
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4653

Automated Traffic Light System using Raspberry Pi and Convolution
Neural Network

Siddaraj M G1, Syeda Umeela2, Pravalika Gandhi2 , Saniya kousar2, Shrivathsa S K2

1Professor, Dept. of IS&E Engineering, MIT Mysore, Karnataka India
2Dept. of IS&E Engineering, MIT Mysore, Karnataka India

---***--
Abstract – Management of traffic is an ever-growing concern
and manual management of traffic especially in metropolitan
cities is strenuous task. In this paper, we present an automated
traffic light system based on image processing and machine
learning techniques to automatically identify the number of
vehicles in each lane to set the green signal time optimally to
avoid large waiting time and also clear congestion at faster
rate. The YOLO darknet weights and labels are used with
categorized classes to identify and detect number of vehicles in
the frame of the captured image. The entire system is
implemented using Raspberry pi 3B+ integrated with
rotatable webcam. The results show that this system is reliable
as it produces 100% accuracy in producing the exact vehicle
count and setting of green time optimally to have a wait time
no longer than 90 seconds.

Key Words: You Only Look Once (YOLO), Green Time,
Convolution Neural Networks (CNN), Raspberry Pi, Wait
time, Vehicle Detection.

1.INTRODUCTION

Road traffic is one of the biggest concerns in almost
every country in the world. With roads designed to handle a
certain amount of traffic, it is almost impossible to maintain
traffic to stay at the same rate with a growing population and
economy. Some alternate solutions to control the traffic is
either through expanding the roads or installing new
roadways which can be time-consuming. Most cities employ
a density-based traffic signal system [1], which measures the
number of vehicles in each lane before deciding the green
time. However, the density is measured through sensors and
does not estimate the exact count of vehicles but gives only a
rough estimate. With the advancement in technology
concerning image processing and machine learning, it is
possible to capture the image of the lane and estimate the
exact number of vehicles present in the lane to determine
the green time for a particular lane in the intersection. The
regulation of traffic lights in the intersection has to be done
based on traffic congestion which can be measured through
advanced image processing techniques.
 In this paper, we present a YOLO Framework-based
vehicle count estimation and green time determination for
each lane in the intersection. The YOLO or You only look
once is an algorithm that uses convolution neural networks
for object detection in real-time. They apply a single neural
network to the full image and divide the image into regions
and predict the bounding boxes which probabilities for each

region. These bounding boxes are weighted by the predicted
probabilities. YOLO has high accuracy and also its multiple
bounding boxes and class probabilities for these boxes. The
hardware setup for this project is developed using the
raspberry pi and a webcam to capture real-time images.
Once the captured image is subjected to YOLO detection, the
number of vehicles in the image is known. Based on the
number of vehicles the green time is decided and is deployed
into the LED drivers acting as traffic signal systems for the
particular lane. The green time is decided based on the burst
technique. This technique allows the congestion to be under
control and the maximum wait time of any lane is not more
than 90 seconds.
 This paper is organized as follows section 1 describes
the existing system and the proposed system, the second
section explains the algorithm and the working of the YOLO
framework, the third section describes the architecture of
the project developed using raspberry pi. The fourth section
illustrates the results of the developed system in terms of
speed accuracy and other performance metrics.

1.1 Existing System

 The Existing system uses PIR based technique for
identifying the vehicle density [2]. The Raspberry Pi 2
microcontroller handles the LED lighting of the traffic light
according to the times previously set with Python code.
Depending on the output of the Pir motion detector sensor
which, when detecting the infrared radiation change through
its line of sight, sends a HIGH to the microcontroller. On the
PCB board all the red-colored LEDs are soldered in parallel.
They will flash when the traffic light changes from red to
green. The common cathode RGB LED display, soldered in
parallel on the PCB board, consists of 4 terminals. The longest
terminal corresponds to the common cathode while the other
3 terminals correspond to the emission of red, green light and
blue respectively. The microcontroller will send PWM signals
to each of these terminals and depending on the work cycle
that is applied to the PWM signal of each terminal, the RGB
LED of a will light up with the correct color. In [3], the
authors implement the image processing-based traffic light
control using the Arduino UNO and MATLAB environment.
The Arduino is used to send data to the first order now for
and then the webcams are selected in sequence these
webcams are connected to the first webcam on the system.
The colored image acquired from the webcam is converted
into binary image, from which the region of interest is
selected and used as a mask. The morphological operation is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4654

