrum is a time-boxed event to
inspect the sprint’s progress and happens every day (not
exceeding 15 minutes). Generally, developers answer
three questions in this event –

 What did they do on the last working day?
 What are they planning to do today?
 Are there any impediments?

 iv. Sprint Review: Sprint Review is an event in which
the outcome of the sprint is assessed as to how it maps
with product goals.
 v. Sprint Retrospective: Sprint Retrospective event
helps the Scrum Team to analyse the work done in the
previous sprint and discuss how it can be improved.

1.3 Scrum Artifacts

The Scrum Framework involves three components known
as Scrum Artifacts.

 i. Product Backlog: It is a list maintained by the
Product Owner in agreement with the key stakeholders
and contains items that will enable the Scrum Team to
contribute to the Product Goal.
 ii. Sprint Backlog: Before the start of every sprint, few
items from the Product Backlog are moved to the sprint
backlog by the Product Owner after a review by the
Developers during the Sprint Planning meeting. If an item
cannot be completed in the sprint, it is moved back to the
Product Backlog.
 iii. Increment: An increment is a piece of working
functionality that creates value and helps the Scrum Team
achieve the product goals. It is also considered to be the
Definition of Done.

 When the development of an application starts, the
initial design and plan stresses on the functional
requirements rather than the security considerations;
hence, Scrum may fail in producing software that has good
security properties [3]. This leads to increased costs, the
need for extra resources who specialize in application
security and also creates technical debt. For a long time,
security has been seen as a blocker or at least a massive
speed bump that slows down a project, in some cases
bringing the project to a complete halt. To avoid this,
application security must be included in the design of the
application from the start [2].
Web Applications are among the most vulnerable
categories of applications served via the internet and have
a large attack surface [3]. The number and types of flaws
identified in web applications have increased in the past
11 years [4].
 The first level of security which can be implemented in
any application is securing the code, which can reduce the
attack surface significantly. Secure Code Review [5] has
become one of the most critical parts of software
development. Still, it is not inherently integrated into any
methodologies, including Scrum Framework. All of the
methods proposed in the past few years create significant
workflow changes within the framework, disturbing its
core values and structure, thereby decreasing the
simplicity and speed of the whole process.

 This paper proposes a model that relies on automating
secure code review and seamlessly integrating it with
Scrum and within the continuous integration pipeline.
The remainder of this paper is divided into six sections.
The second section discusses the related work of other
researchers. The third section discusses the prevalent

Fig. 1: SCRUM Framework

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1624

security measures. The fourth section explains our
proposed model’s functional and operational concepts,
followed by the explanation of the technical concepts and
workflows in the fifth section. The model proposed in the
previous two sections is evaluated in the sixth section. The
seventh section presents the conclusion of this research
paper and the scope of work that can be done in the future.

2. RELATED WORK

 In the whitepaper presented by Veracode [8], the
authors state that the adoption of application security
analysis and assessment in the Scrum Framework usually
occurs in two ways. The first one involves conducting
periodic sprints focusing exclusively on security. The
second one consists of adding security requirements and
user stories to the product backlog in every sprint. It
further discusses how developers can use application
security tools in Scrum teams.

 N. R. Darwish and I. M. Abdelwahab [16] propose a
framework to enhance the security of the software product,
reduce the cost and minimize threats. The solution
proposed here involves modifying the scrum framework by
adding two phases before the increment is produced. The
first includes 12 application penetration testing
methodologies such as validation Testing and
cryptography and the second includes network-level
penetration tests run manually or using automated
utilities. The main concerns with this approach are that it
includes two extensive processes within the scrum
framework that impact the delivery speed, make it
complex, and require external experts.

 The paper by P. Maier, Z. Ma, and R. Bloem [3] starts by
discussing the current industry practices and the issues
with these current practices. The paper proposes a Secure
Scrum process for Web Application Development which
includes an agile risk analysis method that balances the
agility and effectiveness of security analysis in agile
development.

 S. Harrison et al. [2] focus on the transition from the
traditional waterfall methodology to the modern approach,
which is the Scrum framework. The paper starts by
discussing the waterfall development model and its issues.
It then discusses the Scrum framework, defining the
framework and its essential components and security
limitations. As a solution, the authors propose the usage of
the OWASP Application Security Verification Standard.

