
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4466

Using Static and Dynamic Malware Features to Perform Malware

Ascription

 Kalyan Siddi Venkata1, Kalluri Venkata Datta Sai Mani2, Paladugu Charan3, Saisri K4

1-3Students, Dept of Computer Science and Engineering, Panimalar Institute of Technology

4Programmer Analyst, Cognizant
---***--

Abstract - Machine learning is amongst the most celebrated
research avenues today and is growing as the harbinger of
advancements in every field. It is receiving growing attention in
the area of privacy and security for building robust systems.
Malware ascription is a relatively unexplored area, and it is
rather difficult to attribute malware and detect authorship.
Our work focuses on leveraging machine learning models for
malware detection by determining the relation between the
training dataset and the output achieved. To this end, we
develop three different datasets that include pure malware
data, non-malware data, and obscure malware data. We
present three different scenarios to train the model and test its
effectiveness in a more simulated scenario to a more realistic
one. In our model, we apply temporal-based methodologies to
train and validate the classifier. Further, we study how much
we can reduce the training dataset without compromising
the optimal results. Upon applying a multi-layer approach, we
improved our base model by 20%. Our reports are extremely
useful in malware ascription.

Key Words: Security, Malware Detection, Machine Learning,
Temporal Consistency

1.INTRODUCTION

Detection and mitigation of malware is an evolving
problem in the cyber security field. [1] The number of
reported security breaches due to virus, worms, trojans, etc,
has been growing considerably in recent years [2] with
reports of infections due to malware making the headlines,
now more than ever. Almost every week one such security
vulnerability is reported which may be seen as a failure by
the security community on the control and detection of
malicious content.

The very first challenge that we face is the definition of
mal- ware. Malware is considered to be “a program with
malicious intent” [3] which in itself is a dubious definition.
Not only the same programs are classified differently as
malware and goodware depending on the vendor, but also
some programs fall within a gray area for which no clear
classification can be deemed correct. An example is what
is called adware, advertising-supported software, that
although not performing directly malicious actions, perform
arguably non-requested actions. The non-existence of
concrete metrics and properties that uniquely distinguish
malware from goodware requires an extra effort in the

preparation of datasets for evaluation of malware
detectors.

Due to the significant number of malware attacks, and
taking into consideration the increasing popularity and huge
success of Machine Learning (ML) methodologies in
classification in different domains [4]–[7], it is only
natural to see these techniques applied to complement
classical methodologies for malicious-content detection [3],
[8]–[22], in particular, supervised learning techniques.
However, several issues have arised regarding the usage of
these ML techniques in the scope of malware analysis [19]–
[22].

On the sometimes ambiguous scenario that is the task
of distinguishing malware from goodware, some of these
results largely depend on the datasets used for evaluation,
often not representing the real-world. In this paper we
address this pertinent questions and make a comparative
analysis of a supervised learning approach in three
different scenarios (depicted in Figure 1): a strict scenario
where only very well- characterized samples are
considered, a loose scenario where a wider set of still
well-studied samples is considered, and finally a realistic
scenario where we get closer to the reality faced by
vendors of malware detection solutions.

Fig. 1. Representation of our Sstrict, Sloose and Sreal

scenarios.

Throughout this work we will perform a comparative
analysis of the three above scenarios under two distinct
environments:

• laboratory conditions where traditional cross-
validation methodologies can be applied;

• real-world conditions where time is relevant and we
analyze the behavior of the classifier with temporal-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4467

based methodologies.

We show that without much tweaking, and using simple
features, a Logistic Regression (LR) model is able to
achieve an Area Under the Receiver Operating
Characteristic (AUROC) of 0.91 when ideal laboratory
conditions are met, but these results go down to an
AUROC of 0.75 when we change into a real-world scenario.

With the purpose of actually evaluating the usage of
ML methodologies for malware detection as a complement
to traditional malware detection techniques, we also
analyze how the size of the training set can influence the
performance of the classifier under the three studied
scenarios. For this, we use the aforementioned temporal-
based methodologies to come up with conclusions on how
large the training set need to be to ensure optimal results
from the classifier.

We finish off by improving our base model to include
more dynamic features, as well as providing a multi-layer
approach which adds the ability of classifying malware
samples from different classes, in contrast with simply
providing if a sample is malware or not. These
improvements boost our AUROC to 0.98 in ideal laboratory
conditions and 0.95 in a real-world scenario.

As the main contributions of this paper a) we propose
three different scenarios to train and validate the model
which range from a more simulated scenario to a more
realistic one, b) temporal-based methodologies to train
and validate the classifier, c) we study how much can we
reduce the training dataset without compromising the
optimal results, d) we improve our base model by 7% to
27%.