performed to remove the objects in the image depending on
the size and shape of the structuring element. Appropriate
MATLAB functions are used to calculate traffic density based
on the morphological operations performed in the image. In
this system 4 different Arduinos along with 4 different
webcams are used which next system more costly and
increase the processing time.

1.2 Proposed System

We propose an IOT based system that uses Raspberry Pi 3
and YOLO framework to determine the green time for each
lane based on images captured at the lanes. The system is
designed considering the parameters like delay, accuracy,
performance, cost, and reliability. The system uses a single
webcam to capture images of the vehicle in the lane that can
be rotated after green time is concluded for a particular lane
and has to be estimated for the next lane. The master
controller unit which is the raspberry pi is powerful enough
to run ML-based algorithms that can be subjected to the
input images obtained from the webcam. The entire system
works in real-time and can have a very minimal delay. The
YOLO Framework is used to determine the number of
vehicles in each lane from the obtained images and the green
time is scheduled accordingly concerning minimum and
maximum allotted green time for each lane. In general
considerations, it is assumed that each vehicle takes 3
seconds on average to exit the lane in the intersection. The
maximum time for any lane a set for 30 seconds, and a
minimum of five seconds of green time is given to each lane
irrespective of the number of vehicles. If the number of
vehicles is large and the green time exceeds 30 seconds for
the number of vehicles present in the lane, cycles may have
to wait for the next cycle, no longer than 90 seconds. Python
Language is used for the design of the system. The hardware
setup consists of a traffic signal prototype designed from red,
green, and yellow LEDs controlled from the Raspberry Pi. Fig
1 shows the proposed system architecture.

Fig 1: Proposed System

2. YOLO Framework and CNN

 It is one of the object detection frameworks chosen for its
excessively fast and accurate detection technique. Object
detection is one of the classical problems in computer vision
that concerns the recognition of position and the type of
object present inside the image. Some object detection
algorithms do not specify the location on the images or may

not work on images containing more than one object. Yolo on
the other hand is clever fast and uses Convolution Neural
Networks (CNN) for object detection in real time. Its ability to
run in real time with high speed and high accuracy, one of the
most preferred algorithms for object detection. The single
CNN predict the multiple bounding boxes simultaneously
along with the class probabilities. Detection is made at three
scales precisely given by the term sampling of the dimensions
of the input image 32 16 and 8 respectively.

 CNN comes under the Deep Learning which is a
subdomain of Machine learning. It is applied in most of the
image classification process. Image classification involves
extraction of features from the image to observe patterns that
is available in the data set. Use of CNN eliminates the cost of
computation. Convolution is point wise multiplication of two
functions that produces the third function. Out of the two
functions, one is the image in matrix format and the other is
the image filter. The resulting matrix can be termed as a
feature map. Fig 2 shows the CNN principle.

 The steps involved in CNN are as follows

1. Choose or create a dataset - Image data set can be
chosen from available formats like weight are Caffe
model files or can be created from custom images
collected which contains all possible types of images
concerning for a particular application or detection.
For example, if CNN is used for face mask detection,
the dataset shall contain the images of all kinds of
faces with all kinds of masks available in the market.

Fig 2: Steps involved in CNN

2. Create Training Data - Creation of training data
involves labelling the images that contains the pixel
values and the index search with the image in
categories list. The images are appended to the array
of training by normalizing the categorical data
through assignment of corresponding labels. This
training data is split into two categories that is test
and train data. Conventionally 20 percent of data is
used for testing and the other 80% for training.

