DESIGN OF CIRCULAR OVERHEAD WATER TANK BY WSM \& LSM METHOD

Shruti sukhadhan ${ }^{1}$, vibha mulik ${ }^{2}$, shivkanya ambedkar ${ }^{3}$
${ }^{123}$ UG students, Dept. of civil Engineering, Dr. Vithalrao Vikhe Patil College of Engineering, Maharashtra, India

Abstract

Water tanks are widely used for storing water. Water storage is very important as it plays a vital role in everyday life. Storage reservoirs and water tanks are used to store water, liquid petroleum, petroleum products and similar liquids. This project gives in brief, The theory behind the design of liquid retaining structure (Overhead Circular Water Tank) using Limit state method and Working stress method.

Key Words: Circular overhead water tank with top and bottom dome, population forecasting method, working stress method, limit state method, IS code, etc.

1. INTRODUCTION

Water tanks parameters include the general design of the tank and choice of construction materials, linings. Reinforced concrete water tank design is based on IS code. The design depends on the location of tank i.e., overhead, on the ground or underground water tanks. Tanks can be made of RCC or even of steel. The overhead tanks are usually elevated from the ground level using a number of column and beams. On the other hand, the underground tanks rest below the ground level.

Water tanks can be classified into two types:

* Based on location -
- Tanks resting on ground
- Tanks under ground
- Elevated tanks
* Based on shapes -
- Circular tanks
- Rectangular tanks
- Square tanks
- Spherical tanks
- Intze tanks

The elevated water tanks must remain functional even after the earthquakes as water tanks are required to provide water for drinking and firefighting purpose. These structures
has large mass concentrated at the top of slender supporting structure hence these structure are especially vulnerable to horizontal forces due to earthquakes. All over the world, the elevated water tanks were collapsed or heavily damaged during the earthquakes because of unsuitable design of supporting system or wrong selection of supporting system and underestimated demand or overestimated strength.

1.1 Proposed Site

The proposed site for our project is located at Ghumri village of Karjat taluka at Ahmednagar district. Our site situated at the place where all the natural condition are suitable for the construction of elevated overhead water tank. This location is one of the developing areas, where there is steady increase in population in recent years. The population of the area according to recent survey is around 1816. Thus this location requires a periodic water supply system at least twice a week. This location consist nearly 50% agricultural land. Around $450+$ houses are there and so it requires more than $100 \mathrm{~m}^{3}$ capacity water tank. From the three major types of water tank, we had adopted elevated overhead circular water tank because the location needs pressurized water supply.

1.2 Sources of Water Supply

The various sources of water can be classified into two categories:

* Surface sources -
- Ponds and lakes
- Streams and rivers
- Storage reservoir
- Oceans
* Sub surface sources -
- Springs
- Infiltration wells
- Wells and tube wells

2. OBJECTIVES

- To make a study about the design of water tanks.
- Design of circular overhead water tank by LSM method.
- Design of circular overhead water tank by WSM method.
- Comparison between WSM and LSM method.
- Preparing a water tanks design which is economical and safe, providing proper steel reinforcement in concrete and studying its safety according to various codes.

Table -1: Detail of data collection

Capacity of tank	$450 \mathrm{~m}^{3}$
Soil bearing capacity (SBC)	$20 \mathrm{MT} / \mathrm{m}^{2}$
Height of tank from ground	20.35 m
Grade of concrete for all members	M 30
Ground water level	2 m
Type of staircase	ladder only
Use of water	0.38 m only
Freeboard	IV
Earthquake zone	100 mm
Thickness of wall	6
No. of columns	2825
Excavation	135 m
Water provided in area	Current population in 2011

3. METHODOLOGY

Fig -1: METHODOLOGY

4. DESIGN OF CIRCULAR OVERHEAD WATER TANK

I. POPULATION FORECAST

a. Arithmetic Progression Method:

This method is suitable for large and old city with considerable development. If it is used for small, average or comparatively new cities, it will give lower population estimate than actual value. In this method the average increase in population per decade is calculated from the past census reports. This increase is added to the present population to find out the population of the next decade. Hence, $\mathrm{dp} / \mathrm{dt}=\mathrm{C}$ i.e., rate of change of population with respect to time is constant. Therefore, Population after nth decade will be Where, $\mathrm{Pn}=\mathrm{P}+\mathrm{n} . \mathrm{c}$ is the population after ' n ' decades and ' P ' is present population.

Year	Population	X - increase
1991	690	-
2001	1476	786
2011	1816	340
total		563

Po $+\mathrm{n}_{\mathrm{x}}=1816+(1 \mathrm{X} 563)$
$=2379$
Population 2021=2379
b. Geometric Progression Method:

This method gives higher values and hence should be applied for a new industrial town at the beginning of development for only few decades.

Year	Population	Increase	Geometric increase rate of growth
1991	690	-	
2001	1476	786	1.139
2011	1816	340	0.23

$\mathrm{IG}=\mathrm{Pn}=\operatorname{Po}\left(1+\frac{r}{100}\right) \mathrm{n}$
$\mathrm{r}=\sqrt{1.139 \times 0.23}$
$\mathrm{r}=0.51$
$\operatorname{Pn}=1816\left(1+\frac{51.0}{100}\right)^{1}$
$\mathrm{Pn}=2742.12$
c. Incremental Increase Method:

The incremental increase is determined for each decade from the past population and the average value is added to the present population along with the average rate of increase.

Year	Population	Increase	Incremental increase
1991	690	-	
2001	1476	786	
2011	1816	340	+446
Total		1126	446
Avera ge		563	446

$\mathrm{Pn}=\mathrm{Po}+\mathrm{nx}+\left(\frac{n(n+1)}{2}\right) \times y$
When $\mathrm{n}=1$
$\operatorname{Pn}=1816+(563 \times 1)+\left(1 \times \frac{(1+1)}{2}\right) \times 446$
$\mathrm{Pn}=2825$
Therefore design population of 2825
Assuming per capita demand 135 lpcd
Capacity required $=\frac{2825 \times 135}{1000}=381.375 \mathrm{~m}$
$\cong 450 \mathrm{~m}^{\mathrm{a}}$

II. DESIGN OF CIRCULAR OVERHEAD WATER TANK BY LSM METHOD

a. DIMENSION OF TANK:

- Diameter of cylindrical portion,

$$
\mathrm{D}=\sqrt{\frac{4 V}{\pi H}}
$$

Where,
D = Inner diameter
$\mathrm{V}=$ Volume of tank (capacity $=450 \mathrm{~m} 3$)
$H=$ height of water (3.8 m)
$\mathrm{D}=\sqrt{\frac{4 \times 400}{\pi \times 3.8}}$
$\mathrm{D}=11.57 \mathrm{~m} \cong 12 \mathrm{~m}$

- radius of cylindrical portion,

$$
\mathrm{R}=6 \mathrm{~m}
$$

- rise of top dome $=h_{1}=0.2 \times \mathrm{D}=0.2 \times 12=2.4 \mathrm{~m}$
- rise of bottom dome $=\mathrm{h}_{2}=0.16 \times \mathrm{D}=0.16 \times 12$

$$
=2 \mathrm{~m}
$$

- thickness of wall $(\mathrm{t})=100 \mathrm{~mm}$
- diameter of cylindrical part (D) $=12 \mathrm{~m}$
- arc equation of top beam $=r_{1}$

$$
\mathrm{r}_{1}=\frac{\left(\frac{D}{2}\right)^{2}+\left(h_{1}\right)^{2}}{2 \times h_{1}}=\frac{\left.\left(\frac{12}{2}\right)\right)^{2}+(2.4)^{2}}{2 \times 2.4}=8.7 \mathrm{~m}
$$

- arc equation of bottom beam $=r_{2}=$

$$
\mathrm{r}_{2}=\frac{\left(\frac{D}{2}\right)^{2}+\left(h_{2}\right)^{2}}{2 \times h_{2}}=\frac{\left(\frac{12}{2}\right)^{2}+(2)^{2}}{2 \times 2}=10 \mathrm{~m}
$$

- \quad height of vertical wall $=h_{3}$

Volume of cylindrical part $=\frac{\pi}{4} \times D^{2} \times h_{3}$
Volume of bottom dome (sphere) $=$
$\pi \times\left(h_{2}\right)^{2} \times\left(r_{2}-\frac{h_{2}}{3}\right)$
$450=$ volume of cylinder - volume of bottom dome

$$
\begin{aligned}
& 450=\left(\frac{\pi}{4} \times D^{2} \times h_{3}\right)-\pi\left(h_{2}\right)^{2} \times\left(r_{2}-\frac{h_{2}}{3}\right) \\
& 450\left(\frac{\pi}{4} \times 12^{2} \times h_{3}\right)-\pi(2)^{2} \times\left(10-\frac{2}{3}\right) \\
& \mathrm{h}_{3}=5.00 \mathrm{~m}
\end{aligned}
$$

b. DESIGN OF TOP DOME:

