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Abstract - The introduction of multi-core processing into 
the realm of digital image processing has opened up avenues 
for faster execution of computationally intensive processes, 
like image convolutions. However, not all interfaces that 
provide multi-threading work in the same way. In this paper, 
we aim to study and parallelise two fundamental algorithms 
of digital image processing: Otsu segmentation and Sobel edge 
detection. Otsu's algorithm is a popular method that segments 
the pixels of an image into either foreground or background. 
Sobel filter, on the other hand, is widely used for edge 
detection. It classifies the image pixels into either edge or non-
edge pixels and produces an output image that emphasises the 
edges. We use OpenMP and Pymp, an interface that aims at 
bringing OpenMP-like functionality to Python for 
parallelisation. We use nine images of increasing pixel sizes to 
perform convolution and compare OpenMP and Pymp. We also 
visualise our findings and use three performance metrics for 
comparison. 
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1. INTRODUCTION 
 
Parallel computing is becoming increasingly ubiquitous, 
especially since the advent of multi-core workstations. It is 
the simultaneous use of multiple computer resources to 
achieve a computationally intensive task. In simpler words, 
the task at hand is broken down into smaller sub-parts that 
can be performed individually, and then the results are 
combined upon completion. The parallel processing 
paradigm involves instantaneous utilisation of computer 
hardware to overcome memory constraints or to reduce the 
execution time effectively. Imagining a world without 
parallel processors today is next to impossible; all our 
smartphones and laptops are equipped with multi-
processors. Thanks to these, most digital tasks are now 
accomplished in less than microseconds. Rapid advancement 
in this field has led to the invention of new programming 
languages and frameworks to parallelise the tasks that were 
previously coded sequentially. Being a new domain of study 
that has evolved massively in the past decade, there is a 
heightened curiosity to explore different tools and find out 
which tool is best for what application. 

Parallel programming employs one of these three 
architectures: shared, distributed or hybrid memory 
architecture. Shared memory design refers to computers 
that use multiple processors but common memory 
resources. On the other hand, in distributed memory design, 
each processor has a designated memory. These are all 
usually connected over a network. Hybrid memory design 
amalgamates both shared and distributed memory types of 
design; in fact, most distributed networks are technically 
hybrid. 

One of the most commonly used programming interfaces for 
parallelisation is OpenMP (Open Multi-Processing). It 
supports cross-platform shared memory parallel 
programming in languages like C, C++ and Fortran by using 
compiler directives, library routines and environment 
variables that govern run-time behaviour. Python 
enthusiasts have long tried to achieve parallelisation by 
multi-threading, but this is prohibited by GIL (global 
interpreter lock). Pymp is one such tool that brings OpenMP-
like functionality to Python. While many other programming 
interfaces are extant in facilitating multi-processing, this 
paper focuses on OpenMP and Pymp. We choose OpenMP 
and Pymp because of their similar architecture and compare 
their performances when exposed to similar applications. 

While there is a varying degree of potential in parallel 
processing applications, image convolution provides an 
inherent existence of parallelism. It is a critical operation in 
image processing, widely used for sharpening, smoothing, 
and edge detection. The fact that it is highly computationally 
intensive calls for parallel utilisation of computer resources. 
Its idea is linked to matrix multiplication, which is 
computationally costly, particularly in two-dimensional (2-
D) convolution. The kernel may be split in some filters, such 
as Gaussian and Sobel, and 2-D convolution can be done as 
two 1-D convolutions, which is more economical [1]. On top 
of that, image quality is getting better each day, and high-
resolution images need to be processed and stored on a daily 
basis for various applications. It would be apt to say that its 
relevance has been increasing exponentially in the last 
couple of years, its applications ranging from medicine to 
defence purposes. Segmentation and texture analysis are 
widely used for cancer and other disorder identifications. 
Digital image processing has been consistently used in 
military and security applications such as small target 
identification and tracking, missile guidance, vehicle 
navigation, broad area surveillance, and automatic/aided 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 09 | Sep 2021                 www.irjet.net                                                                       p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 55 
 

target recognition. Many intelligent home systems or smart 
city systems employ image processing algorithms for 
intrusion detection or other purposes. 

The Otsu image segmentation algorithm returns a single 
intensity threshold, determined by minimising intra-class 
intensity variance, which effectively separates pixels into 
two segments: foreground and background. The Sobel filter 
is an algorithm that creates an output image out of the input 
image, emphasising the edges by convolving the image with 
a small, separable, and integer-valued filter in the horizontal 
and vertical directions. These two algorithms were chosen as 
the focus of this paper for parallelisation since they are basic 
omnipresent algorithms in image processing. They also 
happen to possess inherent parallelism, which can be 
exploited to compare the performances of OpenMP and 
Pymp. 