 A. Jøsang, M. Ødegaard, and E. Oftedal [17] highlight the
importance of lack of security education in IT training
programs since it is a significant contributor to the
introduction of security vulnerabilities in the code written
by the developers of the Scrum Teams. Thus, to understand
the different software development process models,

introducing cybersecurity training as part of the
curriculum is an important step.

 C. Pohl and H.-J. Hof [10] address the current issues in
security concerning scrum and discusses the need for a
secure scrum. The authors then propose and explain a
solution for implementing Secure Scrum. They evaluate
their approach based on specific parameters using a
questionnaire and conclude by stating that their approach
is easy to understand and implement. However, we can
ascertain that it modifies the main scrum framework by
introducing many other components, thereby increasing
the Scrum framework’s overall complexity.

 The work of D. S. Cruzes, M. Felderer, T. D. Oyetoyan, M.
Gander, and I. Pekaric [7] investigates how security testing
is done in Agile Teams using a cross-case analysis
approach of four teams, two teams from two different
locations. They observed that the lack of knowledge on
security by agile teams in general, the large dependency
on incidental penetration testers and the ignorance in
static testing for security are indicators that security
testing is under-addressed, and that more efforts should
be directed to security testing in agile teams.

 Z. Azham, I. Ghani, and N. Ithnin [9] bring to light the
fact that to cope with the requirement change
phenomenon and deliver the product faster, the
developers are applying new software development
methodologies, moving away from the use of the
conventional software development cycle to adopting the
agile development method. The authors then propose
integrating security principles in development phases
using scrum and suggest the element of security backlog
that can be used for security features analysis and
implementation in scrum phases and how a security
expert known as the Security Master supports the process.

3. PREVALENT SECURITY MEASURES

Based on existing research and professional experience,
we can divide the prevalent methods of inculcating
security in scrum into three most common types –

 3.1. Separate Team to handle Application Security: In
this type [7], a company creates a separate team of
application security engineers to assess and monitor the
state of Application Security of the whole product,
spanning across all Scrum Teams. The team detects and
triages issues, finds the solutions, provides fixes, and tests
the secured increment. All this is done after all the
different Scrum teams have completed development and
integrated their increments with the whole product, and
the package has passed later stages of the development
and deployment pipeline.
 Although acting as an aggregator of solutions, this
approach goes against the teachings of the scrum guide.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1625

The Scrum Guide [6] states the Scrum Team is responsible
for all product-related activities from stakeholder
collaboration, verification, maintenance, operation,
experimentation, research and development, and anything
else that might be required. They are structured and
empowered by the organization to manage their work.
 Another major issue with this approach is that the
Application Security team is not always aware of each
component’s in-depth functionality [7]. Therefore, while
doing their work, they can induce functional defects,
which can be harmful to the organization as this step is
completed in the later stages of the pipeline.
 3.2. Separate Security Developer/Expert within each
SCRUM Team: In this type, each scrum team consists of
developers and a separate individual, known as security
developer or security expert, who assesses, triages, fixes,
and monitors all aspects associated with the application
security and quality of the increment produced by the
scrum team at the end of each sprint [7][8][9]. It is similar
to an approach suggested by Veracode called the Every-
Sprint Approach [8], where the security user stories and
fixes are included in every sprint.
 This approach induces the cost of an additional security
expert to each SCRUM team. In larger organizations, the
number of scrum teams can be high, so adding a security
expert to each team would increase the project’s overall
cost and create redundancy in the processes. The time
required to implement security user stories and fixes
would increase as one person has to handle multiple items
resulting from the work of the developers of the scrum
team.
 3.3. Developers within the SCRUM Team: In this
approach, the developers within the scrum team handle
security [7][10]. This approach is the least disruptive to
scrum. Even so, there are few issues identified in this
approach. The developers will not have the expertise to
implement security user stories or fix the issues found
during secure code review. The cost of training each
developer in application security is high as external
consultants and trainers are expensive. Every developer
will have his own way of implementing or fixing flaws,
which will make it challenging to establish Standard
Operating Procedures and best practices. In case of
security flaws in the application’s design or the code,
sometimes the feedback is very late to the developer,
thereby causing a delay in detection and response. There
is no overall governance and monitoring when working
with multiple Scrum teams merging their increments to
the main product at the end of each sprint.