- dead load $=2.5 \mathrm{KN} / \mathrm{m}^{2}$
- \quad live load $=1.5 \mathrm{KN} / \mathrm{m}^{2}$
- total load $=$ dead load + live load $=2.5+1.5=4$
$\mathrm{KN} / \mathrm{m}^{2}$
$\sin \theta=\frac{\frac{D}{z}}{r_{1}}=\frac{\frac{12}{z}}{8.7}=0.689$
$\theta=43.60^{\text {a }}$
$\cos \theta=\cos 43.60^{\circ}=0.724$
- \quad maximum meridonal thrust $=\mathrm{T}_{1}$
$\mathrm{T}_{1}=\frac{w \times r_{1}}{1+\cos \theta}=\frac{4 \times 8.7}{1+0.724}=20.185 \mathrm{KN} / \mathrm{m}$
- \quad meridonal stress $($ radial $)=\frac{\mathrm{T}_{1}}{\text { area }}=\frac{20.185 \times 10^{3}}{1000 \times 100}$
$=0.2018 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma c c=$ Permissible concrete stress in concrete
(direct compression)
For M30 $=8 \mathrm{~N} / \mathrm{mm}^{2}$
Minimum Ast $=0.35 \%$
Ast $=\frac{0.35}{100} \times 100 \times 1000$
Ast $=350 \mathrm{~mm}^{2}$
Spacing $=\frac{1000 \times\left(\frac{\pi}{4} \times 8^{2}\right)}{350}=143 \mathrm{~mm}$
So, provide 8 mm Ø bars @ $140 \mathrm{c} / \mathrm{c}$ (radially and circumferencetially)
c. DESIGN OF TOP RING BEAM (B_{1}):
- hoop tension =
$(T \cos \theta) \times \frac{D}{2}=(20.185 \times 0.724) \times \frac{12}{2}$ $=87.67 \mathrm{KN}$
- steel required $=\frac{87.67 \times 10^{5}}{130}=674.30 \mathrm{~mm}^{2}$

Permissible stress in steel $($ HYSD $)=\sigma s t=130$
$\mathrm{N} / \mathrm{mm}^{2}$
\therefore Provide 6 NOS bars of $12 \mathrm{~mm} \emptyset$

- direct tensile stress in concrete $=$

Permissible direct tensile stress $=\sigma c t=1.5$
$\mathrm{N} / \mathrm{mm}^{2}$

- Size of ring beam $=200 \times 300$
d. DESIGN OF VERTICAL WALL:
- Hydraulic pressure $=\mathrm{P}=49050 \mathrm{~N} / \mathrm{m}^{2}$
- Hoop tension due to hydraulic pressure $=\mathrm{P} \times \frac{D}{2}=$ $49050 \times \frac{12}{2}=294300 \mathrm{~N} / \mathrm{m}$
- Ast $=2027.43 \mathrm{~mm}^{2}$
- Spacing $=138.77 \mathrm{~mm}$
- Provide 20 mm Øbar @ 130 mm c/c
- Tensile stress in concrete =
$\frac{F}{A c+(m-1) \text { Ast }}=\frac{294300}{(130 \times 1000)+(9.33-1) \times 2827.43}$
$=1.916 \mathrm{~N} / \mathrm{mm}^{2}$
- Total vertical load =

Vertical component of thrust + dead load of wall + ring beam +top dome
$=(\mathrm{T} \sin \theta)+(25 \times 0.10 \times 5)+(25 \times 0.2 \times 0.3)+$
$\left(\frac{25 \times 0.10 \times 2 \pi \times 2.4 \times 8.7}{2 \pi \times \frac{12}{2}}\right)=36.619 \mathrm{KN} / \mathrm{m}$

Compressive stress $=\frac{36.61}{100}=0.3661 \mathrm{~N} / \mathrm{mm}^{2}$
Provide $8 \mathrm{~mm} \emptyset_{\text {bar } @ 140 \mathrm{~mm} \text { c/c each face. }}$
e. DESIGN OF BOTTOM DOME:

- Dead load of dome $=2.5 \mathrm{KN} / \mathrm{m}^{2}$
- Volume $=$ volume of cylinder $\left(\mathrm{v}_{1}\right)$ - volume of bottom dome (V_{2})
Volume $=565.48-117.28=448.2 \mathrm{~m}^{3}$
Load intensity due to water $=$
$\frac{\text { wt.of water }}{\text { surfaceareaof dome }}=\frac{\text { volume } \times \rho \times g}{2 \pi \times r_{2} \times h_{2}}=$
$\frac{448.2 \times 1000 \times 9.81}{2 \pi \times 10 \times 2}=34.98 \mathrm{KN} / \mathrm{m}^{2}$
- Total load $=2.5+34.98=37.48 \mathrm{KN} / \mathrm{m}^{2}$
$\sin \theta=\frac{\frac{D}{z}}{r_{2}}=\frac{\frac{12}{z}}{10}=0.6$
$\theta=36.86^{\text {a }}$
- \quad Meridonal thrust $=\mathrm{T}_{2}$
$\mathrm{T}_{2}=\frac{w \times r_{2}}{1+\cos \theta}=\frac{37.48 \times 10}{1+\cos 36.86}=208.21 \mathrm{KN} / \mathrm{m}$
Meridonal thrust compressive stress $=\frac{208.21}{0.1}$
$=2.082 \mathrm{~N} / \mathrm{mm}^{2}$
- Provide 8 mm Ø bar @ 140 mm c/c
f. DESIGN OF BOTTOM RING BEAM $\left(\mathrm{B}_{2}\right)$:

Assume $250 \times 300 \mathrm{~mm}$ beam

- Dead load =

Dead load of vertical wall + top dome + bottom dome + top ring beam + bottom ring beam

$$
=32.905 \mathrm{KN} / \mathrm{m}
$$

- \quad Hydraulic pressure $=$
$\frac{\text { volume } \times \rho \times g}{2 \pi \times r}=\frac{(565.48-117.28) \times 1000 \times 9.81}{2 \pi \times 6}$
$=116.629 \mathrm{KN} / \mathrm{m}$
- Total load $=32.905+116.629=149.53 \mathrm{KN} / \mathrm{m}$ This ring beam is design as circular beam supported by six columns of 300 mm diameter.
- Coefficient for maximum moment =

No. of supports	2α	λ	λ^{a}	λ^{n}	βo
4	90^{a}	0.07	0.137	0.021	19.25^{a}
6	60^{a}	0.045	0.089	0.009	22.75^{a}
8	45^{a}	0.033	0.066	0.005	9.5^{a}
10	36^{a}	0.027	0.054	0.003	7.5^{a}
12	30^{a}	0.023	0.043	0.002	6.25^{a}

- \quad Moment equivalent $=$

Sagging moment at mid span $=M+=2 \mathrm{wr}^{2} \alpha \lambda$.
$=528.70 \mathrm{KN} . \mathrm{m}$

Hogging moment at support $=\mathrm{M}-=-2 \mathrm{w}^{2} \alpha \lambda^{d}=-$ 1045.65 KN. m

Maximum torsional moment $=\mathrm{T}=2 \mathrm{w} \mathrm{r}^{2} \alpha \lambda^{n}=$ 105.74 KN. m
$0.138 \times$ fck \times bd $^{2}=M$
$0.138 \times \mathrm{fck} \times \mathrm{bd}^{2}=1045.65 \times 10^{6} \times 1.5$
$\mathrm{d}=870 \mathrm{~mm}$
$\mathrm{b}=500 \mathrm{~mm}$
Depth of beam= D'= 900 mm
M equivalent $=\mathrm{M}+\frac{T \times\left(1+\frac{D}{b}\right)}{1.7}$
$=1045.65+\frac{105.74 \times\left(1+\frac{0.9}{0.50}\right)}{1.7}=1219.81 \mathrm{KN} . \mathrm{m}$

- Longitudinal reinforcement $=$
$1.5 \times \mathrm{M} \mathrm{eq}=0.87 \times$ fy \times Ast

$$
\left(d-\frac{0.87 \times \mathrm{fy} \times \mathrm{Ast}}{0.36 \mathrm{fck} \times b}\right)
$$

$1.5 \times 1219.81 \times 10^{6}=0.87 \times 415 \times$ Ast
$\left(870-\frac{0.87 \times 415 \times \mathrm{Ast}}{0.36 \times 30 \times b}\right)$
Provide 6 NOS bar of $22 \mathrm{~mm} \emptyset$ bars
As depth exceeds 500 mm provide 0.1% steel
along vertical sides
$=\frac{0.1}{100} \times 500 \times 870=470 \mathrm{~mm}^{2}$
Provide 4 NOS bar of $12 \mathrm{~mm} \emptyset$ bars