This work aims to compare the time taken to execute by 
OpenMP and Pymp when Otsu segmentation and Sobel edge 
detection algorithms are implemented. This comparison is 
made by calculating various performance metrics like 
speedup, efficiency and performance. Meaningful insights 
derived from graphical interpretations are analysed and 
discussed further. 

This paper is organised as follows. Section 2 reviews related 
works on parallelisation in general, and more specifically, in 
image convolution. Existing literature on OpenMP, Pymp, 
Otsu thresholding and Sobel filter is reviewed as well. 
Section 3 elaborates on the parallel programming models 
that our experiments will be employing. Section 4 discusses 
the experimental setup, hardware and software 
specifications. Section 5 explains the performance metrics 
using which we will be comparing OpenMP and Pymp. 
Section 6 presents the experiment results and then discusses 
inferences. Finally, the conclusion is outlined in Section 7. 

 

2. RELATED WORKS 
 
An extensive and exhaustive review of existing literature on 
parallelisation reveals that many applications and 
implementation methods are extant. Since the concept of 
parallelism depends on various factors like the choice of 
compiler, computing language and even the choice of 
algorithm or problem statement, it is imperative to explore 
the impact these choices can have on a particular 
implementation. 
 

2.1 Parallelisation of Image Convolution 
Algorithms 
 

[2] elaborates convolution using procedural programming 
paradigm and object-oriented programming languages. 
Procedural programming produced better results compared 
to object-oriented in C++ implementations. The experimental 
results also show that Java has a shorter response time when 
compared to C++’s object-oriented implementation when 

parallelised. However, when compared to their sequential 
versions, object-oriented C++ had a better response time. The 
authors attribute this finding to better thread utilisation in 
Java. Furthermore, the parallelisation that was combined 
with concurrency was outperformed by pure parallelism. 

[1] used compilers like ICC, GCC and LLVM to carry out 2D 
convolution on both single-core and multi-core. The 
implementations were done on OpenCV, OpenMP and 
Compilers Automatic vectorisation. The experimental results 
were obtained using three different sets of kernels of varying 
sizes. They suggest that the performance of GCC has much 
more significant improvement when compared to other 
compilers, with LLVM having no improvement between 
single-core and multi-core results. 

[3] tries to make comparisons between image level and 
operational level parallelism. In operational level parallelism, 
different images are given to different cores, whereas in 
image level parallelism, the processing of one image is shared 
among different cores. Various image convolution techniques 
were applied to the image to make observations for this. The 
results favoured image-level parallelism as it is found to have 
higher speedups than operational level parallelism. 

The performance of OpenCL implementations is 
comparatively less than OpenMP by a factor of two as per 
experimental observations in [4]. This finding can be 
attributed to very few overhead costs associated with 
OpenMP. In their experiments, GPRM implementation 
achieved the best performance for the largest images, and 
this is due to the fixed overhead costs associated with the 
model. Due to the same reason, the GPRM model is not 
suitable for small images. Even from [5], the findings suggest 
that OpenMP is the best parallel computing framework when 
computing resources like cores and memory are sufficient. 
MPI should be considered while dealing with moderate data 
size problems and for computationally very intensive 
problems. However, MapReduce could be the best framework 
to use when the dataset size is vast and if the computation 
does not require iterative processing. However, MapReduce’s 
structure is less flexible relative to MPI. Hence, it is better to 
choose MPI when the program is being implemented in a 
distributed and parallel manner. The fundamental difference 
is using multiple cores for parallelising in MPI, while CUDA 
uses multiple accelerating units (GPUs), as mentioned in [6]. 
It also discusses the existence of hybrid models that reduce 
the execution time by a significant amount. 

In experiments conducted in [7], parallel models have 
been implemented in Java, based on thread, message passing, 
and their hybrid. Threading proved to be an efficient method 
among the other two when tested on small datasets. 
However, when the dataset size is doubled, message passing 
gives the best performance. The hybrid model was slow in 
these experiments and did not show any significant 
performance improvement. 

