
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 54

A Comparative Analysis of Parallelisation Using OpenMP and Pymp for

Image Convolution

Awani Kendurkar1, Mohith J2

1School of Information Technology and Engineering, Vellore Institute of Technology, Tamil Nadu, India.
2School of Computer Science and Engineering, Vellore Institute of Technology, Tamil Nadu, India.

---***--
Abstract - The introduction of multi-core processing into
the realm of digital image processing has opened up avenues
for faster execution of computationally intensive processes,
like image convolutions. However, not all interfaces that
provide multi-threading work in the same way. In this paper,
we aim to study and parallelise two fundamental algorithms
of digital image processing: Otsu segmentation and Sobel edge
detection. Otsu's algorithm is a popular method that segments
the pixels of an image into either foreground or background.
Sobel filter, on the other hand, is widely used for edge
detection. It classifies the image pixels into either edge or non-
edge pixels and produces an output image that emphasises the
edges. We use OpenMP and Pymp, an interface that aims at
bringing OpenMP-like functionality to Python for
parallelisation. We use nine images of increasing pixel sizes to
perform convolution and compare OpenMP and Pymp. We also
visualise our findings and use three performance metrics for
comparison.

Key Words: Digital Image Processing; Image
convolution; OpenMP; Otsu segmentation; Parallel
Programming; Pymp; Sobel edge detection

1. INTRODUCTION

Parallel computing is becoming increasingly ubiquitous,
especially since the advent of multi-core workstations. It is
the simultaneous use of multiple computer resources to
achieve a computationally intensive task. In simpler words,
the task at hand is broken down into smaller sub-parts that
can be performed individually, and then the results are
combined upon completion. The parallel processing
paradigm involves instantaneous utilisation of computer
hardware to overcome memory constraints or to reduce the
execution time effectively. Imagining a world without
parallel processors today is next to impossible; all our
smartphones and laptops are equipped with multi-
processors. Thanks to these, most digital tasks are now
accomplished in less than microseconds. Rapid advancement
in this field has led to the invention of new programming
languages and frameworks to parallelise the tasks that were
previously coded sequentially. Being a new domain of study
that has evolved massively in the past decade, there is a
heightened curiosity to explore different tools and find out
which tool is best for what application.

Parallel programming employs one of these three
architectures: shared, distributed or hybrid memory
architecture. Shared memory design refers to computers
that use multiple processors but common memory
resources. On the other hand, in distributed memory design,
each processor has a designated memory. These are all
usually connected over a network. Hybrid memory design
amalgamates both shared and distributed memory types of
design; in fact, most distributed networks are technically
hybrid.

One of the most commonly used programming interfaces for
parallelisation is OpenMP (Open Multi-Processing). It
supports cross-platform shared memory parallel
programming in languages like C, C++ and Fortran by using
compiler directives, library routines and environment
variables that govern run-time behaviour. Python
enthusiasts have long tried to achieve parallelisation by
multi-threading, but this is prohibited by GIL (global
interpreter lock). Pymp is one such tool that brings OpenMP-
like functionality to Python. While many other programming
interfaces are extant in facilitating multi-processing, this
paper focuses on OpenMP and Pymp. We choose OpenMP
and Pymp because of their similar architecture and compare
their performances when exposed to similar applications.

While there is a varying degree of potential in parallel
processing applications, image convolution provides an
inherent existence of parallelism. It is a critical operation in
image processing, widely used for sharpening, smoothing,
and edge detection. The fact that it is highly computationally
intensive calls for parallel utilisation of computer resources.
Its idea is linked to matrix multiplication, which is
computationally costly, particularly in two-dimensional (2-
D) convolution. The kernel may be split in some filters, such
as Gaussian and Sobel, and 2-D convolution can be done as
two 1-D convolutions, which is more economical [1]. On top
of that, image quality is getting better each day, and high-
resolution images need to be processed and stored on a daily
basis for various applications. It would be apt to say that its
relevance has been increasing exponentially in the last
couple of years, its applications ranging from medicine to
defence purposes. Segmentation and texture analysis are
widely used for cancer and other disorder identifications.
Digital image processing has been consistently used in
military and security applications such as small target
identification and tracking, missile guidance, vehicle
navigation, broad area surveillance, and automatic/aided

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 55

target recognition. Many intelligent home systems or smart
city systems employ image processing algorithms for
intrusion detection or other purposes.

The Otsu image segmentation algorithm returns a single
intensity threshold, determined by minimising intra-class
intensity variance, which effectively separates pixels into
two segments: foreground and background. The Sobel filter
is an algorithm that creates an output image out of the input
image, emphasising the edges by convolving the image with
a small, separable, and integer-valued filter in the horizontal
and vertical directions. These two algorithms were chosen as
the focus of this paper for parallelisation since they are basic
omnipresent algorithms in image processing. They also
happen to possess inherent parallelism, which can be
exploited to compare the performances of OpenMP and
Pymp.