- Transverse steel =

Ast $=0.52 \%$
$\tau_{\mathrm{C}}=0.31 \mathrm{~N} / \mathrm{mm}^{2}$
Shear force (v) $=\frac{\text { load } \times \text { span }}{2 \times \text { no.column }}=\frac{149.53 \times 2 \pi \times 6}{2 \times 6}=$
469.76 KN
$\tau v=\frac{V+1.6 \times \frac{T}{B}}{b \times d}=\frac{469.76+1.6 \times \frac{105.74}{500}}{500 \times 870}$
$=1.080 \mathrm{~N} / \mathrm{mm}^{2}$
30 mm cover top and bottom
$\mathrm{b}_{1}=50060=440 \mathrm{~mm}$
$\mathrm{d}_{1}=90060=840 \mathrm{~mm}$
Asv = Area of transverse steel
$=\frac{\mathrm{T} \times S v}{\mathrm{~b}_{1} \times \mathrm{d}_{1} \times \sigma s v}+\frac{\mathrm{V} \times \mathrm{Sv}}{2.5 \times \mathrm{d}_{1} \times \sigma s v}$
Providing 2-legged 10 mm dia bars
Spacing $=260 \mathrm{~mm}$
g. DESIGN OF COLUMN:

- 6 columns equally spaced on 12 m diameter circle. Distance between columns centre to centre 10.3 m
- Height of column $=12.37 \mathrm{~m}$
- Diameter of column $=300 \mathrm{~mm}$
- Total load on ring beam $=149.53 \mathrm{KN}$
- Total design load on ring beam $=$
$\mathrm{W}=\pi \times D \times w=\pi \times 12 \times 149.53$
$=5637.14 \mathrm{KN}$
- \quad Vertical load on each column $=$
$\mathrm{P}=\frac{5637.14}{6}=939.52 \mathrm{KN}$
- \quad Factored load $=$
$\mathrm{Pu}=1.5 \times \mathrm{P}=1.5 \times 939.52=1444.73 \mathrm{KN}$
- Condition = column effectively held in position and restrained against rotation in both ends.
- L effective $=0.5 \mathrm{~L}=0.5 \times 12.37=6.185 \mathrm{~m}$
- Slenderness ratio $=$
$\frac{\mathrm{L} \text { effective }}{D}=\frac{6.185 \times 10^{3}}{300}=20.61>12 \mathrm{~mm}$
- \quad Minimum eccentricity $=$
$e_{\min }=\frac{L}{500}+\frac{D}{30}=\frac{12370}{500}+\frac{300}{30}=34.74>$
20 mm
$\frac{\theta_{\min }}{D}<0.05 \mathrm{~m}$
$\frac{34.74}{300}=0.115>0.05$
Member is subjected to axial force or uniaxial bending (Assumed uniaxial bending)
- Area of reinforcement = Asc
$\mathrm{Ag}=\frac{\pi}{4} \times 300^{2}=70685.83 \mathrm{~mm}^{2}$
$\mathrm{Ac}=\mathrm{Ag}-\mathrm{Asc}=70685.83-\mathrm{Asc}$
$P u_{z}=0.45 \mathrm{fck} \mathrm{Ac}+0.75$ fy Asc
1444.73
$\times 10^{3}=0.45 \times 30 \times$
$(70685.83-\mathrm{Asc})+0.75 \times$
$415 \times$ Asc
Asc $=2242.09 \mathrm{~mm}^{2}=2245 \mathrm{~mm}^{2}$
Assume 5 \% of steel.
Adopt $20 \mathrm{~mm} \emptyset_{\text {bar }}$
$A \emptyset=314.159 \mathrm{~mm}^{2}$
NOS $=\frac{\mathrm{Asc}}{\mathrm{A} \varnothing}=\frac{2245}{314.59}=7.146 \cong 8 \mathrm{bars}$
Ast provided $=8 \times 314.159=2513.272 \mathrm{~mm}^{2}$
Asc < Ast provided Hence ok.
- Helical reinforcement (spiral ties) =

Assume cover 40 mm
Core diameter (dc) = D $-2 \times$ cover $=300$
$-2 \times 40=220 \mathrm{~mm}$
Area of core $(\mathrm{Ac})=\frac{\pi}{4} \times \mathrm{dc}^{2}=\frac{\pi}{4} \times 220^{2}=$
$38013.27 \mathrm{~mm}^{2}$
$\mathrm{P}=$ Pitch of spiral ties
Vc = Volume of core
$\mathrm{Vc}=38013.27 \times \mathrm{P}$
Using $10 \mathrm{~mm} \emptyset_{\text {spirals }}$ (helical reinforcement)
Volume of helical reinforcement =
Vhs $=\frac{\pi}{4} \times 10^{2} \times \pi \times(20-10)=51815.423$
mm^{3}
volume of helical reinforcement
volume core
$=0.36 \times\left(\frac{\mathrm{A}_{\mathrm{g}}}{\mathrm{Ac}}-1\right) \times \frac{\mathrm{fck}}{f y}$

$$
\begin{gathered}
\frac{51815.423}{38013.27 \times P}=0.36 \times\left(\frac{70685.83}{38013.27}-1\right) \times \frac{30}{415} \\
P=60.939 \mathrm{~mm}
\end{gathered}
$$

- \quad Maximum pitch $=$
i. $\quad 75 \mathrm{~mm}$
ii. $\quad \frac{1}{6} \times$ core diameter $=\frac{1}{6} \times 220=36.66 \mathrm{~mm}$
- \quad Minimum pitch $=$
i. $\quad 25 \mathrm{~mm}$
ii. $\quad 3 \times$ diameter of helical steel $=3 \times 10=30 \mathrm{~mm}$ Pitch $=36.66 \mathrm{~mm}>30 \mathrm{~mm}$ Provide pitch of 30 mm .
- Transverse steel = Diameter of circular ties = $\emptyset_{\mathrm{r}}=\frac{1}{4} \times \emptyset \mathrm{L}=5 \mathrm{~mm}$ or $8 \mathrm{~mm} \therefore \emptyset r=8 \mathrm{~mm}$
- Spacing of circular ties =
i. $D=300 \mathrm{~mm}$
ii. $16 \times \emptyset \mathrm{L}=16 \times 20=320 \mathrm{~mm}$
iii. $\quad 300 \mathrm{~mm}$

Take whichever is less
Spacing $=300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

- Lap length =

Ld = development length of bars
$\mathrm{Ld}=\frac{\phi \times \sigma_{s}}{4 \times \mathrm{r}_{\mathrm{bd}}}$
$\emptyset=$ nominal diameter
$\sigma_{s}=$ stress in bar at the section considered at design load
$\tau_{b d}=$ design bond stress (M30)
$\sigma_{s}=0.87 \times$ fy $=0.87 \times 415=361.05$
$\mathrm{Ld}=\frac{20 \times 361.05}{4 \times 1.5}=1203.5 \mathrm{~mm}$
Lap length $=30 \times \emptyset=30 \times 20=600 \mathrm{~mm}$
$\mathrm{Ld}=1203.5 \mathrm{~mm}$

- Lap length $=600 \mathrm{~mm}$

Take whichever is greater. : Provide 1203 mm lap length.
h. DESIGN OF BRACE BEAM :

- Square beam $=300 \times 300 \mathrm{~mm}$
- Length between bracing $=3.0925 \mathrm{~m}$
- Self weight of slab $=25 \times 0.1=2.5 \mathrm{KN}$
- Self weight of beam $=0.3 \times 0.3 \times 25=2.25 \mathrm{KN}$
- Live load $=2.5 \mathrm{KN}$
- Total load $=2.5+2.5+2.25=7.25 \mathrm{KN} / \mathrm{m}$
- Effective depth $=300-50=250 \mathrm{~mm}$
- Load calculation =

Design load $=7.25 \times 1.5=10.875 \mathrm{KN} / \mathrm{m}$
Moment calculation =
$\mathrm{Mu}=\frac{W \times L^{2}}{8}=\frac{10.875 \times(3.0925)^{2}}{8}=13.00 \mathrm{KN} . \mathrm{m}$

Mub $=0.138 \times \mathrm{fck} \times \mathrm{bd}^{2}=0.138 \times 30 \times 300 \times$
$300^{2}=111.78 \times 10^{6} \mathrm{KN} . \mathrm{m}$

- Reinforcement details $=$

Mub $=0.87 \mathrm{fck} \mathrm{Ast}\left(d-\frac{0.87 \text { fy Ast }}{0.36 \text { fck b }}\right)$
$111.78 \times 10^{6}=0.87 \times 415 \times$ Ast
$\left(d-\frac{087 \times 415 \times \text { Ast }}{0.36 \times 30 \times 300}\right)$ Ast $=1350.62 \mathrm{~mm}^{2}$
Assume 4-25 mm $\emptyset_{\text {bar }}$