Another meaningful discussion that should be considered 
is programming productivity. In [8], the experiments were 
conducted using different analytical software tools to 
determine the programming productivity. The parallelisation 
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of code to some extent depends on the human factor too. 
However, the obtained results suggest that OpenCL requires 
more effort than OpenMP and OpenACC. With OpenMP being 
the one that requires minimal effort for programming. While 
this is true, discussions in [9] suggest that Phoenix++ needs 
less programming efforts than OpenMP, especially in 
application-oriented implementations. However, OpenMP 
remains unbeatable when it comes to performance and has 
significant speedup over Phoenix++. 

2.2 OpenMP Implementations 
 

[10] gives a relatively simple implementation of 
parallelism in image processing. It is implemented using 
OpenMP, and grey-scale images of size 3200 X 3200 are used. 
A speedup of 2.348 is achieved for a dual-core processor. A 
quad-core server is also used to experiment, and it attains a 
speedup of 4.452. The effect of increasing the number of 
threads used is analysed, and findings indicate that the 
computation time decreases when the number of threads is 
increased from 2 to 4. However, the subsequent increase in 
the number of threads causes the computation time to 
increase. 

[11] proposes a parallel scheme for implementing a 
general FFT based algorithm for 2D convolutions. It further 
discusses the various costs involved, like computation, 
communication and load-balancing costs. An analysis of 
various levels of parallelism reveals the choice of exploiting 
the natural decomposition of the larger image into smaller 
sub-images. The use of IDL, OpenMP, and VSIPL gives an 
almost linearly increasing speedup as the number of 
processors increases. 

[12] presents a practical approach to implement a parallel 
two-dimensional least mean square (TDLMS) filter in the 
spatial domain using OpenMP and C++. It is an adaptive 
image filter based on TDLMS, which means it is pixel-wise 
dependent and high computing power demanding. The 
primary approach is to split a given image into equal sub-
blocks, each processed by the parallel running threads. The 
performance is examined using the speedup metric, the ratio 
of filtering durations for sequential and parallel 
implementations, respectively. The parallel implementation 
is realised using 2, 4 and 6 cores on images with sizes 512 x 
512, 1024 x 1024 and 2048 x 2048. The speedup obtained is 
close to 1.9, 3.9 and 5.8, respectively, with sequential 
implementation using single-core. 

[13] compares the performances of OpenMP and OpenCL 
in four different algorithms: matrix multiplication, n-queens 
problem, image convolution and string reversal. The speedup 
in the case of OpenMP remains constant when matrix 
multiplication is done with increasing matrix order, whereas 
that of OpenCL increases. Coming to the common problem of 
n-queens, an increased speedup in OpenCL when the number 
of queens is increased is observed, while the OpenMP 
implementation was not considered. OpenMP is better suited 
to image convolution than OpenCL, owing to background 
processes like kernel creation (seq/MP = 10.2, seq/CL = 
0.53). String reversal requires OpenMP to run in its critical 
condition, which results in no performance improvement. 

Moreover, OpenCL is also unsuitable since it takes more time 
than sequential processing. [13] concludes that OpenCL ranks 
first performance-wise, followed by OpenMP and sequential 
processing. 

[14] explores the performance enhancement offered by 
parallel processing using two tools: TBB (Threading Building 
Blocks) and OpenMP. The choice of algorithm is cubic 
convolution interpolation, and both dual-core and quad-core 
processors are used for parallel implementations. Two 
experiments conducted reveal that in dual-core processors, 
the speedups offered by TBB and OpenMP are 1.646 and 1.99, 
respectively, whereas, in the case of quad-core processors, 
the speedups are 3.289 and 3.807, respectively. It can be 
concluded that OpenMP is more suitable in the application of 
cubic convolution interpolation. 

[15] uses parallel computation in a different scenario. A 
sequential calculation process focusing on the IR signature of 
an aerial object caused by reflection and radiation from the 
Earth’s surface and the atmosphere is infeasible. This work 
presents parallelism to calculate the reflection of background 
radiation incidents from different directions in each spectral 
wavelength. It is implemented using OpenMP, OpenACC and 
CUDA, and their performances are compared. The speedup 
achieved with OpenMP is low for fewer threads but increases 
as the number of threads increases. OpenACC gives a speedup 
of approximately 140, whereas a naive implementation of 
CUDA gives a speedup of 295. Other implementations of 
CUDA may drive the speedup to as high as 426. 

A performance evaluation is presented in [16] using time 
of execution, speedup and efficiency as performance metrics. 
The implementation is done for the matrix multiplication 
algorithm on a dual-core processor using two threads. From a 
range of 10 to 5000 for the matrix size, the speedup ranges 
from 0.168 to 2.224. Furthermore, the findings suggest that 
parallelism is only effective when the matrix size is greater 
than 50 X 50. 