This work aims to compare the time taken to execute by
OpenMP and Pymp when Otsu segmentation and Sobel edge
detection algorithms are implemented. This comparison is
made by calculating various performance metrics like
speedup, efficiency and performance. Meaningful insights
derived from graphical interpretations are analysed and
discussed further.

This paper is organised as follows. Section 2 reviews related
works on parallelisation in general, and more specifically, in
image convolution. Existing literature on OpenMP, Pymp,
Otsu thresholding and Sobel filter is reviewed as well.
Section 3 elaborates on the parallel programming models
that our experiments will be employing. Section 4 discusses
the experimental setup, hardware and software
specifications. Section 5 explains the performance metrics
using which we will be comparing OpenMP and Pymp.
Section 6 presents the experiment results and then discusses
inferences. Finally, the conclusion is outlined in Section 7.

2. RELATED WORKS

An extensive and exhaustive review of existing literature on
parallelisation reveals that many applications and
implementation methods are extant. Since the concept of
parallelism depends on various factors like the choice of
compiler, computing language and even the choice of
algorithm or problem statement, it is imperative to explore
the impact these choices can have on a particular
implementation.

2.1 Parallelisation of Image Convolution
Algorithms

[2] elaborates convolution using procedural programming
paradigm and object-oriented programming languages.
Procedural programming produced better results compared
to object-oriented in C++ implementations. The experimental
results also show that Java has a shorter response time when
compared to C++’s object-oriented implementation when

parallelised. However, when compared to their sequential
versions, object-oriented C++ had a better response time. The
authors attribute this finding to better thread utilisation in
Java. Furthermore, the parallelisation that was combined
with concurrency was outperformed by pure parallelism.

[1] used compilers like ICC, GCC and LLVM to carry out 2D
convolution on both single-core and multi-core. The
implementations were done on OpenCV, OpenMP and
Compilers Automatic vectorisation. The experimental results
were obtained using three different sets of kernels of varying
sizes. They suggest that the performance of GCC has much
more significant improvement when compared to other
compilers, with LLVM having no improvement between
single-core and multi-core results.

[3] tries to make comparisons between image level and
operational level parallelism. In operational level parallelism,
different images are given to different cores, whereas in
image level parallelism, the processing of one image is shared
among different cores. Various image convolution techniques
were applied to the image to make observations for this. The
results favoured image-level parallelism as it is found to have
higher speedups than operational level parallelism.

The performance of OpenCL implementations is
comparatively less than OpenMP by a factor of two as per
experimental observations in [4]. This finding can be
attributed to very few overhead costs associated with
OpenMP. In their experiments, GPRM implementation
achieved the best performance for the largest images, and
this is due to the fixed overhead costs associated with the
model. Due to the same reason, the GPRM model is not
suitable for small images. Even from [5], the findings suggest
that OpenMP is the best parallel computing framework when
computing resources like cores and memory are sufficient.
MPI should be considered while dealing with moderate data
size problems and for computationally very intensive
problems. However, MapReduce could be the best framework
to use when the dataset size is vast and if the computation
does not require iterative processing. However, MapReduce’s
structure is less flexible relative to MPI. Hence, it is better to
choose MPI when the program is being implemented in a
distributed and parallel manner. The fundamental difference
is using multiple cores for parallelising in MPI, while CUDA
uses multiple accelerating units (GPUs), as mentioned in [6].
It also discusses the existence of hybrid models that reduce
the execution time by a significant amount.

In experiments conducted in [7], parallel models have
been implemented in Java, based on thread, message passing,
and their hybrid. Threading proved to be an efficient method
among the other two when tested on small datasets.
However, when the dataset size is doubled, message passing
gives the best performance. The hybrid model was slow in
these experiments and did not show any significant
performance improvement.

Another meaningful discussion that should be considered
is programming productivity. In [8], the experiments were
conducted using different analytical software tools to
determine the programming productivity. The parallelisation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 56

of code to some extent depends on the human factor too.
However, the obtained results suggest that OpenCL requires
more effort than OpenMP and OpenACC. With OpenMP being
the one that requires minimal effort for programming. While
this is true, discussions in [9] suggest that Phoenix++ needs
less programming efforts than OpenMP, especially in
application-oriented implementations. However, OpenMP
remains unbeatable when it comes to performance and has
significant speedup over Phoenix++.

2.2 OpenMP Implementations

[10] gives a relatively simple implementation of
parallelism in image processing. It is implemented using
OpenMP, and grey-scale images of size 3200 X 3200 are used.
A speedup of 2.348 is achieved for a dual-core processor. A
quad-core server is also used to experiment, and it attains a
speedup of 4.452. The effect of increasing the number of
threads used is analysed, and findings indicate that the
computation time decreases when the number of threads is
increased from 2 to 4. However, the subsequent increase in
the number of threads causes the computation time to
increase.

[11] proposes a parallel scheme for implementing a
general FFT based algorithm for 2D convolutions. It further
discusses the various costs involved, like computation,
communication and load-balancing costs. An analysis of
various levels of parallelism reveals the choice of exploiting
the natural decomposition of the larger image into smaller
sub-images. The use of IDL, OpenMP, and VSIPL gives an
almost linearly increasing speedup as the number of
processors increases.