- \quad Shear reinforcement $=$
$\mathrm{Vu}=\frac{W \times L^{2}}{2}=\frac{10.875 \times(3.092)^{2}}{2}=51.985 \mathrm{KN}$
$\tau_{v}=\frac{V u}{b d}=\frac{51.985 \times 10^{3}}{300 \times 300}=0.577 \mathrm{~N} / \mathrm{mm}^{2}$
$\operatorname{Pt} \%=100 \frac{A s t}{b d}=100 \times \frac{1350.62}{300 \times 300}=1.500 \%$
From table 19, IS 426-2000
$\tau_{c}=0.76 \mathrm{~N} / \mathrm{mm}$
Hence $\tau_{c}>\tau_{v}$ the section is safe in shear yet minimum shear reinforcement is provided for beam.
Assuming $8 \mathrm{~mm} \emptyset_{\text {bar }} 2$ legged
Sv $=\frac{0.87 \text { fy Asv }}{0.4 b}=\frac{0.87 \times 415 \times 100.53}{0.4 \times 300}=302.472 \mathrm{~mm}$
$\cong 300 \mathrm{~mm}$
Provide stirrups 8 mm @ 300 mm c/c
i. DESIGN OF FOOTING:
- Area of footing =

As per IS code guideline self weight of footing is taken 10% of column load.
$\mathrm{W}=$ load carried by column + self weight of footing
$W=1444.73+\frac{10}{100} \times 1444.73=1589.203 \mathrm{KN}$
Load on foundation soil.
Note: as per IS recommendation for the purpose of design of circular column of size 0.7170 in diameter given circle is taken.
Design of square footing is done exactly in the same manner as it was for square column.

- \quad Side of square column $=$
$\mathrm{b}=0.717 \mathrm{D}=0.717 \times 300=215.1 \cong 220 \mathrm{~mm}$ area of footing $=\frac{\text { load }}{S B C}=\frac{1589.203}{200}=7.946 \mathrm{~m}^{2}$ side of square footing $=$
B $=\sqrt{7.946}=2.81 \cong 3 \mathrm{~m}$
Therefore, size of square footing for circular column
$B \times B=3 \times 3 m$
- Factored soil pressure on footing $=$
$q_{u}=\frac{\text { factored load }}{\text { actual area }}=\frac{1444.73}{3 \times 3}=160.525 \mathrm{KN} / \mathrm{m}^{2}$
- Depth of footing by bending moment criteria $=$ Critical section for BM is taken as face of column.
$\mathrm{Mu}=q_{u} \times \mathrm{B} \times\left(\frac{B-b}{2}\right) \times\left(\frac{B-b}{\frac{2}{2}}\right)=q_{u} \times \mathrm{B}$
$\times\left(\frac{(B-b)^{2}}{8}\right)=481.575 \times\left(\frac{(3-0.22)^{2}}{8}\right)$
$=465.22 \mathrm{KN} . \mathrm{m}$
B M at critical section.
Note: in equilibrium condition, $\mathrm{Mu}=\mathrm{Mu}$ lim
Mu lim $=0.138 \times \mathrm{fck} \times \mathrm{Bd}^{2}$
$465.22 \times 10^{6}=0.138 \times 30 \times 3000 \times \mathrm{d}^{2}$
$\mathrm{d}=193.538 \mathrm{~mm} \cong 194 \mathrm{~mm}$
Increase d 1.75 to 2.25 times to make depth of footing safe in shear action.
$\mathrm{d}=2 \times 194=388 \mathrm{~mm} \cong 390 \mathrm{~mm}$
- Check depth of footing against one way shear action, the critical section for one way shear is at a distance d from force of column.
$\mathrm{Vu}=q_{u} \times \mathrm{B} \times\left(\frac{B-b}{2}-d\right)$
$=481.575 \times\left(\frac{3-0.22}{2}-0.390\right)=481.575 \mathrm{KN}$
- \quad Factored S.F at critical section $=$

Shear stress developed at critical section $=$
$\tau_{v}=\frac{V u}{b d}=\frac{481.57 \times 10^{3}}{3000 \times 390}=0.41 \mathrm{~N} / \mathrm{mm}^{2}$
Shear strength of concrete $=$
It depends upon grade of concrete and percentage
of steel. Assume Pt\% = 0.5%
Value of τ_{c} from table 19, IS 426-2000
$\tau_{c}=0.50 \mathrm{~N} / \mathrm{mm}^{2}$
As, $\tau_{c}>\tau_{v}$ hence depth of footing in safe against one way shear.

- Check depth of footing for bending shear action, The critical section for punching shear is at ' a ' distance $d / 2$ from face of the column,
$\mathrm{a}=\frac{d}{2}+\frac{d}{2}+\mathrm{b}=\frac{390}{2}+\frac{390}{2}+220=610 \mathrm{~mm}$
$V u^{\prime}=q_{u} \times\left(\mathrm{B}^{2}-\mathrm{a}^{2}\right)=160.52 \times\left(3^{2}-0.61^{2}\right)=$ 1384.99 KN

Shear stress developed by punching shear $=$
$b_{0}=$ perimeter of critical section $=4 \times 610=$ 2440 mm
$\tau_{v}{ }^{\prime}=\frac{V u y}{b_{0} d}=\frac{1384.99 \times 10^{3}}{2440 \times 220}=2.58 \mathrm{~N} / \mathrm{mm}^{2}$

- Shear strength of concrete against punching $=$ $\tau_{c}{ }^{\prime}=\mathrm{K} \times 0.2 \times \sqrt{f c k}=0.50 \mathrm{~N} / \mathrm{mm}^{2}$

Where,
$K=$ depends upon depth of footing slab and for $d>$ $300 \mathrm{~mm}=1$
$\tau_{c}{ }^{\prime}=0.2 \times \sqrt{30}=1.095 \mathrm{~N} / \mathrm{mm}^{2}$

- \quad Area of steel $=$

Mub $=0.87$ fck Ast $\left(d-\frac{\text { fyAst }}{f c k b}\right)$
$456.22 \times 10^{6}=0.87 \times 415 \times$ Ast
$\left(390-\frac{415 \times \text { Ast }}{30 \times 3000}\right)$
Ast $=3374.62 \mathrm{~mm}^{2}$
Now using $18 \mathrm{~mm} \emptyset_{\text {bar }}$
Spacing $=B \times \frac{\text { ast }}{\text { Ast }}=3000 \times \frac{254.46}{3374.62}=226.22$
$\cong 220 \mathrm{~mm}$
j. DESIGN OF STAIRCASE (SPIRAL) :

- Staging height $=12.37 \mathrm{~m}$
- Total height $=20.35 \mathrm{~m}$ (up to top of dome)

Assume riser $=250 \mathrm{~mm}$

- No. of steps $=\frac{20.35}{0.25}=81.43 \cong 81$
- Considering weight of each precast steps
$=0.1 \times \mathrm{T}$
- Live load $=0.05 \times$ T
- Total $=0.15 \times \mathrm{T}=0.15 \times 81 \mathrm{~T}=12.15 \mathrm{~T}$
- Self wt. (DL) $=25 \times \frac{\pi}{4} \times \mathrm{d}^{2} \times 2.55=25 \times$
$\frac{\pi}{4} \times 0.3^{2} \times 2.55=4.506 \mathrm{~T}$
Total $=12.15 \mathrm{~T}+4.506 \mathrm{~T}=16.65 \mathrm{~T} \cong 20$
Providing diameter 300 mm column with 6-12
Tor load carrying capacity of concrete alone in M-
30
$=\left(\frac{\pi}{4} \times 300^{2}-6 \times \frac{\pi}{4} \times 12^{2}\right) \times \frac{4}{9810}=$
$70685.83-678.584 \times \frac{4}{9810}=28.54 \mathrm{~T} \cong 20 \mathrm{~T}$

III. DESIGN OF CIRCULAR OVERHEAD WATER TANK BY WSM METHOD

a. DESIGN OF TOP DOME :

- Thickness of dome $=100 \mathrm{~mm}$
- Meridonal force (T1) =
- Hoop tension (T2) =
$\mathrm{T} 1=\frac{W \times R}{1+\cos \theta}$
$\mathrm{W}=$ load of dome
L. $\mathrm{L}=1.5 \mathrm{KN} / \mathrm{m}^{2}$

Self weight $=$ thickness \times density $=0.10 \times 25=$ $2.5 \mathrm{KN} / \mathrm{m}^{2}$
Total load $=1.5+2.5=4 \mathrm{KN} / \mathrm{m}^{2}$