2.3 Pymp Implementations 
 

[17] proposes a parallel algorithm for median filtering 
that uses Python and a multi-core processor architecture 
with the help of the pymp library. It aims to decrease time 
consumption using shared memory and multi-threading. The 
findings indicate that Python takes less time than C for 
median filtering when single-core is used. However, multi-
core gives different results; for lower image sizes (512 x 512, 
1024 x 1024), C performs better, but Python becomes more 
effective as the image size increases. Furthermore, Python 
gives an increasing speedup of 1.422, 2.465 and 4.279 when a 
quad-core processor is used for image size 512 x 512, 1024 x 
1024 and 2048 x 2048, respectively. Pymp can have various 
applications, one of which can be in artificial intelligence, as is 
shown in [18]. This work uses parallel computation for face 
recognition and employs Pymp for a multi-processing library. 

2.4 Otsu Implementations 
 
Segmentation is an essential technique in digital image 

processing that bifurcates pixels into sets of different pixels. 
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Otsu is one such segmentation algorithm that identifies two 
sets of pixels; background and foreground pixels. Otsu uses 
image thresholding to transform the digital grey level in 
binary form as per [19]. Unlike K-means, where thresholding 
is localised, Otsu uses global thresholding to classify the 
backgrounds and foregrounds. 

Otsu Canny edge detection, discussed in [20], presents the 
optimised Otsu segmentation that effectively classifies pixels 
as either edge or non-edge pixels. It has three more stages to 
be undergone before the thresholding, which helps build an 
effective model compared to its traditional implementation. 
The parallel implementation done using Hadoop in this paper 
reveals increasing speedup when parallelised for bigger 
image sizes. 

[21] presents an in-depth review of Otsu’s method for 
image thresholding. The method is discussed in detail, 
followed by a review of other literature. The flow is 
segmented into four phases: input of 2D image, conversion to 
grayscale, then histogram and finally thresholding. 

[22] emphasises the importance of using a clean dataset 
while exposing it to Otsu binary segmentation. The paper 
discusses the parallelised implementation of Otsu using GPU, 
which is programmed in CUDA. It discusses many 
performance metrics, like F-measure, peak-signal-to-noise 
ratio, negative-rate metric and information-to-noise 
difference. 

[23] makes use of OpenMP to write multi-threaded 
applications for image segmentation in plant species 
classification. The Canny-Edge detector and Otsu 
thresholding methods are used and compared for their 
efficiency in a quad-core processor. The implementation of 
parallelism in both methods is discussed. Experiments reveal 
an increasing speedup for both implementations when the 
number of cores is increased. It is important to note that 
Canny-Edge implementation of coarse parallelism gives more 
speedup than Otsu’s coarse-grain. 

2.5 Sobel Implementations 
 
The Sobel operator is a fundamental, efficient and popular 

image convolution technique for edge detection. The operator 
carries out its function by calculating a gradient of the 2D 
grayscale image fed. As described in [24], the operator has 
two convolution masks that determine the horizontal and 
vertical gradients, Gx and Gy, respectively, at each point. 
These kernels are just 90-degree rotations of each other. The 
approximate absolute gradient is determined by combining 
the horizontal and vertical gradients. 

[25] mentions the advantage Sobel operator has over 
other edge detectors as it highlights the edges by making 
them thicker and brighter. The filter is also less sensitive to 
noise. The paper presents another critical observation that 
the time taken for parallel execution, MPI in this particular 
implementation, reduces drastically until the number of 
processors increases. However, after a threshold of three 
processors, the reduction in execution time is less significant. 
The authors suggest that this can be attributed to using a 
dual-core machine, and the threshold would be high if the 

experiment is conducted on a machine with more than two 
cores. 

[26] discusses a novel approach of using a 5 x 5 kernel 
rather than the usual 3 x 3 kernel used while applying a Sobel 
operator. The implementation was done in OpenCL using 
both CPU and GPU to calculate speed ups. The speedup 
achieved by the 5 x 5 kernel is almost the same as the 3 x 3 
kernel, and the paper states that further research should be 
carried out to get optimised results. Although the speedups 
were almost identical, the output images contained relatively 
better edges than outputs collected with the 3 x 3 kernel. 

Sobel operator, primarily as an edge detector, can have 
various applications, one of which can be in facial recognition, 
as is shown in [27]. This work shows that the filter helps 
determine the edge orientation, structure, and cancelling 
noise in identifying facial images. 