[12] presents a practical approach to implement a parallel
two-dimensional least mean square (TDLMS) filter in the
spatial domain using OpenMP and C++. It is an adaptive
image filter based on TDLMS, which means it is pixel-wise
dependent and high computing power demanding. The
primary approach is to split a given image into equal sub-
blocks, each processed by the parallel running threads. The
performance is examined using the speedup metric, the ratio
of filtering durations for sequential and parallel
implementations, respectively. The parallel implementation
is realised using 2, 4 and 6 cores on images with sizes 512 x
512, 1024 x 1024 and 2048 x 2048. The speedup obtained is
close to 1.9, 3.9 and 5.8, respectively, with sequential
implementation using single-core.

[13] compares the performances of OpenMP and OpenCL
in four different algorithms: matrix multiplication, n-queens
problem, image convolution and string reversal. The speedup
in the case of OpenMP remains constant when matrix
multiplication is done with increasing matrix order, whereas
that of OpenCL increases. Coming to the common problem of
n-queens, an increased speedup in OpenCL when the number
of queens is increased is observed, while the OpenMP
implementation was not considered. OpenMP is better suited
to image convolution than OpenCL, owing to background
processes like kernel creation (seq/MP = 10.2, seq/CL =
0.53). String reversal requires OpenMP to run in its critical
condition, which results in no performance improvement.

Moreover, OpenCL is also unsuitable since it takes more time
than sequential processing. [13] concludes that OpenCL ranks
first performance-wise, followed by OpenMP and sequential
processing.

[14] explores the performance enhancement offered by
parallel processing using two tools: TBB (Threading Building
Blocks) and OpenMP. The choice of algorithm is cubic
convolution interpolation, and both dual-core and quad-core
processors are used for parallel implementations. Two
experiments conducted reveal that in dual-core processors,
the speedups offered by TBB and OpenMP are 1.646 and 1.99,
respectively, whereas, in the case of quad-core processors,
the speedups are 3.289 and 3.807, respectively. It can be
concluded that OpenMP is more suitable in the application of
cubic convolution interpolation.

[15] uses parallel computation in a different scenario. A
sequential calculation process focusing on the IR signature of
an aerial object caused by reflection and radiation from the
Earth’s surface and the atmosphere is infeasible. This work
presents parallelism to calculate the reflection of background
radiation incidents from different directions in each spectral
wavelength. It is implemented using OpenMP, OpenACC and
CUDA, and their performances are compared. The speedup
achieved with OpenMP is low for fewer threads but increases
as the number of threads increases. OpenACC gives a speedup
of approximately 140, whereas a naive implementation of
CUDA gives a speedup of 295. Other implementations of
CUDA may drive the speedup to as high as 426.

A performance evaluation is presented in [16] using time
of execution, speedup and efficiency as performance metrics.
The implementation is done for the matrix multiplication
algorithm on a dual-core processor using two threads. From a
range of 10 to 5000 for the matrix size, the speedup ranges
from 0.168 to 2.224. Furthermore, the findings suggest that
parallelism is only effective when the matrix size is greater
than 50 X 50.

2.3 Pymp Implementations

[17] proposes a parallel algorithm for median filtering
that uses Python and a multi-core processor architecture
with the help of the pymp library. It aims to decrease time
consumption using shared memory and multi-threading. The
findings indicate that Python takes less time than C for
median filtering when single-core is used. However, multi-
core gives different results; for lower image sizes (512 x 512,
1024 x 1024), C performs better, but Python becomes more
effective as the image size increases. Furthermore, Python
gives an increasing speedup of 1.422, 2.465 and 4.279 when a
quad-core processor is used for image size 512 x 512, 1024 x
1024 and 2048 x 2048, respectively. Pymp can have various
applications, one of which can be in artificial intelligence, as is
shown in [18]. This work uses parallel computation for face
recognition and employs Pymp for a multi-processing library.

2.4 Otsu Implementations

Segmentation is an essential technique in digital image

processing that bifurcates pixels into sets of different pixels.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 57

Otsu is one such segmentation algorithm that identifies two
sets of pixels; background and foreground pixels. Otsu uses
image thresholding to transform the digital grey level in
binary form as per [19]. Unlike K-means, where thresholding
is localised, Otsu uses global thresholding to classify the
backgrounds and foregrounds.

Otsu Canny edge detection, discussed in [20], presents the
optimised Otsu segmentation that effectively classifies pixels
as either edge or non-edge pixels. It has three more stages to
be undergone before the thresholding, which helps build an
effective model compared to its traditional implementation.
The parallel implementation done using Hadoop in this paper
reveals increasing speedup when parallelised for bigger
image sizes.

[21] presents an in-depth review of Otsu’s method for
image thresholding. The method is discussed in detail,
followed by a review of other literature. The flow is
segmented into four phases: input of 2D image, conversion to
grayscale, then histogram and finally thresholding.