4. PROPOSED MODEL

To address the issues affecting these approaches and to
increase efficiency and quality of the software
development process, we introduce a methodology,
Security Integrated Scrum (SIS), where the developers in
the Scrum Team are solely responsible for the security of

the part of the application they handle, and all such Scrum
Teams in the organization share an Application Security,
Monitoring and Governance Team (ASMG Team). ASMG
Team consists of developers with expertise in application
security and is managed by a security program manager. It
can follow either the scrum framework or Kanban. “Fig. 2”
identified the role of the ASMG team in the organization.

 1. ASMG Responsibilities: We recommend that the
ASMG Team should take up the following responsibilities.
 a) Develop standard operating procedures: The
ASMG team should develop standard operating
procedures, guidelines, and best practices, which all
developers in the Scrum Teams can follow while
implementing security user stories or resolving existing
security flaws. This will establish standards throughout
the product and help in creating easily implementable
security designs and concepts. Although the developers of
the Scrum Teams will fix issues related to the component
of the product handled by them, they can request support
from the ASMG Team whenever they need help in triaging
& fixing identified flaws, implementing new stories, or
internal training. This will allow the developers to keep
control within the Scrum Team and be responsible for all
product-related activities.
 b) Accountability for the product's security: The
ASMG team is accountable for the security of the entire
product where the individual scrum teams merge their
increments. They continuously monitor the state of
application security and notify the relevant scrum team
whenever there are any issues related to the component
handled by the respective scrum team. The ASMG Team
can hold the Scrum Team accountable if it observes that
their component compromises the product’s security and
recommends improvements to the Product Owner of the
Scrum Team.

Fig. 2: Position of ASMG Team in the Organization

 2. Benefits of ASMG: The benefits of having an
Application Security, Monitoring and Governance Team
(ASMG) are as follows:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1626

 Developers in the Scrum Team always have
support available whenever they face any issues
related to implementing stories or security fixes.

 The overall cost is reduced as ASMG acts as a
shared resource among all the Scrum Teams.

 Continuous monitoring and governance are in
place.

 They provide a single source of information for
the developers to implement security user stories
and fix security flaws, thereby maintaining
consistency throughout the codebase.

 They set up the security standards and guidelines
which are to be followed by all the scrum teams.

5. SYSTEM DESCRIPTION AND IMPLEMENTATION

We begin by introducing a Product Flaw Backlog [9] which
is similar to the Product Backlog of the Scrum Framework
“Fig. 3”. The only difference between the two is that the
Product Flaw Backlog contains Security User Stories and
all existing security flaws. In contrast, the Product Backlog
mainly contains product enhancements, new functional
stories and bug fixes.
 It is minimally invasive to the Scrum Framework and
holds the Product Owner responsible for prioritizing tasks
from the Product Backlog and Product Flaw Backlog to
reach the product goal. We recommend that prioritization
for each sprint should be a healthy mix of items from both
the backlogs, i.e., around 75% from product backlog and
25% from product flaw backlog.
 To include Secure Code Review [5] in a Scrum
environment and integrate it into the pipeline, we can use

automated tools such as Veracode [11], SonarQube [12], or
Synopsys [13] and many other tools available in the
market. We propose a workflow to integrate Secure Code
Review

The workflow mainly consists of two cycles:

A. Commit Code Analysis Cycle (CCAC)

 This cycle works on a commit-by-commit basis. A
developer can exit the cycle only if no legitimate open
flaws are found in the commits or a manual override is
done due to False Positives. CCAC is to be completed
within the sprint and the team overseeing it is the Scrum
team itself. Following are the steps involved in CCAC.

 1) Developer commits the code in the repository:
This is the first step in CCAC. A developer commits the
code in the repository and the code is forwarded to the
next step for analysis.