 

3. PARALLEL PROGRAMMING MODELS 
 

3.1 OpenMP 
 
OpenMP is a popular parallel programming library with 

compiler directives based on the SMP (shared memory 
processors) model. It uses the concept of threads to achieve 
parallelism. The main thread, also called the master thread, 
gets forked into multiple threads, called slave threads, when 
it encounters a parallel block in the program. OpenMP is 
flexible and helps programmers develop applications with 
ease because of its scalability. It is versatile and can be run on 
various operating systems, like Windows, macOS, Linux and 
Solaris, and various compilers, including GCC, Intel, IBM XL, 
and LLVM/Clang. OpenMP supports both fine-grained as well 
as coarse-grained parallelisation. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig – 1: OpenMP master-thread architecture 

The number of threads created depends upon the cores 
available in the system. The programmer can also set the 
number of threads manually. OpenMP has the feature of 
sharing variables among threads. All variables are given three 
primary data-sharing attributes; shared, private and default. 
These features in OpenMP tackle the problem of race 
conditions in parallel programming. Besides this, it can also 
synchronise among threads. The major synchronisations 
available are critical, atomic, ordered, barrier and no-wait. 
Loops can be parallelised with the help of work-sharing 
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constructs. It eases out considerable work for the 
programmer as it is straightforward and only requires 
specifying a few parameters. 

 

3.2 Pymp 
 

Pymp is an OpenMP-like tool in the Python programming 
language that helps in parallelisation. Programmers 
encounter the constraint of GIL, Global Interpreter Lock, that 
disallows carrying out multi-processing in Python using 
threads. Even though tools like Ctypes and Cython exist, 
which can run computationally intensive code outside Python 
language, they primarily bypass Python to achieve multi-
processing through threads. Pymp provides a way to 
circumvent GIL to perform threaded multi-processing in 
Python. To be specific, the operating system’s forking method 
is used by Pymp to circumvent GIL. It greatly assists in 
achieving significantly less overhead costs. Also, the results 
are achieved in the expected semantics. It has a similar 
master-slave architecture like OpenMP, as shown in Figure 1, 
and the forking happens when the compiler encounters a 
parallelisable block of code. Pymp has a unique feature of 
conditional parallelism, which helps deactivate parallelisation 
regardless of other settings with the constructor in its 
parallel region. Unlike OpenMP, when child processes are 
forked, the memories are referenced, not shared. This 
characteristic helps in keeping the process overheads low. 
The only downside Pymp poses is that the library can only 
operate on fork supported systems. 

It can achieve OpenMP-like parallelisation by using 
pymp.range and pymp.xrange statements. Like in OpenMP, 
one can manage the aspects of the code by using environment 
variables. It also has the flexibility of deciding the number of 
threads for the parallelisable blocks. The threads in Pymp are 
divided into a producer-consumer pattern, with the main 
thread being the producer and the rest of the threads acting 
as the consumer threads. 

 

4. EXPERIMENTAL SETUP 
 

An extensive and exhaustive review of existing literature on 
parallelisation reveals that many applications and 
implementation methods are extant. Since the concept of 
parallelism depends on various factors like the choice of 
compiler, computing language and even the choice of 
algorithm or problem statement, it is imperative to explore 
the impact these choices can have on a particular 
implementation. 
 

4.1 Algorithms Used 
 

The algorithm used in the experiment for Otsu 
segmentation is presented in Algorithm 1. 

ALGORITHM 1: OTSU SEGMENTATION ALGORITHM 
1 Input image 
2 Generate a histogram using 2D array 
3 Generate probability density using 2D array 
4 Generate Ω and µ 

5 Maximise inter-class variance 
6 Determine optimum threshold value 
7 Convert pixels with values more than threshold to 

white, otherwise black 
8 Output image 

The algorithm used in the experiment for Sobel edge 
detection is presented in Algorithm 2. 

ALGORITHM 2: SOBEL EDGE DETECTION ALGORITHM 
1 Input image 
2 Read the image into a 2D array 
3 Apply Kernel 1 on each pixel to get Gx  
4 Apply Kernel 2 on each pixel to get Gy 
5 Computer absolute value of each pixel in Gx 
6 Computer absolute value of each pixel in Gy 
7 Determine threshold value using Manhattan distance 
8 Convert pixels with values more than threshold to 

black, otherwise white 
9 Output image 

Usually, the threshold value is determined by Euclidean 
distance formula as shown by formula (1) 

 
 

 
But to achieve better performance, we will be 

compromising with the Manhattan distance formula as 
shown in formula (2). 
 