[22] emphasises the importance of using a clean dataset
while exposing it to Otsu binary segmentation. The paper
discusses the parallelised implementation of Otsu using GPU,
which is programmed in CUDA. It discusses many
performance metrics, like F-measure, peak-signal-to-noise
ratio, negative-rate metric and information-to-noise
difference.

[23] makes use of OpenMP to write multi-threaded
applications for image segmentation in plant species
classification. The Canny-Edge detector and Otsu
thresholding methods are used and compared for their
efficiency in a quad-core processor. The implementation of
parallelism in both methods is discussed. Experiments reveal
an increasing speedup for both implementations when the
number of cores is increased. It is important to note that
Canny-Edge implementation of coarse parallelism gives more
speedup than Otsu’s coarse-grain.

2.5 Sobel Implementations

The Sobel operator is a fundamental, efficient and popular

image convolution technique for edge detection. The operator
carries out its function by calculating a gradient of the 2D
grayscale image fed. As described in [24], the operator has
two convolution masks that determine the horizontal and
vertical gradients, Gx and Gy, respectively, at each point.
These kernels are just 90-degree rotations of each other. The
approximate absolute gradient is determined by combining
the horizontal and vertical gradients.

[25] mentions the advantage Sobel operator has over
other edge detectors as it highlights the edges by making
them thicker and brighter. The filter is also less sensitive to
noise. The paper presents another critical observation that
the time taken for parallel execution, MPI in this particular
implementation, reduces drastically until the number of
processors increases. However, after a threshold of three
processors, the reduction in execution time is less significant.
The authors suggest that this can be attributed to using a
dual-core machine, and the threshold would be high if the

experiment is conducted on a machine with more than two
cores.

[26] discusses a novel approach of using a 5 x 5 kernel
rather than the usual 3 x 3 kernel used while applying a Sobel
operator. The implementation was done in OpenCL using
both CPU and GPU to calculate speed ups. The speedup
achieved by the 5 x 5 kernel is almost the same as the 3 x 3
kernel, and the paper states that further research should be
carried out to get optimised results. Although the speedups
were almost identical, the output images contained relatively
better edges than outputs collected with the 3 x 3 kernel.

Sobel operator, primarily as an edge detector, can have
various applications, one of which can be in facial recognition,
as is shown in [27]. This work shows that the filter helps
determine the edge orientation, structure, and cancelling
noise in identifying facial images.

3. PARALLEL PROGRAMMING MODELS

3.1 OpenMP

OpenMP is a popular parallel programming library with

compiler directives based on the SMP (shared memory
processors) model. It uses the concept of threads to achieve
parallelism. The main thread, also called the master thread,
gets forked into multiple threads, called slave threads, when
it encounters a parallel block in the program. OpenMP is
flexible and helps programmers develop applications with
ease because of its scalability. It is versatile and can be run on
various operating systems, like Windows, macOS, Linux and
Solaris, and various compilers, including GCC, Intel, IBM XL,
and LLVM/Clang. OpenMP supports both fine-grained as well
as coarse-grained parallelisation.

Fig – 1: OpenMP master-thread architecture

The number of threads created depends upon the cores
available in the system. The programmer can also set the
number of threads manually. OpenMP has the feature of
sharing variables among threads. All variables are given three
primary data-sharing attributes; shared, private and default.
These features in OpenMP tackle the problem of race
conditions in parallel programming. Besides this, it can also
synchronise among threads. The major synchronisations
available are critical, atomic, ordered, barrier and no-wait.
Loops can be parallelised with the help of work-sharing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 58

constructs. It eases out considerable work for the
programmer as it is straightforward and only requires
specifying a few parameters.

3.2 Pymp

Pymp is an OpenMP-like tool in the Python programming
language that helps in parallelisation. Programmers
encounter the constraint of GIL, Global Interpreter Lock, that
disallows carrying out multi-processing in Python using
threads. Even though tools like Ctypes and Cython exist,
which can run computationally intensive code outside Python
language, they primarily bypass Python to achieve multi-
processing through threads. Pymp provides a way to
circumvent GIL to perform threaded multi-processing in
Python. To be specific, the operating system’s forking method
is used by Pymp to circumvent GIL. It greatly assists in
achieving significantly less overhead costs. Also, the results
are achieved in the expected semantics. It has a similar
master-slave architecture like OpenMP, as shown in Figure 1,
and the forking happens when the compiler encounters a
parallelisable block of code. Pymp has a unique feature of
conditional parallelism, which helps deactivate parallelisation
regardless of other settings with the constructor in its
parallel region. Unlike OpenMP, when child processes are
forked, the memories are referenced, not shared. This
characteristic helps in keeping the process overheads low.
The only downside Pymp poses is that the library can only
operate on fork supported systems.

It can achieve OpenMP-like parallelisation by using
pymp.range and pymp.xrange statements. Like in OpenMP,
one can manage the aspects of the code by using environment
variables. It also has the flexibility of deciding the number of
threads for the parallelisable blocks. The threads in Pymp are
divided into a producer-consumer pattern, with the main
thread being the producer and the rest of the threads acting
as the consumer threads.