 This paper is outlined as follows: in Section II we
present the related work and justify how it motivated our
work; in Section III we describe and analyze the available
dataset and how it was labeled; in Section IV we propose a
feature selection and describe the used model; Section V
encloses our main contributions, describing our three
scenarios and how they are to be evaluated, using regular
cross-validation and our defined temporal-based
methodology, together with the results of said evaluation; in
Section VI we provide improvements to our base model; in
Section VIII we discuss our main achievements; Section IX
concludes the paper and discusses avenues for further
research.

1.2 RELATED WORK

We use this section to present prior work that closely relates
to the topic of our research and our areas of
contribution. Specifically, detecting malicious software by
training super- vised models on static information, and
validation methodologies that resemble real-world
conditions.

Shabtai et al. [23] provide a survey directed at the ap-
plication of ML classifiers to detect malware from static
features. Their work concerns the design and evaluation
of such systems. Our contributions are inspired by the
concern of how to correctly evaluate ML classifiers,
regarding size, reliability of labeling metrics and
chronological evaluation.

In the topic of methodologies that resemble real-world
conditions, Srndić et al. [18] train and validate their
malicious PDF detector under laboratory and real-world
conditions. Lab- oratory conditions consist on applying
regular cross-validation, whereas real-world conditions
validate a newer dataset with a model created from
outdated data (i.e. older then the validation), and also
validate the model when the validation set spans one week
and the training is gathered in the previous 4 weeks. They
show that laboratory conditions inflate the results, when
compared to real-world conditions.

Miller et al. [10] also introduce sample temporal
consistency. They show the impact of performance
measurement technique on a dataset containing 1.1 million
samples, when using cross-validation and temporally
consistent samples. As noted by others, regular cross-
validation showed inflated results when compared to
temporally consistent samples.

Our work enhances these methodologies by analyzing
the performance variation when the distance between the
training and validation set increases and decreases, as well
as analysis on how reducing the size of the training without
compromising the results.

Kolter et al. [10] learn to detect malicious
executables in a dataset with under 4,000 samples,
obtained from reliable sources, and evaluate their model
under standard cross- validation and by gathering newer
malware samples to validate for new and unseen samples.
They show how the model provides optimal results under
cross-validation, but for the unseen samples lower scores
are obtained. Our work considers these results to compare
how reliability affects performance.

Sebastián, M. et al. [24] develop AVClass, a tool that
given a set of antivirus vendors, outputs the most likely
family name. They test their tool under 10 datasets,
totaling 8.9 M samples, with results showing an F1
measure up to 93.9 on labeled datasets. The tool takes
as input the labels as seen in VirusTotal, tokenizes the
labels, replaces known aliases and general names (e.g.
win32, trojan, generic), ending with possible family
names. These remaining names are counted and the most
frequent one is given as family name. Our work takes
advantage of this tool, not to label malware families, but
minimal modifications, to label more general malware
classes (e.g. trojan, virus).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4468

Deo, A. et al. [19] focus over the problem of ML
models becoming antiquated over time, given how
malware evolves. This problem is seen as concept drift,
where the performance of a model over time diminishes,
as the statistical properties of malware (i.e. features)
change over time. They study how probabilistic predictors
can help minimize the aforementioned problem, by
indicating when retraining of a given model is necessary.

Jordaney, R. et al. [21] also study the problem of
concept drift in malware classification models, focusing on
providing metrics, based on statistical comparison of
samples, to detect when should a model be retrained.

Both [19] and [21] are on the subject of our work,
regarding the problem of concept drift, but differ on the
study- case. In our work we acknowledge the concept
but focus on its relative effects and how one can balance
the size of needed training data vs. validation data,
when maintaining a temporal consistent dataset. Whereas
their work provide indicators for when should a model
be retrained when the problem of concept drift becomes
significant.

2. DATA COLLECTION, ANALYSIS AND LABELING

Malware classification is non-deterministic task, as several
nuances make vendors disagree on what they classify
as malware. Not only subtleties related to programs such
as adware or remote management consoles, for which
one can find arguments to classify them in either class, but
also because some vendors are more accurate than others
when classifying malware.

In order to be able to study how temporal consistency and
ground truth influences a model trained to detect
malicious and non-malicious applications, we gathered a
large dataset of publicly available samples that includes
both malware and goodware with no a priori labeling.

In this section we will provide an overview of the
collected data, in particular its sources, followed by an
analysis on these samples, and a discussion on the cross-
checking mechanisms we used to perform the labeling. In
the end of this section we will provide 3 metrics for analysis
that differ in the confidence one can provide on the samples’
labeling.