 

For the Sobel edge detection, the two 3x3 kernels used are 
represented in Figures 1 and 2. 

 

-1 0 1 

-2 0 2 

-1 0 1 

Fig – 2: Kernel 1 

1 2 1 

0 0 0 

-1 -2 -1 

Fig – 3: Kernel 2 
For the Sobel edge detection, the two 3x3 kernels used are 

represented in Figures 2 and 3. 

4.2 Dataset Used 
 

The input images for this experiment were picked with 
careful consideration, so they have both foreground and 
background. This helps in distinctly pursuing the detection 
and segmentation work carried out. All images that are being 
used in this experiment are in .pgm format. Images of 
different sizes are obtained in the .jpg format and then 
converted to .pgm format. All images are converted to make 

(1) 

(2) 
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the computations with the image easier as it creates a 2D 
grayscale image. The different image sizes that are exposed to 
the image processing programs are 100 x 100, 250 x 250, 500 
x 500, 1000 x 1000, 2000 x 2000, 2500 x 2500, 3000 x 3000, 
4000 x 4000 and 5000 x 5000. 

4.3 Hardware and Software Specifications 
  

All the experiments in this study were carried out in a 
single machine with Intel(R) Core(TM) i5-8250U CPU @ 
1.60GHz 1.80 GHz microprocessor. The RAM capacity was 
4GB, and experiments were carried out in Ubuntu Linux 64-
bit operating system. The compiler used was GCC compiler to 
run C and OpenMP programs as its performance 
improvements are higher than other C compilers like ICC and 
LLVM. For Python programs, Python version 3.6.9 was used. 
In order to implement parallel programming in Python, the 
pymp-pypi package was installed using pip install. 

 

5. PERFORMANCE METRICS 
 

In order to evaluate and compare the results obtained from 
our experiments, we will be using three performance metrics 
used in parallel computing. They are presented in this 
section. These metrics help in making inferences about the 
parallelism achieved. 

 

5.1 SpeedUp 
 
This performance metric provides us the relative benefit 

of parallelising a problem. It is defined as the ratio of time 
taken to execute a program sequentially to the time taken to 
execute the same program parallelly. The speedup formula is 
presented by formula (3). 

 
 

 

5.2 Efficiency 
 

This performance metric illustrates the utilisation of the 
processor. It is defined as the ratio of speedup achieved for 
solving a problem to the number of processors used to solve 
the problem. The efficiency formula is presented by the 
formula (4). 

 
 
 

5.3 Improvement 
 

This performance metric gives us the knowledge of the 
relative improvement in performance achieved by solving a 
problem in parallel rather than solving the same problem 
sequentially. It is defined as the ratio of the difference in 
execution time of parallel and sequential implementations of 
a problem to the sequential execution time of the problem. 
The improvement formula is presented by the formula (5). 

 
 

6. RESULTS AND DISCUSSIONS 
 
The obtained results are presented and visualised to get 
meaningful inferences from them. This section will outline 
the readings from the experiments carried out and discuss 
some essential observations of our study. 

 

6.1 Experimental Results 
 

These experimental results are based on the execution 
time of both algorithms in C and Python. The results 
presented are for 8 scales of different image sizes ranging 
from 100 x 100 to 5000 x 5000. Table 1 represents the 
execution time for parallel and sequential implementations in 
C and Python for Otsu segmentation. 

Table – 1: Execution time for Otsu segmentation in C and 
Python 

Size of Image C Sequential 
OpenMP 
Parallel 

Python 
Sequential 

Pymp 
Parallel 

100 X 100 0.0004 0.0005 0.0599 0.1109 

250 X 250 0.0010 0.0015 0.3569 0.2186 

500 X 500 0.0018 0.0269 1.4108 0.6552 

1000 X 1000 0.0062 0.0330 5.6340 2.8196 

2000 X 2000 0.0213 0.0590 22.9136 10.2911 

2500 X 2500 0.0318 0.0765 35.3827 17.5532 

3000 X 3000 0.0458 0.0934 51.7487 24.5988 

4000 X 4000 0.0775 0.1693 104.3175 49.5334 

5000 X 5000 0.1177 0.2015 121.6839 62.8480 

 