4. EXPERIMENTAL SETUP

An extensive and exhaustive review of existing literature on
parallelisation reveals that many applications and
implementation methods are extant. Since the concept of
parallelism depends on various factors like the choice of
compiler, computing language and even the choice of
algorithm or problem statement, it is imperative to explore
the impact these choices can have on a particular
implementation.

4.1 Algorithms Used

The algorithm used in the experiment for Otsu
segmentation is presented in Algorithm 1.

ALGORITHM 1: OTSU SEGMENTATION ALGORITHM
1 Input image
2 Generate a histogram using 2D array
3 Generate probability density using 2D array
4 Generate Ω and µ

5 Maximise inter-class variance
6 Determine optimum threshold value
7 Convert pixels with values more than threshold to

white, otherwise black
8 Output image

The algorithm used in the experiment for Sobel edge
detection is presented in Algorithm 2.

ALGORITHM 2: SOBEL EDGE DETECTION ALGORITHM
1 Input image
2 Read the image into a 2D array
3 Apply Kernel 1 on each pixel to get Gx
4 Apply Kernel 2 on each pixel to get Gy
5 Computer absolute value of each pixel in Gx
6 Computer absolute value of each pixel in Gy
7 Determine threshold value using Manhattan distance
8 Convert pixels with values more than threshold to

black, otherwise white
9 Output image

Usually, the threshold value is determined by Euclidean
distance formula as shown by formula (1)

But to achieve better performance, we will be

compromising with the Manhattan distance formula as
shown in formula (2).

For the Sobel edge detection, the two 3x3 kernels used are
represented in Figures 1 and 2.

-1 0 1

-2 0 2

-1 0 1

Fig – 2: Kernel 1

1 2 1

0 0 0

-1 -2 -1

Fig – 3: Kernel 2
For the Sobel edge detection, the two 3x3 kernels used are

represented in Figures 2 and 3.

4.2 Dataset Used

The input images for this experiment were picked with
careful consideration, so they have both foreground and
background. This helps in distinctly pursuing the detection
and segmentation work carried out. All images that are being
used in this experiment are in .pgm format. Images of
different sizes are obtained in the .jpg format and then
converted to .pgm format. All images are converted to make

(1)

(2)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 59

the computations with the image easier as it creates a 2D
grayscale image. The different image sizes that are exposed to
the image processing programs are 100 x 100, 250 x 250, 500
x 500, 1000 x 1000, 2000 x 2000, 2500 x 2500, 3000 x 3000,
4000 x 4000 and 5000 x 5000.

4.3 Hardware and Software Specifications

All the experiments in this study were carried out in a
single machine with Intel(R) Core(TM) i5-8250U CPU @
1.60GHz 1.80 GHz microprocessor. The RAM capacity was
4GB, and experiments were carried out in Ubuntu Linux 64-
bit operating system. The compiler used was GCC compiler to
run C and OpenMP programs as its performance
improvements are higher than other C compilers like ICC and
LLVM. For Python programs, Python version 3.6.9 was used.
In order to implement parallel programming in Python, the
pymp-pypi package was installed using pip install.

5. PERFORMANCE METRICS

In order to evaluate and compare the results obtained from
our experiments, we will be using three performance metrics
used in parallel computing. They are presented in this
section. These metrics help in making inferences about the
parallelism achieved.

5.1 SpeedUp

This performance metric provides us the relative benefit

of parallelising a problem. It is defined as the ratio of time
taken to execute a program sequentially to the time taken to
execute the same program parallelly. The speedup formula is
presented by formula (3).

5.2 Efficiency

This performance metric illustrates the utilisation of the
processor. It is defined as the ratio of speedup achieved for
solving a problem to the number of processors used to solve
the problem. The efficiency formula is presented by the
formula (4).

5.3 Improvement

This performance metric gives us the knowledge of the
relative improvement in performance achieved by solving a
problem in parallel rather than solving the same problem
sequentially. It is defined as the ratio of the difference in
execution time of parallel and sequential implementations of
a problem to the sequential execution time of the problem.
The improvement formula is presented by the formula (5).

6. RESULTS AND DISCUSSIONS

The obtained results are presented and visualised to get
meaningful inferences from them. This section will outline
the readings from the experiments carried out and discuss
some essential observations of our study.

6.1 Experimental Results

These experimental results are based on the execution
time of both algorithms in C and Python. The results
presented are for 8 scales of different image sizes ranging
from 100 x 100 to 5000 x 5000. Table 1 represents the
execution time for parallel and sequential implementations in
C and Python for Otsu segmentation.