 2) Secure Code Review of the Commit: In this step,
the commit is passed through an automated scanning
utility such as Veracode , Sonarqube or Synopsys and the
results are sent to the developer who committed the piece
of code. If the committed code has any security flaw, the
developer moves to the next step in the cycle, else if the
code has no flaws, the developer comes out of the cycle
and the committed code moves to the next phase of the
pipeline.

 3) Triage and Solution Approach: In this step, the
developer triages the flaws found in the previous step and

Fig. 3: The Security Integrated SCRUM (SIS) Model

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1627

identifies the solution approach. We recommend that the
developer uses solution approaches set up by the
Application Security, Monitoring and Governance (ASMG)
Team to ensure that standardized fixes are implemented,
and quality and consistency are maintained. If the flaws
identified are false positives, the developer can break the
cycle and move to the next phase of the pipeline. If the
flaw is legitimate, the committed code moves to the next
step of fixing the code.

 4) Fixing the Legitimate Flaws: In this step, the
developer fixes the flaws and commits the corrected code.
As soon as the code is committed, it enters the cycle again
and stays in the cycle until no legitimate open flaws are
present or there is a manual override due to false
positives.

B. Total Code Analysis cycle (TCAC)

 This cycle scans the complete product code, committed
by all Scrum Teams. All flaws identified are sent to the
Product Flaw Backlog. TCAC can span multiple sprints and
the team overseeing it is the ASMG Team. This is a
continuous cycle and will always contain some flaws in the
backlog because security is a continuous process [14] and
cannot be considered complete. Following are the steps
involved in TCAC.
 1) Developers commit the code in the repository:
Multiple developers commit the code in the repository and
merge it into the codebase. Multiple such commits are
aggregated, and the code is forwarded to the next step for
analysis.

 2) Secure Code Review of the complete Product
Code: In this step, the scan of the complete product code
will be triggered at set intervals of time through an
automated scanning utility such as Veracode, SonarQube,

or Synopsys. The ASMG team will define the scan interval
after discussion with management and other stakeholders.
If new flaws are identified, they are automatically moved
to the Product Flaw Backlog of the Scrum Team
responsible for the area where the flaw was detected; else,
if the code has no new flaws, the control comes out of the
cycle.

 3) Product Flaw Backlog: In this step, the product
owner maintains a prioritized list of all open security
flaws assigned by the automation utilities related to the
component handled by their Scrum team.

 4) Sprint Backlog: In this step, the product owner
selects items from both the Product Backlog and the
Product Security Backlog and adds the final list to the
Sprint Backlog after discussing with the Developers of the
Scrum Team. This generally happens during the Sprint
Planning meeting.
 5) Triage and Solution Approach: In this step, the
developer triages the flaws found in the previous step and
identifies the solution approach. We recommend that the
developer uses solution approaches set up by the
Application Security, Monitoring and Governance (ASMG)
Team to ensure that standardized fixes are given, and
quality and consistency are maintained. If the flaws
identified are false positives, the developer can break the
cycle and move to the next phase of the pipeline. If the
flaw is legitimate, the product code moves to the next step
of fixing the code.

 6) Fixing the Legitimate Flaws: In this step, the
developer fixes the flaws and commits the corrected code.
As soon as the code is committed, it again enters CCAC and
TCAC cycles. In the TCAC cycle, if the flaws are resolved, it
exits the cycle; else, if not resolved, the flaws are added
back to the product backlog for future resolution.

Fig. 4: SIS Model Workflow

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1628

6. EVALUATION

To evaluate our model, we conducted a survey involving
two software development companies with five employees
from each company as representatives of a scrum team
with different roles. The companies comprised of a large-
scale company with more than 5000 employees and a
medium-scale company with around 500 employees.

Following are the types of employees from each company-

 2 Developers

 1 Scrum Master

 1 Technical Manager

 1 Application Security Engineer

We presented our detailed model and the implementation
approach to them and asked them to rate it on specific
parameters on a scale of 1 to 10 (1 being the lowest, 10
being the highest). The parameters were:

 Scalability

 Adaptability

 Sustainability

 Speed

 Cost-Effectiveness

 Efficiency

The table contains the average of the ratings given by the
five employees from each company for each parameter.