- Radius of curvature of dome $=$
$\mathrm{h}=$ rise of dome
$\mathrm{h}=0.2 \times \mathrm{D}=2.4 \mathrm{~m}$
$\mathrm{R}=8.7 \mathrm{~m}$
$\operatorname{Sin} \theta=\frac{\frac{D}{2}}{R}=\frac{6}{8.7}=\theta=43.60^{\circ}$
$\operatorname{Cos} \theta=\operatorname{Cos}\left(43.60^{\circ}\right)=0.724$
$\mathrm{T} 1=\frac{W \times R}{1+\cos \theta}=\frac{4 \times 8.7}{1+0.724}=20.18 \mathrm{KN} / \mathrm{m}$
Meridonal stress $=\frac{\text { force }}{\text { area }}=\frac{20.18 \times 10^{8}}{1000 \times 10}$
$=0.202 \mathrm{~N} / \mathrm{mm}^{2}$
- Direct tension stress $=\sigma_{\text {ct }}$

For M30 concrete $=15 \mathrm{Kg} / \mathrm{cm}^{2}$

- Permissible stress in concrete $=8 \mathrm{~N} / \mathrm{mm}^{2}$
$0.202<8 \mathrm{~N} / \mathrm{mm}^{2}$... safe
- Area of reinforcement =

Provide 0.24 \% minimum reinforcement
Ast $=\frac{0.24}{100} \times 1000 \times 100=240 \mathrm{~mm}^{2}$
Provide $8 \mathrm{~mm} \emptyset$ bar @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}($ Ast $=251$
mm^{2})
For hoop force (T2) =
$\mathrm{T} 2=\mathrm{W} \times \mathrm{R} \times\left(\cos \theta-\frac{1}{1+\cos \theta}\right)=5 \mathrm{KN} / \mathrm{m}$
Hoop stress $=\frac{5 \times 10^{\mathrm{a}}}{1000 \times 100}=0.05<8 \mathrm{~N} / \mathrm{mm}^{2} \ldots$ safe
Provide 0.24 \% minimum reinforcement.
b. DESIGN OF TOP RING BEAM :

- It is designed for hoop tension
$\mathrm{W}=\mathrm{T} 1 \cos \theta=20.18 \times \operatorname{Cos}(43.60)$
$=14.61 \mathrm{KN} / \mathrm{m}$
Total hoop tension in beam $=$
$\mathrm{W} \times \frac{D}{2}=14.61 \times \frac{12}{2}=87.66 \mathrm{KN}$
- Ast for hoop tension =
$\frac{T}{\sigma_{s t}}=\frac{87.66 \times 10^{9}}{30}=674.30 \mathrm{~mm}^{2}$
Provide $12 \mathrm{~mm} \emptyset_{\text {bar @ }} 150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ (Ast $=753$ mm^{2})
- To find out dimension of R.B =
$\sigma_{\text {ct }}=\frac{T}{A g+(m-1) A s t}=\frac{87.66 \times 10^{9}}{250 \times D+(9.33-1) \times 753}<1.5$
$\mathrm{Ag}=\mathrm{b} \times \mathrm{D}$
$\mathrm{m}=\frac{280}{3 \sigma_{c b c}}=\frac{280}{3 \times 10}=9.33$
Assume b=250 mm
$\sigma_{\text {ct }}=87.66 \times 10^{3}<375 \mathrm{D}+9408.73$
$=208.67$ < D
Consider $\mathrm{D}=300 \mathrm{~mm}$
Size of beam $=250 \times 300 \mathrm{~mm}$
Provide minimum shear reinforcement
8 mm \emptyset bar - 2 legged vertical stirrups
$\mathrm{Sv}=\frac{0.87 \times f y \times A s v}{0.4 \times b}=362.96 \mathrm{~mm}$
Asv $=\left(\frac{\pi}{4} \times d^{2}\right) \times 2=100.53 \mathrm{~mm}^{2}$
- Spacing limit =
i. $\quad 0.75 \times \mathrm{D}=0.75 \times 300=225 \mathrm{~mm}$
ii. $\quad 300 \mathrm{~mm}$

Provide $8 \mathrm{~mm} \emptyset$ bar - 2 legged vertical stirrups @ 225 c/c
c. DESIGN OF TANK WALL :

- Maximum hoop tension at base $=$
$\mathrm{T}=\frac{r_{\mathrm{w}} \times H \times D}{2}=\frac{10 \times H \times 12}{2}=60 \mathrm{H} \mathrm{KN} / \mathrm{m}$
Ast $=\frac{T}{\sigma_{s t}}=\frac{60 \times H}{130} \times 10^{3}=461.54 \mathrm{H} \mathrm{mm}^{2}$

Depth from top	Area required Ast $\left(\mathrm{mm}^{2}\right)$	Area on each face mm^{2} 461.54 H $(230.76 \mathrm{H})$	Reinforcement provided on each face (horizontal)
1	461.54	230.76	$8 \mathrm{~mm} \emptyset_{\text {bar @ }}^{210 \mathrm{~mm} \mathrm{c} / \mathrm{c}(\text { Ast }}$ $\left.=239 \mathrm{~mm}^{2}\right)$
2	923	461.54	$10 \mathrm{~mm} \emptyset_{\text {bar @ }}$ $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}($ Ast $\left.=462 \mathrm{~mm}^{2}\right)$
3	1384.62	692.31	$10 \mathrm{~mm} \emptyset_{\text {bar @ }}$ $110 \mathrm{~mm} \mathrm{c} / \mathrm{c}($ Ast $\left.=239 \mathrm{~mm}^{2}\right)$
4	1846.16	923	$12 \mathrm{~mm} \emptyset_{\text {bar @ }}$ $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}($ Ast $\left.=942 \mathrm{~mm}^{2}\right)$
5	2307.7	1153.85	$12 \mathrm{~mm} \emptyset_{\text {bar @ }}$ $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}($ Ast $\left.=935 \mathrm{~mm}^{2}\right)$

- Thickness of wall =

$$
\begin{aligned}
& \mathrm{T}=60 \times 5=300 \mathrm{KN} \\
& \sigma_{\text {ct }}=1.5 \\
& \mathrm{Ag}=1000 \times \mathrm{t} \\
& (\mathrm{~m}-1)=9.33-1=8.33 \\
& \sigma_{\text {ct }}=\frac{T}{A g+(\mathrm{m}-1) A s t}=\frac{87.66 \times 10^{\mathrm{s}}}{1000 \times \mathrm{ct}+8.33 \times(2 \times 935)} \\
& 300 \times 10^{3}<150.0 \times \mathrm{t}+23365.65
\end{aligned}
$$

t > 184.42
Provide ($\mathrm{t}=250 \mathrm{~mm}$) at base and 200 mm at top
Avg = thickness of wall $=\frac{200+250}{2}=225 \mathrm{~mm}$

- \quad Distribution steel $=$

Base $=\frac{H}{3}=\frac{5}{3}=1.67 \mathrm{~m}$
Cantilever moment $(\mathrm{m})=\frac{r_{w \times H \times \frac{H}{s}}}{6}=\frac{10 \times 5 \times 2.18}{6}=$ 23.16 KN. m

Ast for moment $=\frac{M}{\sigma_{c t} \times j \times d}=\frac{23.16 \times 10^{9}}{130 \times 0.867 \times 175}=$
$1174.18 \mathrm{~mm}^{2}$
Provide 20 mm Ø bar @ 260 mm c/c (Ast = 1200 mm^{2})
d. DESIGN OF BOTTOM DOME:

- Thickness of dome slab assumed $=100 \mathrm{~mm}$
- Diameter of tank $=12 \mathrm{~m}$
- Central rise $=h_{2}=2 \mathrm{~m}$
- Radius of dome $=R_{2}=10 \mathrm{~m}$
- Self weight of dome slab $=2 \pi \times h_{2} \times R_{2} \times 0.1$
$\times 25=314.159 \mathrm{KN}$
- Volume $=V_{1}-V_{2}=565.48-117.28=448.2 \mathrm{~m}^{3}$
- Weight of water $=448.2 \times 10=4482 \mathrm{KN}$
- Total load on dome $=314.159+4482=4796.159$ KN
- Load / unit area =
$\mathrm{w}=\frac{4796.159}{\frac{\pi}{4} \times 12^{2}}=42.407 \mathrm{KN} / \mathrm{m}^{2}$
- \quad Meridonal thrust $=$
$T_{1}=\frac{w \times R_{2}}{1+\cos \theta}=\frac{42.207 \times 10}{1+\cos 36.86}=235.58 \mathrm{KN} / \mathrm{m}$
$\theta=36.86^{\circ}$
- Meridonal stress $=\frac{235.58 \times 10^{\text {s }}}{100 \times 1000}=2.3558 \mathrm{~N} / \mathrm{mm}^{2}$
- Circumferential force $=$

$$
\begin{aligned}
& \mathrm{w} \times \mathrm{R}\left(\cos \theta-\frac{1}{1+\cos \theta}\right)=42.407 \times 10 \\
& \left(\cos \theta-\frac{1}{1+\cos \theta}\right)=103.71 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