Table – 1: Execution time for Otsu segmentation in C and
Python

Size of Image C Sequential
OpenMP
Parallel

Python
Sequential

Pymp
Parallel

100 X 100 0.0004 0.0005 0.0599 0.1109

250 X 250 0.0010 0.0015 0.3569 0.2186

500 X 500 0.0018 0.0269 1.4108 0.6552

1000 X 1000 0.0062 0.0330 5.6340 2.8196

2000 X 2000 0.0213 0.0590 22.9136 10.2911

2500 X 2500 0.0318 0.0765 35.3827 17.5532

3000 X 3000 0.0458 0.0934 51.7487 24.5988

4000 X 4000 0.0775 0.1693 104.3175 49.5334

5000 X 5000 0.1177 0.2015 121.6839 62.8480

Table – 2: Execution time for Sobel edge detection in C and
Python

Size of Image
C

Sequential
OpenMP
Parallel

Python
Sequential

Pymp
Parallel

100 X 100 0.0016 0.0013 0.9770 0.5123

250 X 250 0.0018 0.0016 5.9509 1.8923

500 X 500 0.0044 0.0026 29.3704 7.9721

1000 X 1000 0.0147 0.0073 125.8100 38.9696

2000 X 2000 0.0571 0.0245 458.0815 181.7700

2500 X 2500 0.0877 0.0407 717.8653 280.2159

3000 X 3000 0.1274 0.0523 1173.1765 444.1182

4000 X 4000 0.2187 0.0899 1831.8895 737.4789

5000 X 5000 0.3433 0.1442 3035.8576 1166.3124

(3)

(4)

(5)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 60

Table 2 represents the execution time for parallel and
sequential implementations in C and Python for Sobel edge
detection.

Fig – 4: Input image

Fig – 5: After Otsu segmentation

We have also presented a sample of the results of the
computation carried out. Figure 4 represents the input image
of 3000 x 3000 that is exposed to image convolution. Figure 5
represents the image after exposure to Otsu segmentation.
Figure 6 represents the image after applying a Sobel edge
detector.

In order to get insights from the obtained results, we
visualised the results in the form of line graphs. The line

graphs are created for execution time vs image sizes. Chart 1
shows the visualisation for Otsu segmentation using C, Chart
2 shows the same for Otsu segmentation using Python, Chart
3 shows Sobel edge detection using C and Chart 4 shows
Sobel edge detection using Python.

Fig – 6: After Sobel edge detection

Chart – 1: Graph of execution time for Otsu
segmentation using C

6.2 Calculation of performance metrics

To understand the level of parallelisation achieved by our
experiment, we have calculated the values of performance
metrics discussed in section 5. Table 3 illustrates the three
performance metrics; speedup, efficiency and improvement
for Otsu segmentation implemented in OpenMP and Pymp.

Table 4 illustrates the performance metrics speedup,
efficiency and improvement for Sobel edge detection
implemented in OpenMP and Pymp.

Charts 5 and 6 show a visualisation of the information
presented in Table 4 for better perception.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 61

Chart – 2: Graph of execution time for Otsu
segmentation using Python

The highest performance achieved in our experiment is a
speedup of 3.6 by pymp while implementing Sobel edge
detection.

Chart – 3: Graph of execution time for Sobel edge
detection using C

6.3 Observation and Inferences

This section provides the observations and key insights
obtained from the experiments conducted. Table 5 presents a

Table – 3: Speedup, efficiency and improvement for Otsu segmentation implemented in OpenMP and Pymp

Size of Images
OpenMP Pymp

Speedup Efficiency Improvement Speedup Efficiency Improvement

100 X 100 0.7712 0.1928 -0.2967 0.5398 0.1350 -0.8525

250 X 250 0.7036 0.1759 -0.4214 1.6322 0.4080 0.3873

500 X 500 0.0666 0.0166 -14.0257 2.1531 0.5383 0.5356

1000 X 1000 0.1883 0.0471 -4.3119 1.9982 0.4995 0.4995

2000 X 2000 0.3616 0.0904 -1.7653 2.2266 0.5566 0.5509

2500 X 2500 0.4155 0.1039 -1.4067 2.0157 0.5039 0.5039

3000 X 3000 0.4904 0.1226 -1.0391 2.1037 0.5259 0.5246

4000 X 4000 0.4578 0.1144 -1.1846 2.1060 0.5265 0.5252

5000 X 5000 0.5843 0.1461 -0.7115 1.9362 0.4840 0.4835

Table – 4: Speedup, efficiency and improvement for Sobel edge detection implemented in OpenMP and Pymp

Size of Images
OpenMP Pymp

Speedup Efficiency Improvement Speedup Efficiency Improvement

100 X 100 1.2676 0.3169 0.2111 1.9072 0.4768 0.4757

250 X 250 1.1271 0.2818 0.1128 3.1448 0.7862 0.6820

500 X 500 1.7208 0.4302 0.4189 3.6842 0.9210 0.7286

1000 X 1000 2.0215 0.5054 0.5053 3.2284 0.8071 0.6903

2000 X 2000 2.3288 0.5822 0.5706 2.5201 0.6300 0.6032

2500 X 2500 2.1555 0.5389 0.5361 2.5618 0.6405 0.6097

3000 X 3000 2.4371 0.6093 0.5897 2.6416 0.6604 0.6214

4000 X 4000 2.4314 0.6079 0.5887 2.4840 0.6210 0.5974

5000 X 5000 2.3810 0.5952 0.5800 2.6030 0.6507 0.6158

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 62

consolidated view of performance across both the image
convolution techniques by calculating mean values of all the
image sizes.