Table -1: Model Evaluation

Evaluation
Parameter

Rating a.
Company A (Medium-

scale)
Company B (Large-

scale)
Scalability 7 6

Adaptability 8 7

Sustainability 7 8

Speed 6 7

Cost-Effectiveness 8 6

Efficiency 7 7
Average Overall
Rating 7.17 6.84

Aggregated Total Rating 7
a. Ratings assigned out of 10 for each parameter

From the evaluation of the model by experienced
professionals, we can gain an insight into the possible
performance benefits of implementing a security
integrated scrum approach. The evident one being a
formalized implementation of security integration with
minimal areas of conflict and clear demarcation of

responsibilities within the organization. This would also
lead to a variety of less evident but equally important
benefits in terms of increasing the scalability,
sustainability, and cost effectiveness of the development.
 The results clearly depict that the employees at all
levels in the development team feel that this approach
would be a viable alternative to their current security
integration approach or in many cases a great addition to
their development methods that lack an organized
approach to security integration.
 We can also decipher the variations in the degree of
benefits one can hope to achieve by implementing the
security integrated scrum approach in different sizes of
the organization by looking at the curated results.
 Scalability for a medium-scale organization is much
easier to achieve as compared to a large-scale organization
because of the inherent disparity in demand in the two
scenarios, however, our approach facilitates scalability by
decoupling the actual implementation of security
measures by the developers in scrum teams from the
ASGM team’s responsibility of coordinating and managing
standard operating procedures for security flaws across
the organization.
 Adaptability across a medium-scale organization will
always be easier as compared to a large-scale organization
due to the inertia in the members of the organization to
stick with their comfortable working procedures. This can
however be improved by providing clear and effective
roles and responsibilities to every member involved with
the security integrated scrum approach which we have
done in this paper.
 In terms of sustainability, we can see according to the
results that there is much more scope of benefit in large-
scale organizations than medium-scale ones. This can be
attributed to the fact that, in medium-scale organizations
the development process can be managed using ad-hoc
methods and run-time implementations comparatively
easily as compared to the large-scale organizations due to
overall lesser scale of the project and fewer people
involved. However, large-scale organizations cannot afford
this kind of ad-hoc approach due to the sheer scale of the
project and this is where a well-organized method like the
security integrated scrum, with clear procedures of
operations shines.
 Speed of implementation is an area of concern among
the employees as seen from the results, which is a genuine
concern given the coordination required between the
scrum teams and the ASMG team but we have to realize
that this would be one time setup requirement since once
the ASMG team is setup and functioning, the developers
need only use the standard operating procedures defined
by the ASMG team to complete the development process
and any roadblock would only occur in one-off cases
mismatch in the current security situation and no
corresponding SOP for that.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1629

 Cost-Effectiveness is a major area where the security
integrated scrum is very promising. We can see from the
results that for small and medium-scale organizations, the
implementation of an ASMG team can reduce the
requirement for security experts manifold which would
lead to a major boost in cost-effectiveness. For large-scale
organizations, even though due to the size of ASMG team
there would still be significant costs but overall due to the
streamlining of the process, there would be significant
improvement in development costs.
 In terms of efficiency, we can clearly see the consensus
across the board, be it medium or large-scale
organizations, that the presented implementation of
security integrated scrum would help in improving the
efficiency of the inclusion of application security as part of
the development process using scrum methodology.

7. CONCLUSION AND FUTURE WORK

The importance of security in the software development
life cycle is increasing every day, and the threats are
becoming increasingly advanced technically. As more
people are becoming aware of the risks of ignoring
software security, considerable research is being done
towards inculcating security in the commonly used
development frameworks such as the Scrum Framework.
This paper identifies some of the major concerns with the
current practices used to consider security during the
development process. We propose a model to deal with
these issues and use the product flaw backlog and
automated secure code review in the pipeline to provide
an organized and standardized workflow. This workflow
helps implement fixes for security flaws across the
organization while maintaining the sanctity of the base
scrum framework as much as possible.
 To further strengthen the evaluation of our model, we
could organize a more wide-scaled survey including
practical implementation of the model to compare and
contrast the model’s working against the currently
prevalent models. This would lead to a high level of trust
in the system’s practicability, which would help
organizations implement the model on a large scale.
 Apart from this, we are also working to increase the
model’s scope to include other aspects of security like
network security, threat analysis, vulnerability
management, and penetration testing. This would lead to a
more robust and complete security model while
maintaining the basic principles of the scrum framework.