- Hoop stress $=\frac{103.71 \times 10^{\mathrm{s}}}{100 \times 1000}=1.037 \mathrm{~N} / \mathrm{mm}^{2}$ Provide nominal reinforcement of 0.3 \% Ast $=\frac{0.3 \times 100 \times 1000}{100}=300 \mathrm{~mm}^{2}$
Assume 8 mm diameter of bar
Spacing $=\frac{100}{\frac{300}{\frac{\pi}{4} \times 8^{2}}}=167.55 \mathrm{~mm}$
Provide $8 \mathrm{~mm} \emptyset$ bar @ 160 mm c/c circumferentially and along the meridians.
e. DESIGN OF BOTTOM RING BEAM:
- Loads on ring beam =
a) Load due to top dome $=$ Meridonal thrust $\times \operatorname{Sin} \theta$ $=235.58 \times \operatorname{Sin} 36.86=141.31 \mathrm{KN} / \mathrm{m}$
b) Load due to top ring beam $=0.3 \times 0.25 \times 25$ $=1.875 \mathrm{KN} / \mathrm{m}$
c) Load due to cylindrical wall = $5 \times 0.1 \times 25$ $=12.5 \mathrm{KN} / \mathrm{m}$
d) Self wt. of ring beam (assuming $250 \times 300 \mathrm{~mm}$ beam $)=0.25 \times 0.3 \times 25=1.875 \mathrm{KN} / \mathrm{m}$

Total vertical load $=V_{1}=143.31+1.875+12.5+$ $1.875=159.56 \mathrm{KN} / \mathrm{m}$
Horizontal force $=\mathrm{H}=V_{1} \operatorname{Cos} 45=159.56 \operatorname{Cot} 45$ $=159.56 \mathrm{KN}$

- Hoop tension due to vertical loads =
$\mathrm{Hg}=\frac{H \times D}{2}=\frac{159.56 \times 12}{2}=957.36 \mathrm{KN}$
- Hoop tension due to water pressure $=$
$\mathrm{Hw}=\frac{w \times d \times D \times h_{\mathrm{g}}}{2}=\frac{10 \times 5 \times 0.3 \times 12}{2}=90 \mathrm{KN}$
Total hoop tension $=\mathrm{Hg}+\mathrm{Hw}=957.36+90=$ 1047.36 KN

Ast $=\frac{1047.36 \times 10^{\mathrm{s}}}{150}=6982.4 \mathrm{~mm}^{2}$
Assume 18-22 mm $\emptyset_{\text {bar }}\left(\right.$ Ast $\left.=6842.38 \mathrm{~mm}^{2}\right)$

- Maximum tensile stress $=$
$\frac{1047.36 \times 10^{5}}{(500 \times 800)+(18 \times 6911.50)}=1.997 \mathrm{~N} / \mathrm{mm}^{2}$
Provide a ring beam of $500 \times 800 \mathrm{~mm}$ with 18 bars of $22 \mathrm{~mm} \emptyset$ and distribution bars of 10 mm \emptyset from cylindrical wall taken round the main bars as stirrups at $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
f. DESIGN OF COLUMN:

The water tank having 6 columns equally spaced on a circle of 12 m diameter.

- Total load on ring beam = 159.56 KN
- Total design load on ring beam $=$ $\mathrm{W}=\pi \times D \times w=\pi \times 12 \times 159.56=$ 6015.27 KN
i. Vertical load on each column

$$
=\frac{6015.27}{6}=1002.54 \mathrm{KN}
$$

ii. Self wt. of column of height 12.37 m and 300 mm diameter

$$
\begin{aligned}
& =\frac{\pi}{4} \times(0.3)^{2} \times 12.37 \times 25 \\
& =21.859 \mathrm{KN}
\end{aligned}
$$

iii. Self wt. of bracing (3 numbers of 3.0925 m intervals, size of bracing is $300 \times 250 \mathrm{~mm}$)

```
\(=\frac{\pi}{8} \times 0.3 \times 3 \times 0.25 \times 25\)
    \(=2.2089 \mathrm{KN}\)
```

- Total vertical load on each column $=1002.54+$ $21.85+2.208=1026.598 \mathrm{KN}$
- Wind forces on column = Intensity of wind pressure $=1.5 \mathrm{KN} / \mathrm{m}^{2}$ Reduction coefficient for circular shapes $=0.7$
i. Wind force on top dome and cylindrical wall $=\left(6+\frac{2}{2}\right) \times 0.7 \times 1.5 \times 12=88.2 \mathrm{KN}$
ii. Wind force on bottom ring beam
$=6 \times 0.7 \times 1.5 \times 0.5=3.15 \mathrm{KN}$
iii. Wind force on bracing
$=6 \times 3 \times 1.5 \times 0.3=8.1 \mathrm{KN}$
Total horizontal wind force $=88.2+3.15+8.1$
$=99.45 \mathrm{KN}$
- Moment at base of column is computed as = $\mathrm{M}=\frac{99,45 \times 3.0925}{2}=153.77 \mathrm{KN} . \mathrm{m}$ If $M_{1}=$ moment at the base of the column due to wind loads $=(88.2 \times 25)+(3.15 \times 12.37)+(6$

$$
\left.X_{12}\right)+(6 \times 6)+(6 \times 3)=2369.965 \mathrm{KN} . \mathrm{m}
$$

- Moment in each column at base $=\frac{153.77}{6}=25.628$ KN. m
- Design ultimate moment in each column

$$
\mathrm{Mu}=(1.5 \times 25.628)=38.442 \mathrm{KN} . \mathrm{m}
$$

- \quad Design ultimate axial load $=$

$$
\mathrm{Pu}=(1.5 \times 1026.598)=1539.897 \mathrm{KN}
$$

$$
\text { Compute the parameters }=\left(\frac{P_{u}}{f c k \times D^{2}}\right)=
$$

$$
\frac{1539.897 \times 10^{6}}{30 \times 300^{2}}=0.5703
$$

$$
\left(\frac{M u}{f c k \times D^{3}}\right)=\frac{38.442 \times 10^{6}}{30 \times 300^{3}}=0.0474
$$

- From chart - 56 (SP-16) for circular columns with compression and bending and 8 longitudinal bars and the ratio $\left(d^{\prime} / D\right)=0.10$. the corresponding percentage reinforcement is read as,

$$
\left(\frac{P u}{f c k}\right)=0.05
$$

$\mathrm{P}=0.05 \times 30=1.5 \%$
But minimum reinforcement in column $=0.8 \%$ providing 1.5% reinforcement, we have
Asv $=\left(\frac{P \times \pi \times D^{2}}{400}\right)=\left(\frac{1.5 \times \pi \times 300^{2}}{400}\right)=1060.28 \mathrm{~mm}^{2}$
Provide 8 bars of $16 \mathrm{~mm} \emptyset\left(\right.$ Asv $\left.=1608.49 \mathrm{~mm}^{2}\right)$

- Diameter of lateral ties not less than
$=\left(\frac{1}{4} \times 16\right)=4 \mathrm{~mm}$
Adopt 8 mm diameter lateral ties.
Pitch of lateral ties shall be least of
i. Least lateral dimension $=300 \mathrm{~mm}$
ii. $16 \times 16=256 \mathrm{~mm}$
iii. $\quad 300 \mathrm{~mm}$

Hence adopt $8 \mathrm{~mm} \emptyset$ lateral ties at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
g. DESIGN OF BRACE BEAM :

- Service moment in brace $=$

$$
\begin{aligned}
& \mathrm{M}=2 \times \text { moment in column } \times \sqrt{2}= \\
& 2 \times 25.628 \times \sqrt{2}=72.486 \mathrm{KN} . \mathrm{m}
\end{aligned}
$$