Table – 2: Execution time for Sobel edge detection in C and 
Python 

Size of Image 
C 

Sequential 
OpenMP 
Parallel 

Python 
Sequential 

Pymp 
Parallel 

100 X 100 0.0016 0.0013 0.9770 0.5123 

250 X 250 0.0018 0.0016 5.9509 1.8923 

500 X 500 0.0044 0.0026 29.3704 7.9721 

1000 X 1000 0.0147 0.0073 125.8100 38.9696 

2000 X 2000 0.0571 0.0245 458.0815 181.7700 

2500 X 2500 0.0877 0.0407 717.8653 280.2159 

3000 X 3000 0.1274 0.0523 1173.1765 444.1182 

4000 X 4000 0.2187 0.0899 1831.8895 737.4789 

5000 X 5000 0.3433 0.1442 3035.8576 1166.3124 

(3) 

(4) 

(5) 
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Table 2 represents the execution time for parallel and 
sequential implementations in C and Python for Sobel edge 
detection. 

Fig – 4: Input image 

Fig – 5: After Otsu segmentation 

We have also presented a sample of the results of the 
computation carried out. Figure 4 represents the input image 
of 3000 x 3000 that is exposed to image convolution. Figure 5 
represents the image after exposure to Otsu segmentation. 
Figure 6 represents the image after applying a Sobel edge 
detector. 

In order to get insights from the obtained results, we 
visualised the results in the form of line graphs. The line 

graphs are created for execution time vs image sizes. Chart 1 
shows the visualisation for Otsu segmentation using C, Chart 
2 shows the same for Otsu segmentation using Python, Chart 
3 shows Sobel edge detection using C and Chart 4 shows 
Sobel edge detection using Python. 

Fig – 6: After Sobel edge detection 

Chart – 1: Graph of execution time for Otsu 
segmentation using C 

 

6.2 Calculation of performance metrics 
 

To understand the level of parallelisation achieved by our 
experiment, we have calculated the values of performance 
metrics discussed in section 5. Table 3 illustrates the three 
performance metrics; speedup, efficiency and improvement 
for Otsu segmentation implemented in OpenMP and Pymp. 

Table 4 illustrates the performance metrics speedup, 
efficiency and improvement for Sobel edge detection 
implemented in OpenMP and Pymp. 

Charts 5 and 6 show a visualisation of the information 
presented in Table 4 for better perception. 
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Chart – 2: Graph of execution time for Otsu 
segmentation using Python 

The highest performance achieved in our experiment is a 
speedup of 3.6 by pymp while implementing Sobel edge 
detection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chart – 3: Graph of execution time for Sobel edge 
detection using C 

 

6.3 Observation and Inferences 
 

This section provides the observations and key insights 
obtained from the experiments conducted. Table 5 presents a 

Table – 3: Speedup, efficiency and improvement for Otsu segmentation implemented in OpenMP and Pymp 

Size of Images 
OpenMP Pymp 

Speedup Efficiency Improvement Speedup Efficiency Improvement 

100 X 100 0.7712 0.1928 -0.2967 0.5398 0.1350 -0.8525 

250 X 250 0.7036 0.1759 -0.4214 1.6322 0.4080 0.3873 

500 X 500 0.0666 0.0166 -14.0257 2.1531 0.5383 0.5356 

1000 X 1000 0.1883 0.0471 -4.3119 1.9982 0.4995 0.4995 

2000 X 2000 0.3616 0.0904 -1.7653 2.2266 0.5566 0.5509 

2500 X 2500 0.4155 0.1039 -1.4067 2.0157 0.5039 0.5039 

3000 X 3000 0.4904 0.1226 -1.0391 2.1037 0.5259 0.5246 

4000 X 4000 0.4578 0.1144 -1.1846 2.1060 0.5265 0.5252 

5000 X 5000 0.5843 0.1461 -0.7115 1.9362 0.4840 0.4835 

Table – 4: Speedup, efficiency and improvement for Sobel edge detection implemented in OpenMP and Pymp 

Size of Images 
OpenMP Pymp 

Speedup Efficiency Improvement Speedup Efficiency Improvement 

100 X 100 1.2676 0.3169 0.2111 1.9072 0.4768 0.4757 

250 X 250 1.1271 0.2818 0.1128 3.1448 0.7862 0.6820 

500 X 500 1.7208 0.4302 0.4189 3.6842 0.9210 0.7286 

1000 X 1000 2.0215 0.5054 0.5053 3.2284 0.8071 0.6903 

2000 X 2000 2.3288 0.5822 0.5706 2.5201 0.6300 0.6032 

2500 X 2500 2.1555 0.5389 0.5361 2.5618 0.6405 0.6097 

3000 X 3000 2.4371 0.6093 0.5897 2.6416 0.6604 0.6214 

4000 X 4000 2.4314 0.6079 0.5887 2.4840 0.6210 0.5974 

5000 X 5000 2.3810 0.5952 0.5800 2.6030 0.6507 0.6158 
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consolidated view of performance across both the image 
convolution techniques by calculating mean values of all the 
image sizes. 