3. Apply on images – The trained set is compared and
contrasted w.r.t the input image for classification.
The image is first subsampled into maps and the
convolution is applied to these maps to generate the
feature maps. The feature map is further
subsampled to obtain a fully connected image set
contained convolved subsets on which the
comparison or classification is carried out.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4655

YOLO object detection is performed either through real
time or on custom image or video. Nearly 80 different classes
of objects can be determined using the YOLO framework. Out
of the available classes, our system uses the pretrained YOLO
config and weights to determine few classes namely car,
truck, bus, train and motorbike for counting number of
vehicles in each lane of the intersection. The detected vehicle
count in the image is used to determine the green time as
described in Section 3. However, it is to be noted that the
algorithm is very powerful and requires a faster computation
device with high processing power or can cause delay in the
detection process. Also, the webcam should have enough
resolution to capture clear images.

3. SYSTEM ARCHITECTURE

The UML diagram for the system architecture is
shown in fig 3. The architecture shows the implementation
of the system using the Raspberry Pi.

Raspberry Pi 3B+:

The Raspberry pi is a credit card sized computer
which runs on Raspbian Operating System. It is a 1.4 GHz
64-bit quadcore processor with 802.11n Wi-Fi, Bluetooth
and USB boot capabilities. It has a 300Mbit/s ethernet and
SD card for the OS. Python3 is used to program the LEDs
based on input from the camera.
OpenCV: Open CV is an open-source computer vision
machine learning software library built to provide a common
infrastructure of computer vision applications to accelerate
the use of perception among the commercial products. It has
2500 optimise algorithms including a comprehensive set of
classic and state-of-art CVs. Most of these are used to detect
faces, identify objects, classify human actions vehicle
detection 3D model extraction stereo camera extractions and
many more. It is also used in enhancing upscaling
downscaling interpolating and other image processing
applications in a simple and effective manner. It has c++, Java
and MATLAB interface and supports multi-paradigm
programming for higher level project synthesis. In this
project cv2 is trained with yolo weights identify the region of
interest in an image and extract if an animal is found. Since
CV support libraries are strong enough, multiple presence of
vehicles can be detected and identified.
NumPy: NumPy is another powerful library for python
programming language which supports multidimensional
array and matrices with a collection of high-level
mathematical functions to perform operations on the arrays.
It targets the reference implementation which is a non-
optimising bytecode interpreter. It analyses the slowness of
the compiler by providing the multidimensional array and
functions which could operate efficiently.
RPi GPIO: This package provides a class to control the GPIO
on a Raspberry Pi. It allows the python to work as an
embedded language for the raspberry Pi. This library is used
to control the status voltage input and outputs of all the pins
in raspberry pi programmatically. It is also so helpful in

integrating the peripherals and external devices connected
with the raspberry pi.
Flask: Flask is a micro web framework written in Python. It
is classified as a microframework because it

Fig 3: UML diagram for architecture

does not require particular tools or libraries. It has no
database abstraction layer, form validation, or any other
components where pre-existing third-party libraries provide
common functions. A Web-Application Framework or Web
Framework is the collection of modules and libraries that
helps the developer to write applications without writing the
low-level codes such as protocols, thread management, etc.
Flask is based on WSGI (Web Server Gateway Interface)
toolkit and Jinja2 template engine. In this project the flask is
used to fetch the data into the URL where the interface is
available and also read the user commands from the same
URL to perform operations accordingly.
Webcam: A high quality webcam is used to capture the
images at each lane. The images must be clear enough to
identify the number of vehicles to set the green time. An
image is taken as input into the python code to apply ML
from the YOLO framework.
LED traffic system: Red, Green and yellow LEDs are used to
create a prototype of the traffic system for 4 different lanes.
Green Time Determination: In the first step the image is
subjected to CNN based classification to recognise the
number of vehicles present in the image. The vehicle count
is obtained for each frame of image captured from the
webcam based on this count, the green time for each plane is
set. The green time is set as three times the number of
vehicles obtained from the frame. As illustrated above each
vehicle is assumed to take 3 s on an average to exit the line.
But the green time is set to minimum of five seconds even if
no vehicles are found and the maximum green time is set to
30 seconds even if the number of vehicles is huge. The
important thing noted here is that the image is captured
from the lane when the light hits yellow. So that the next
green signal can be held for the number of seconds
determined in the previous step using the time.sleep
function in python. The detailed flowchart is shown in fig 4.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4656