- Design of ultimate moment $=$
$\mathrm{Mu}=1.5 \times 72.486=108.73 \mathrm{KN} . \mathrm{m}$
- Section of brace $=300 \times 250 \mathrm{~mm}$
$\mathrm{b}=300 \mathrm{~mm}, \mathrm{~d}=250 \mathrm{~mm}$
- Limiting moment of resistance of the section is computed as $=\mathrm{Mu}$ lim $=0.138 \times \mathrm{fck} \times \mathrm{bd}^{2}=$
$\left(0.138 \times 30 \times 300 \times 250^{2}\right) \times 10^{-6}$
$=77.625 \mathrm{KN}$.
$\mathrm{m}<\mathrm{Mu}$ Hence section is under reinforced.
- Compute the parameters =
$\left(\frac{M u}{\mathrm{bd}^{2}}\right)=\left(\frac{108.73 \times 10^{6}}{300 \times 250^{2}}\right)=5.798$
Ast $=\left(\frac{1.414 \times 300 \times 250}{100}\right)=1060.5 \mathrm{~mm}^{2}$
Provide 4 bars of $20 \mathrm{~mm} \emptyset$ (Ast $=1256.63 \mathrm{~mm}^{2}$)
both at top and bottom since wind direction is reversible.
- Length of brace $=\mathrm{L}=2 \times 4 \times \operatorname{Sin} 18.43=2.529 \mathrm{~m}$
- Maximum service load shear force in brace is computed as =
$\mathrm{V}=\frac{\text { moment in brace }}{\text { halflength of brace }}=\frac{72.486}{0.5 \times 2.529}=57.32 \mathrm{KN}$
- Design ultimate shear force $=$
$\mathrm{Vu}=1.5 \times 57.32=85.985 \mathrm{KN}$
- $\tau_{v}=\frac{V u}{b \times d}=\frac{85.985 \times 10^{s}}{300 \times 250}=1.146 \mathrm{~N} / \mathrm{mm}^{2}$
$\left(\frac{100 \times A s t}{b d}\right)=\left(\frac{100 \times 1256.63}{300 \times 250}\right)=1.675$
$\tau_{c}=0.788 \mathrm{~N} / \mathrm{mm}^{2}$, since $\tau_{v}>\tau_{c}$ shear
reinforcement are required.
- Shear force carried by concrete
$=\tau_{c} \mathrm{~b} \mathrm{~d}=(0.788 \times 300 \times 250) \times 10^{-3}$
$=59.1 \mathrm{KN}$
Balance shear force $=85.985-59.1=26.885 \mathrm{KN}$

Using $10 \mathrm{~mm} \emptyset 2$ - legged stirrups,

- \quad Spacing $=$
$S v=\frac{0.87 \times 415 \times 2 \times 79 \times 250}{26.885 \times 10^{8}}=530.462 \mathrm{~mm}$
But Sv not greater than 0.75 d or 300 mm whichever is less
Hence, provide $10 \mathrm{~mm} \emptyset 2$ - legged stirrups at 300
mm c/c
h. DESIGN OF FOOTING:
- Total column load = 1002.54 KN
- Approximate weight of footing = 140 KN

Total $=1002.54+140=1142.54 \mathrm{KN}$

- Safe bearing capacity of soil $=200 \mathrm{KN} / \mathrm{m}^{2}$
- Area of footing required $=\frac{1142.54}{200}=5.7127 \mathrm{~m}^{2}$

Let the diameter of the footing be x meter,
$\frac{\pi x^{2}}{4}=5.712$
$\mathrm{x}=2.696 \mathrm{~m}$
Provide a diameter of footing equal to 2.70 m
Radius of footing $=1.35 \mathrm{~m}$

- Net upward pressure intensity on the footing =

$$
P=\frac{1002.54 \times 10^{3}}{\pi \times 1.35^{2}}=175099.2 \mathrm{~N} / \mathrm{m}^{2}
$$

- Depth of footing =

BM consideration, consider the shaded area of the plan of the footing
Distance of the centroid of the shade area from the axis of the column
$=0.6 \times\left(\frac{R^{2}+r^{2}+R r}{R+r}\right)$
$=0.6 \times\left(\frac{1.35^{2}+0.15^{2}+1.35 \times 0.15}{1.35+0.15}\right)=0.819 \mathrm{~m}$

- Area shaded $=\frac{\pi}{4} \times\left(R^{2}-r^{2}\right)$
$=\frac{\pi}{4} \times\left(1.35^{2}-0.15^{2}\right)=1.4137 \mathrm{~m}$
- Load on the shaded area $=175099.2 \times 1.4137$ $=247537.7 \mathrm{~N}$
- \quad Maximum bending moment $=\mathrm{M}$
$=247537.7 \times 0.819=202733.4 \mathrm{~N} . \mathrm{m}$
- Breadth of shaded part at column face $=\frac{\pi \times 300}{4}$
$=235.61 \mathrm{~mm}$
Adopting $\mathrm{c}=10 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{t}=230 \mathrm{~N} / \mathrm{mm}^{2}$ and equating the moment of resistance to the bending moment
$=1.213 \mathrm{bd}^{2}$
$202733.4 \times 10^{3}=1.213 \times 235.61 \times \mathrm{d}^{2}$
$\mathrm{d}=842.23 \cong 845 \mathrm{~mm}$
Providing a clear cover of 60 mm to the lower layer of bars and providing 16 mm diameter bars.
Effective cover to the centre of the upper layer of bars $=60+16+8=84 \mathrm{~mm}$
Overall depth required $=845+84=929 \mathrm{~mm}$
Provide an overall depth 950 mm
Actual effective depth $=950-84=866 \mathrm{~mm}$
- Punching shear consideration $=$

Safe punching shear stress $=1.2 \mathrm{~N} / \mathrm{mm}^{2}$
Punching resistance $=$ Punching load
$\pi \times 300 \mathrm{D} \times 1.2=175099.2$
$\left(\frac{\pi}{4}\left(2.70^{2}-0.3^{2}\right)\right)$
D $=875.49 \mathrm{~mm}$
Hence depth of the footing is governed by the bending moment consideration.
Ast $=\frac{2027733.4 \times 10^{8}}{230 \times 0.87 \times 866}=1169.931 \mathrm{~mm}^{2}$
Provide 8 mm bars of 16 mm Ø (Ast $=1608.48$ mm^{2})
The reinforcement to the above extent should be provided in two principle directions and in a width equal to the side of square in scribed in the plan of the footing length of the side of the inscribed square.
$=\mathrm{R} \sqrt{2}=1.35 \sqrt{2} \times 1000=1909.1 \mathrm{~mm} \cong 2000$
mm

- \quad Check for shear $=$

The critical section for shear is considered at a distance equal to the effective depth from the face of the column. distance of 866 mm from the face of the column.
Let the depth of the footing be reduced to 300 mm at the ends.
Overall depth at critical section
$=950-\left(\frac{950-300}{1375}\right) \times 866=541 \mathrm{~mm}$
Effective depth at the critical section $=541-84=$ 457 mm
Radius of the critical circle $=150+866=1016$ mm

- Nominal shear stress at the critical section
$=\frac{175099.2 \pi\left(1.35^{2}-1.016^{2}\right)}{2 \pi \times 1016 \times 457}=0.149 \mathrm{~N} / \mathrm{mm}^{2}$
- Percentage of steel provided at the critical section
$=\frac{8 \times 201}{\pi \times \frac{1016}{2} \times 457} \times 100=0.220 \%$

For 0.220% of steel
$\tau_{c}=0.37 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v}<\tau_{c}$
5. RESULTS
A. Results of LSM method

- Number of columns $=6$
- Type of foundation = square footing
- Diameter of tank $=12 \mathrm{~m}$
- Load on top dome $=4 \mathrm{KN} / \mathrm{m}^{2}$
- Load due to ring beam $\mathrm{B}_{1}=1.5 \mathrm{KN} / \mathrm{m}^{2}$
- Load due to tank wall $=36.619 \mathrm{KN} / \mathrm{m}^{2}$
- Load of bottom ring beam $\mathrm{B}_{2}=149.53 \mathrm{KN} / \mathrm{m}^{2}$
- Load of bottom dome $=37.48 \mathrm{KN} / \mathrm{m}^{2}$
- Load on each column $=939.32 \mathrm{KN}$
- Diameter of column $=300 \mathrm{~mm}$
- Total height of structure $=20.35 \mathrm{~m}$
- Height of staircase $=20.35 \mathrm{~m}$ (up to top dome)
- Number of steps in staircase $=81$
B. Results of WSM method
- Number of columns $=6$
- Type of foundation = circular footing
- Diameter of tank $=12 \mathrm{~m}$
- Load on top dome $=4 \mathrm{KN} / \mathrm{m}^{2}$
- Load due to ring beam $\mathrm{B}_{1}=1.875 \mathrm{KN} / \mathrm{m}^{2}$
- Load due to tank wall $=12.5 \mathrm{KN} / \mathrm{m}^{2}$
- Load of bottom ring beam $\mathrm{B}_{2}=159.56 \mathrm{KN} / \mathrm{m}^{2}$
- Load of bottom dome $=4796.159 \mathrm{KN} / \mathrm{m}^{2}$
- Load on each column $=1026.598 \mathrm{KN}$
- Diameter of column $=300 \mathrm{~mm}$
- Total height of structure $=20.35 \mathrm{~m}$

6. COMPARISION

SR. NO	PARTIC ULAR	LSM METHOD	WSM METHOD	REMA RK
1.	TOP DOME	Ast $=0.35 \%$ $=350 \mathrm{~mm}^{2}$ $8 \mathrm{~mm} \emptyset$ bar	Ast $=0.24 \%$ $=240 \mathrm{~mm}^{2}$ $8 \mathrm{~mm} \emptyset$ bar	Ast
Provid				