 Chart – 4: Graph of execution time for Sobel edge
detection using Python

Chart – 5: Graph for speedup comparison

Chart – 6: Graph for efficiency comparison

Graphs in the Chart 7 for Otsu segmentation and Chart 8
for Sobel Edge Detection present the findings from Table 5
for better comparison.

 Chart – 7: Mean performance metric of all image sizes
for Otsu segmentation

Chart – 8: Mean performance metric of all image sizes
for Sobel edge detection

The first and foremost inference that can be made is that
the execution time for both image convolution techniques is
significantly less while it is implemented in C when compared
to Python. This phenomenon can be attributed to the fact that
Python is a very high-level programming language and takes
more execution time for the same task. Although the time
taken by Python is more, we can observe that the
performance of Python Pymp is significantly better than
OpenMP. Pymp can bring down the computation time to a
greater extent when parallelised than OpenMP. Thus we can
summarise that Python Pymp parallelises tasks better than
OpenMP.

Another important observation to be discussed is that
Otsu segmentation’s sequential implementation in C takes
less time than its parallel implementation, as shown in Figure
6. Because of this, Otsu’s OpenMP speedup is below one, and
the improvement is negative. This could be due to overhead
costs associated with it. Otsu implementation requires
creating and maintaining more threads, and hence it is prone
to higher overhead costs.

Even the readings for the 100 x 100 image in Otsu
segmentation done with Python had sequential time lesser
than parallel time. The problem was not big enough for Pymp

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 63

to make some merit over its sequential counterpart. The time
involved in thread creation and management took longer
than the actual parallelisation.

Furthermore, we can interpret from Charts 1, 2 and 3 that
the amount of parallelisation achieved increases with the
increase in image size. In other words, more time is being
saved by parallelising a bigger image than parallelising a
smaller one.

6.4 Future Scope

As discussed in the observations and inferences, the time
taken for sequential execution of Otsu segmentation was less
than that for parallel execution. OpenMP sometimes provides
the disadvantages of high overheads. A potential area of
study would be to clearly identify the problem associated
with it and develop an algorithm for Otsu segmentation
optimised for parallel execution. This research could also be
extended to other parallel programming frameworks using
GPU. In our future works, we aim to extend the study to CUDA
and OpenCL-based implementations and study their
behaviour on more image convolution operations. We also
aim at expanding our study with images of higher resolution,
more than 5000 x 5000.

7. CONCLUSION

In recent years, parallel programming has become a vital
part of digital image processing, owing to multiple
advantages like faster execution and utilising all the
computer resources available. Many tools and frameworks
are now available for enthusiasts trying to speed up their
problem-solving tasks, out of which we have studied and
compared two for image convolution: OpenMP and Pymp.
These interfaces were compared for two algorithms, Otsu
segmentation and Sobel edge detection. We carried out
experiments for nine images of different sizes and tabulated
the time taken to execute sequentially and parallelly. The
readings were visualised using graphs to generate
meaningful insights. We observed that, generally,
implementation in Python took a longer time than C. It can
be because Python is a high-level language and requires
more time to break down into low-level code blocks. Both
OpenMP and Pymp are prone to overheads when exposed to
computationally less challenging tasks or a small dataset.
Pymp in Python performs better parallelisation of a problem
than OpenMP. On average, Pymp exhibited a speedup of
about 2.75 for Otsu segmentation and about 1.86 for Sobel
edge detection. In contrast, OpenMP was only able to achieve
a speedup of 1.98 for Otsu segmentation. In Sobel edge
detection, the speedup was less than one since sequential
implementation ran faster, owing to the lack of any
overheads. In the future, we aim at extending our study to
more parallel programming tools and would also like to
explore the effect of these tools on more complex image
convolution techniques.

REFERENCES

[1] Amiri, Hossein, and Asadollah Shahbahrami. "High

performance implementation of 2-D convolution using
AVX2." 2017 19th International Symposium on
Computer Architecture and Digital Systems (CADS).
IEEE, 2017.

[2] Da Penha, Dulcinéia O., et al. "Performance evaluation of
programming paradigms and languages using
multithreading on digital image processing."
Proceedings of the 4th WSEAS International Conference
on Applied Mathematics and Computer Science. 2005.

[3] Zade, Saurabh, et al. "Performance Analysis of Parallel
Image Processing Operations." 2020 International
Conference on Communication and Signal Processing
(ICCSP). IEEE, 2020.

[4] Tousimojarad, Ashkan, Wim Vanderbauwhede, and W.
Paul Cockshott. "2D Image Convolution using Three
Parallel Programming Models on the Xeon Phi." arXiv
preprint arXiv:1711.09791 (2017).