Fig 4: Proposed System Flowchart

As we can see from the flowchart, the green time is held by
using the sleep function in python. The flowchart for the
Vehicle count detection is illustrated in the fig 5. The
detection uses CNN algorithm with YOLO weights.

Fig 5: Flowchart for Vehicle count determination

4. IMPLEMENTATION RESULTS AND ANALYSIS

The implementation is carried out in real time for capturing
the number of vehicles in the lane and the performance
measures are tabulated in table 1. For each input image the
detections are shown in fig 6.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4657

Fig 6: Vehicle Detection Results in CV – trial 1

Fig 7: Vehicle Detection Results in CV – trial 2

The further trials and green time are tabulated below.

Lane
No of

vehicles

Predicted
No of

Vehicles

Green
Time

Wait
time
(s)

Accuracy
(%)

1 26 26 30 0 100
2 28 28 30 30 100
3 14 14 30 60 100
4 2 2 6 66 100

Table 1: Trial 1 with dense traffic congestion

Lane
No of

vehicles

Predicted
No of

Vehicles

Green
Time

Wait
time
(s)

Accuracy
(%)

1 6 6 18 0 100

2 4 4 12 18 100

3 7 7 21 30 100
4 8 8 24 51 100

Table 2: Trial 2 with moderate traffic congestion

5. CONCLUSION

 An automatic traffic light system was developed
using IOT and Machine learning algorithm to determine the
green traffic light duration based on traffic density. The
image was captured using webcam for each lane and the
image was subjected to YOLO detection algorithm to identify
the number of vehicles based on which the green time was
set. The detection was performed using the CNN with
pretrained YOLO coco weights. The green time was set
optimally to avoid longer waiting times. The entire system
was developed with Raspberry pi as master controller and
LEDs for traffic signal systems. The prototype was run in real
time and the results show 100% accuracy in determining the
number of vehicles and setting optimized green time.

6. REFERENCES

[1] Gul Shahzad; Heekwon Yang; Arbab Waheed
Ahmad; Chankil Lee, “Energy-Efficient Intelligent
Street Lighting System Using Traffic-Adaptive
Control”, IEEE 2016, Volume: 16

[2] Nicole Díaz, Jorge Guerra, Juan Nicola, “Smart Traffic
Light Control System”, IEEE 2018.

[3] Khushi, “Smart control of Traffic Light System using
Image Processing”, International Conference on
Current Trends in Computer, Electrical, Electronics
and Communication (ICCTCEEC-2017)

[4] J. K. and A. Desai, ”IoT: Networking Technologies
and Research Challenges”, International Journal of
Computer Applications, vol. 154, no. 7, pp. 1-6,
2016.

[5] ” Application of Raspberry Pi and PIR Sensor for
Monitoring of Smart Surveillance System”,
International Journal of Science and Research
(IJSR), vol. 5, no. 2, pp. 736-737, 2016.

[6] K. Choi, “Visible Light Communication with Color
and Brightness Control of RGB LEDs”, ETRI Journal,
vol. 35, no. 5, pp. 927-930, 2013.

[7] P. N R, “Smart pi cam based Internet of things for
motion detection using Raspberry pi”, International
Journal of Engineering and Computer Science, 2016.