 Chart – 4: Graph of execution time for Sobel edge 
detection using Python 

Chart – 5: Graph for speedup comparison 

Chart – 6: Graph for efficiency comparison 

Graphs in the Chart 7 for Otsu segmentation and Chart 8 
for Sobel Edge Detection present the findings from Table 5 
for better comparison. 

 Chart – 7: Mean performance metric of all image sizes 
for Otsu segmentation 

Chart – 8: Mean performance metric of all image sizes 
for Sobel edge detection 

The first and foremost inference that can be made is that 
the execution time for both image convolution techniques is 
significantly less while it is implemented in C when compared 
to Python. This phenomenon can be attributed to the fact that 
Python is a very high-level programming language and takes 
more execution time for the same task. Although the time 
taken by Python is more, we can observe that the 
performance of Python Pymp is significantly better than 
OpenMP. Pymp can bring down the computation time to a 
greater extent when parallelised than OpenMP. Thus we can 
summarise that Python Pymp parallelises tasks better than 
OpenMP. 

Another important observation to be discussed is that 
Otsu segmentation’s sequential implementation in C takes 
less time than its parallel implementation, as shown in Figure 
6. Because of this, Otsu’s OpenMP speedup is below one, and 
the improvement is negative. This could be due to overhead 
costs associated with it. Otsu implementation requires 
creating and maintaining more threads, and hence it is prone 
to higher overhead costs. 

Even the readings for the 100 x 100 image in Otsu 
segmentation done with Python had sequential time lesser 
than parallel time. The problem was not big enough for Pymp 
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to make some merit over its sequential counterpart. The time 
involved in thread creation and management took longer 
than the actual parallelisation. 

Furthermore, we can interpret from Charts 1, 2 and 3 that 
the amount of parallelisation achieved increases with the 
increase in image size. In other words, more time is being 
saved by parallelising a bigger image than parallelising a 
smaller one. 

6.4 Future Scope 
 

As discussed in the observations and inferences, the time 
taken for sequential execution of Otsu segmentation was less 
than that for parallel execution. OpenMP sometimes provides 
the disadvantages of high overheads. A potential area of 
study would be to clearly identify the problem associated 
with it and develop an algorithm for Otsu segmentation 
optimised for parallel execution. This research could also be 
extended to other parallel programming frameworks using 
GPU. In our future works, we aim to extend the study to CUDA 
and OpenCL-based implementations and study their 
behaviour on more image convolution operations. We also 
aim at expanding our study with images of higher resolution, 
more than 5000 x 5000. 

 

7. CONCLUSION 
 
In recent years, parallel programming has become a vital 
part of digital image processing, owing to multiple 
advantages like faster execution and utilising all the 
computer resources available. Many tools and frameworks 
are now available for enthusiasts trying to speed up their 
problem-solving tasks, out of which we have studied and 
compared two for image convolution: OpenMP and Pymp. 
These interfaces were compared for two algorithms, Otsu 
segmentation and Sobel edge detection. We carried out 
experiments for nine images of different sizes and tabulated 
the time taken to execute sequentially and parallelly. The 
readings were visualised using graphs to generate 
meaningful insights. We observed that, generally, 
implementation in Python took a longer time than C. It can 
be because Python is a high-level language and requires 
more time to break down into low-level code blocks. Both 
OpenMP and Pymp are prone to overheads when exposed to 
computationally less challenging tasks or a small dataset. 
Pymp in Python performs better parallelisation of a problem 
than OpenMP. On average, Pymp exhibited a speedup of 
about 2.75 for Otsu segmentation and about 1.86 for Sobel 
edge detection. In contrast, OpenMP was only able to achieve 
a speedup of 1.98 for Otsu segmentation. In Sobel edge 
detection, the speedup was less than one since sequential 
implementation ran faster, owing to the lack of any 
overheads. In the future, we aim at extending our study to 
more parallel programming tools and would also like to 
explore the effect of these tools on more complex image 
convolution techniques. 
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