REFERENCES

[1] “5 Important Types of Agile Methodology (2021),”
Jigsawacademy.com.[Online].Available:https://www.jigsa
wacademy.com/blogs/product-management/types-of-
agile-methodology/.

[2] S. Harrison, A. Tzounis, L. Maglaras, F. Siewe, R. Smith,
and H. Janicke, “A security evaluation framework for U.k.
e-government services agile software development,” Int. j.
netw. secur. appl., vol. 8, no. 2, pp. 51–69, 2016.

[3] P. Maier, Z. Ma, and R. Bloem, “Towards a secure
SCRUM process for agile web application development,” in
Proceedings of the 12th International Conference on
Availability, Reliability and Security - ARES ’17, 2017.

[4] “State of Software Security v11,” Veracode.com.
[Online]. Available: https://www.veracode.com/state-of-
software-security-report.

[5] The MITRE Corporation, “Secure Code Review,” in
Systems Engineering Guide, The MITRE Corporation, Ed.
MITRE Corporate Communications and Public Affairs,
2014, pp. 192–196.

[6] K. Schwaber and J. Sutherland, “The Scrum Guide,”
Nov. 2020.

[7] D. S. Cruzes, M. Felderer, T. D. Oyetoyan, M. Gander,
and I. Pekaric, “How is security testing done in agile
teams? A cross-case analysis of four software teams,” in
Lecture Notes in Business Information Processing, Cham:
Springer International Publishing, 2017, pp. 201–216.

[8] S. Simplified, “Successful application security testing
for agile development,” Veracode.com. [Online]. Available:
https://www.veracode.com/sites/default/files/Resources
/Whitepapers/whitepaper-agilesecurity.pdf.

[9] Z. Azham, I. Ghani, and N. Ithnin, “Security backlog in
Scrum security practices,” in 2011 Malaysian Conference
in Software Engineering, 2011, pp. 414–417.

[10] C. Pohl and H.-J. Hof, “Secure Scrum: Development of
secure software with Scrum,” arXiv:1507.02992 [cs.CR],
2015.

[11] “Static Analysis (SAST),” Veracode.com. [Online].
Available: https://www.veracode.com/products/binary-
static-analysis-sast.

[12] “SAST Testing,” Sonarqube.org. [Online]. Available:
https://www.sonarqube.org/features/security/.

[13] “Coverity SAST Software,” Synopsys.com. [Online].
Available: https://www.synopsys.com/software-
integrity/security-testing/static-analysis-sast.html.

[14] N. Hyvärinen, “Cyber security is a continuous
process,” F-secure.com, 29-May-2017. [Online]. Available:
https://blog.f-secure.com/cyber-security-is-a-continuous-
process/.

https://www.veracode.com/state-of-software-security-report
https://www.veracode.com/state-of-software-security-report
https://www.veracode.com/sites/default/files/Resources/Whitepapers/whitepaper-agilesecurity.pdf
https://www.veracode.com/sites/default/files/Resources/Whitepapers/whitepaper-agilesecurity.pdf
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.sonarqube.org/features/security/
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://blog.f-secure.com/cyber-security-is-a-continuous-process/
https://blog.f-secure.com/cyber-security-is-a-continuous-process/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1630

[15] The OWASP Foundation, “Application Security
Verification Standard 4.0.2,” Oct. 2020.

[16] N. R. Darwish and I. M. Abdelwahab, “A security
testing framework for scrum based projects,”
International Journal of Computer Applications, vol. 138,
no. 7, pp. 12–17, 2016.

[17] A. Jøsang, M. Ødegaard, and E. Oftedal, “Cybersecurity
through secure software development,” in Information
Security Education Across the Curriculum, Cham: Springer
International Publishing, 2015, pp. 53–63.