[5] Kang, Sol Ji, Sang Yeon Lee, and Keon Myung Lee.
"Performance comparison of OpenMP, MPI, and
MapReduce in practical problems." Advances in
Multimedia 2015 (2015).

[6] Rastogi, Shubhangi, and Hira Zaheer. "Significance of
Parallel Computation over Serial Computation Using
OpenMP, MPI, and CUDA." Quality, IT and Business
Operations. Springer, Singapore, 2018. 359-367.

[7] Jamaluddin, Muhammad & Ismail, Azlan & Rashid, Amir
& Omar Takleh, Talha Takleh. (2019). "Performance
Comparison of Java based Parallel Programming
Models." Indonesian Journal of Electrical Engineering
and Computer Science. 16. 1577-1583.
10.11591/ijeecs.v16.i3.pp1577-1583.

[8] Memeti, Suejb, et al. "Benchmarking OpenCL, OpenACC,
OpenMP, and CUDA: programming productivity,
performance, and energy consumption." Proceedings of
the 2017 Workshop on Adaptive Resource Management
and Scheduling for Cloud Computing. 2017.

[9] Arif, Mahwish, and Hans Vandierendonck. "A case study
of openmp applied to map/reduce-style computations."
International Workshop on OpenMP. Springer, Cham,
2015.

[10] Xionggang, Tu, and Chen Jun. "Parallel image processing
with OpenMP." 2010 2nd IEEE International Conference
on Information Management and Engineering. IEEE,
2010.

[11] Kepner, Jeremy. "A multi-threaded fast convolver for
dynamically parallel image filtering." Journal of Parallel
and Distributed Computing 63.3 (2003): 360-372.

[12] Akgün, Devrim. "A practical parallel implementation for
TDLMS image filter on multi-core processor." Journal of
Real-Time Image Processing 13.2 (2017): 249-260.

[13] Thouti, Krishnahari, and S. R. Sathe. "Comparison of
OpenMP & OpenCL parallel processing technologies."
arXiv preprint arXiv:1211.2038 (2012).

[14] Liu, Ying, and Fuxiang Gao. "Parallel implementations of
image processing algorithms on multi-core." 2010
Fourth International Conference on Genetic and
Evolutionary Computing. IEEE, 2010.

[15] Guo, Xing, et al. "Parallel computation of aerial target
reflection of background infrared radiation:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 64

Performance comparison of OpenMP, OpenACC, and
CUDA implementations." IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing 9.4
(2016): 1653-1662.

[16] Dash, Yajnaseni, Sanjay Kumar, and V. K. Patle.
"Evaluation of performance on OPEN MP parallel
platform based on problem size." International Journal
of Modern Education and Computer Science 8.6 (2016):
35.

[17] Sharmila, B. S., and Narasimha Kaulgud. "Comparison of
time complexity in median filtering on multi-core
architecture." 2017 3rd International Conference on
Advances in Computing, Communication & Automation
(ICACCA)(Fall). IEEE, 2017.

[18] Balachandran, Bashini, et al. "Parallel Computer For
Face Recognition Using Artificial Intelligence." 2019
14th International Conference on Computer Engineering
and Systems (ICCES). IEEE, 2019.

[19] Kumar, Arpan, and Anamika Tiwari. "A Comparative
Study of Otsu Thresholding and K-means Algorithm of
Image Segmentation." Int. J. Eng. Technol. Res 9 (2019):
2454-4698.

[20] Singh, Brij Mohan, et al. "Parallel implementation of
Otsu’s binarization approach on GPU." International
Journal of Computer Applications 32.2 (2011): 16-21.

[21] Bangare, Sunil L., et al. "Reviewing otsu’s method for
image thresholding." International Journal of Applied
Engineering Research 10.9 (2015): 21777-21783.

[22] Cao, Jianfang, et al. "Implementing a parallel image edge
detection algorithm based on the Otsu-canny operator
on the Hadoop platform." Computational intelligence
and neuroscience 2018 (2018).

[23] Rahman, M. Nordin A., et al. "Image segmentation using
openmp and its application in plant species
classification." International Journal of Software
Engineering and Its Applications 9.5 (2015): 135-144.

[24] Fredj, Hana Ben, et al. "Parallel implementation of Sobel
filter using CUDA." 2017 International Conference on
Control, Automation and Diagnosis (ICCAD). IEEE, 2017.

[25] Tartory, Haneen, and Mohammed ALDasht.
"Parallelization of Sobel Edge Detection Algorithm."
(2012).

[26] Sanida, Theodora, Argyrios Sideris, and Minas
Dasygenis. "A Heterogeneous Implementation of the
Sobel Edge Detection Filter Using OpenCL." 2020 9th
International Conference on Modern Circuits and
Systems Technologies (MOCAST). IEEE, 2020.

[27] Sharma, Achal, and Shilpa Jaswal. "Analysis of sobel edge
detection technique for face recognition." International
Journal of Advanced Research in Computer Engineering
& Technology (IJARCET) Volume 4 (2015).