		@ 200 mm c/c	$\begin{aligned} & \text { @ } 200 \mathrm{~mm} \\ & \mathrm{c} / \mathrm{c} \end{aligned}$	ed in LSM is more than WSM.
2.	TOP RING BEAM	$\begin{aligned} & \text { Size }=200 \mathrm{X} \\ & 300 \mathrm{~mm} \\ & 6 \text { bars }-12 \\ & \text { mm } \emptyset \\ & \text { Stirrups = } \\ & 8 \mathrm{~mm} \emptyset \text { bar } \\ & -2 \text { legged @ } \\ & 200 \mathrm{~mm} \mathrm{c} / \mathrm{c} \end{aligned}$	$\begin{aligned} & \text { Size }=250 \mathrm{X} \\ & 300 \mathrm{~mm} \\ & 6 \text { bars }-12 \\ & \mathrm{~mm} \emptyset \\ & \text { Stirrups = } \\ & 8 \mathrm{~mm} \emptyset \text { bar } \\ & -2 \text { legged @ } \\ & 225 \mathrm{~mm} \mathrm{c} / \mathrm{c} \end{aligned}$	Area of WSM is more than LSM. WSM requir ed more spacin g than LSM.
3.	VERTIC AL WALL	$\begin{aligned} & \text { Thickness = } \\ & 100 \mathrm{~mm} \\ & \text { Ast = } 0.35 \% \\ & =350 \mathrm{~mm}^{2} \\ & \text { Hoop bars }= \\ & 20 \mathrm{~mm} \emptyset \\ & \text { bar @ } 130 \\ & \mathrm{~mm} / \mathrm{c} \\ & \text { Vertical bars } \\ & = \\ & 8 \mathrm{~mm} \emptyset \text { bar } \\ & @ 140 \mathrm{~mm} \\ & \mathrm{c} / \mathrm{c} \end{aligned}$	Thickness = 175 mm At 1 m depth from top $=$ Ast $=239$ mm^{2} 8 mm Ø bar @ 210 mm c/c At 2 m depth from top $=$ Ast $=462$ mm^{2} 10 mm Ø bar @ 170 $\mathrm{mm} \mathrm{c} / \mathrm{c}$ At 3 m depth from top $=$ Ast $=714$ mm^{2} $10 \mathrm{~mm} \emptyset$ bar @ 110 $\mathrm{mm} \mathrm{c} / \mathrm{c}$ At 4 m depth from top $=$ Ast $=942$ mm^{2} $12 \mathrm{~mm} \emptyset$ bar @ 120 $\mathrm{mm} \mathrm{c} / \mathrm{c}$ At 5 m depth from top $=$	Thickn ess of wall is more in WSM than LSM. Ast provid ed in WSM is more than LSM. Bars in WSM is more than LSM

			$\begin{aligned} & \text { Ast = } 935 \\ & \mathrm{~mm}^{2} \\ & 12 \mathrm{~mm} \emptyset \\ & \text { bar @ } 120 \\ & \mathrm{~mm} / \mathrm{c} \end{aligned}$	
4.	BOTTO M DOME 10 mm thicknes s	Ast $=0.35 \%$ $=350 \mathrm{~mm}^{2}$ $8 \mathrm{~mm} \emptyset$ bar @ 140 mm c/c Circumferen tially and along the meridians.	$\begin{aligned} & \text { Ast }=0.3 \% \\ & =300 \mathrm{~mm}^{2} \\ & 8 \mathrm{~mm} \emptyset \mathrm{bar} \\ & @ 160 \mathrm{~mm} \\ & \mathrm{c} / \mathrm{c} \\ & \text { Circumferen } \\ & \text { tially and } \\ & \text { along the } \\ & \text { meridians. } \end{aligned}$	WSM requir ed more spacin g than LSM.
5.	BOTTO M RING BEAM (500 X 800 mm)	Ast $=6490$ mm^{2} Longitudinal reinforceme nt 6 bars - 22 mm Ø And at vertical sides 4 bars - 12 mm Ø bar And To hold stirrups 2 bars - 12 mm Ø bar Stirrups $=$ 10 mm Ø bar @ 260 mm c/c	Ast $=$ 6842.38 mm^{2} Distribution bars = 18 bars - 22 mm Ø Stirrups = 10 mm Ø bar @ 180 $\mathrm{mm} \mathrm{c} / \mathrm{c}$	Ast provid ed in WSM is more than LSM. Bars in WSM are more than LSM.
6.	COLUM N6 columns of 300 mm diamete r	Ast $=$ 2513.275 mm^{2} Longitudinal steel $=$ 8 bars - 20 mm Ø bar Lateral ties 10 mm Ø bar @ 300 $\mathrm{mm} \mathrm{c} / \mathrm{c}$	Ast $=$ 1608.49 mm^{2} Longitudinal steel = 8 bars - 16 mm Ø bar Lateral ties = 8 mm Ø bar @ 300 mm c/c	Ast provid ed in LSM is more than WSM. Bars in LSM are more than WSM.

7.	BRACE BEAM	$\begin{aligned} & \text { Size }=300 \mathrm{X} \\ & 300 \mathrm{~mm} \\ & \text { Ast = } \\ & 1350.62 \\ & \mathrm{~mm}^{2} \\ & \text { Longitudinal } \\ & \text { steel = } \\ & 4 \text { bars }-25 \\ & \text { mm } \emptyset \text { bar } \\ & \text { Stirrups }= \\ & 8 \mathrm{~mm} \emptyset \text { bar } \\ & -2 \text { legged @ } \\ & 300 \mathrm{~mm} \mathrm{c} / \mathrm{c} \end{aligned}$	$\begin{aligned} & \text { Size }=300 \mathrm{X} \\ & 250 \mathrm{~mm} \\ & \text { Ast = } \\ & 1060.50 \\ & \mathrm{~mm}^{2} \\ & \text { Longitudinal } \\ & \text { steel = } \\ & 4 \text { bars }-20 \\ & \text { mm } \emptyset \text { bar } \\ & \text { Stirrups }= \\ & 10 \mathrm{~mm} \emptyset \\ & \text { bar }-2 \\ & \text { legged @ } \\ & 300 \mathrm{~mm} \mathrm{c} / \mathrm{c} \end{aligned}$	Area of LSM is more than WSM. Bars in LSM are more than WSM.

7. CONCLUSIONS

- Population forecasting has been calculated which helped us, to know about the population in village area and further helped in design the tank.
- Limit state method was found to be most economical for design of water tank as the quantity of steel and concrete needed is less as compare to working stress method.

8. REFERENCES

Research paper

[1] Bhandari, M. (2014). Water Tank Of Different Shapes With Reference To IS: 3370 2009. International Journal of Modern Engineering Research.
[2] Gunasekaran, Y. K. (2016). Analysis and Design of Sump and Overhead Tank and Usage of Sensors in Residential Apartment inNanganallur, Chennai. International Journal of Engineering Research and Technology.
[3] Harsha, K. (2015). Seismic Analysis and Design of INTZE Type Water Tank. International Journal of Science Technology and Engineering.
[4] Jindal, B. B. (2012). Comparative Study Of Design Of Water Tank With Reference To IS: 3370. Proceeding of Innovative Challenges in Civil Engineering.
[5] Kapadia, I. (2017). Design Analysis and Comparison of Underground Rectangular Water Tank by Using Staad Pro Software. International Journal of Scientific Development and Research.
[6] Meshram, M. N. (2014). Comparative Study of Water Tank Using Limit State Method and Working Stress Method. International Journal of Research in Advent Technology.
[7] Murthy, B. R. (2016). Design of Rectangular Water Tank by Using Staad Pro Software. International Journal of Computer Science Information.
[8] Nallanathel, M. M. (2018). Design and Analysis of Water Tanks Using Staad Pro. International Journal of Pure and Applied Mathematics.

International Research Journal of Engineering and Technology (IRJET)
[9] Shende, S. S. (2016). Comparative Study of Design of Water Tank with New Provision. International Journal of Current Trends in Engineering and Research.
[10] Vanjari, N. S. (2017). Design of Circular Overhead Water Tank. International Journal of Engineering Research in Mechanical and Civil Engineering.

IS code

[11] IS 3370-2009 PART I for general requirements.
[12] IS 3370 - 2009 PART II for reinforced concrete structures.
[13] IS 3370-2009 PART III for prestressed concrete.
[14] IS 3370-2009 PART IV for design tables.
[15] IS 456-2000 for permissible stress and crack width <0.2 mm .
[16] SP 16 - for design aids for reinforced concrete to IS 456.
[17] IS 11682 for design of RCC staging for overhead water tanks.
[18] IS 13920 - 1993 for reinforced concrete structures subjected to seismic forces.