A. DATA SOURCES

To study how temporal consistency and ground truth
influences a model trained to detect malicious and non-
malicious applications, we started by gathering a dataset of
malware and goodware. This dataset was obtained from
Malwr [25], an online service that runs static and dynamic
analysis on user submitted files using Cuckoo Sandbox [26].
Although Malwr accepts any kind of file, we are interested
solely in Portable Executable (PE) files, not only because
Windows’ systems are relevant targets of malicious

applications, but also due to the fact that our initial
approach will focus on static information obtained from
these PE files.

Malwr service provides the analysis of the submitted
files as well as the MD5 of such files, but no labeling as
whether a sample corresponds to a malicious or non-
malicious application. To perform this labeling we use the
anti-virus’ signatures given by VirusTotal [27] at the time of
analysis (incorporated in Malwr’s reports), as a means of
labeling the gathered reports. VirusTotal is an online service
where one can submit a suspicious file and in return obtain
a list with the analysis performed by a significant number of
vendors on whether the sample is clean or not.

However, as mentioned before, these classifications are
not unanimous, and we still need to assign a labeling to
each sample. For this reason, we enrich our knowledge
regarding samples’ ground truth by aggregating
metadata that was collected keeping in mind the analysis
carried out at National Software Reference Library (NSRL)
[28] and VirusShare.com [29], specifically the samples’
MD5. NSRL contains a collection of digital signatures of
known, traceable software applications, whereas
VirusShare.com is a repository of malware samples, so a
sample belonging to the NSRL set gives us a higher
confidence that it is indeed goodware, whereas one
belonging to VirusShare.com set gives us a higher confidence
that it is malware.

In summary, we collected reports from the PE samples
available in Malwr, and complemented it with metadata
from NSRL and VirusShare. The following subsection
quantifies our corpus, providing a better understanding of
the available samples.

B. DATA ANALYSIS

We collected our data from Malwr between April 16th, 2013
and October 10th, 2016. Our data can be divided in three
sets:

a) set R of raw reports, containing 388,702 PE samples; b) a
set C ⊆ R of 284,880 classified reports by 38 vendors (V)
that is obtained by restricting the original set R (that
includes 97 vendors) to those reports whose vendors are
present in at least 95% of the classified samples.

With regards to duplicated submissions, there are
27,798 samples submitted more than once, for a total of
74,916 duplicated submissions Cdups averaging 2.7

submissions per duplicate. Understanding how vendors
change their signatures on samples is crucial, as we use it to
label the dataset. With this in mind, and inspired by Miller et
al. [11], we start our analysis by studying the differences
between the number of positive (i.e. a sample of
malware) and negative (i.e. a sample that is not malware)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4469

acc

acc

classifications over the last and first submission of the
same sample.

For each duplicated sample in Cdups we counted the

number of positive classifications on the first and last
submissions, Pf and Pl respectively. If Pf > Pl then

we are looking at a possible false positive (FP), as the
number of vendors classifying the sample as malware
decreased. Conversely, if Pl > Pf we are looking at a

potential false negative (FN). For the case Pf = Pl we

conclude that vendors are confident regarding their
classification for the sample.

Figure 2 shows the frequency of Pl −Pf for each duplicated

sample. We first note that 44.32% of duplicated samples
change in classification, among which 38.72% increase
its classification, whereas only 5.61% decrease. Such
discrepancy between positive and negative changes suggest
a preference for false negatives over false positives, as also
noted by Miller et al. [11].

Another interesting analysis on our dataset is
understanding the vendors Detection Rate (DR) (or True
Positive Rate), and False Positive Rate (FPR). Although
these formulas are trivially defined respectively as

DR = TP = TP (1)

 #malware TP + FN

DR = FP = FP (2)

 #goodware TN+FP

we lack ground truth for what is #malware and
#goodware. To solve this, we propose relative metrics
to compute what is positive (#malware) and negative
(#goodware).

Our first approach is to take advantage of duplicated

sub- missions to define an accuracy metric, Mdups. As
we have previously shown, 44.32% of duplicated
samples change in classification, which can be translated
into vendors acknowledging their own errors.

With that in mind, for each vendor v ∈ V, we define

a duplicated sample for v (according to Mdups) as:

• TPv , true positive for v, if v classified it positively

in both the first and last submissions;

• TNv , true negative for v, if v classified it negatively

in both the first and last submissions;

• FPv , false positive for v, if v classified it positively in

the first submission and negatively in the last
submission;

• FNv , false negative for v, if v classified it negatively in

the first submission and positively in the last submission.
Figure 3 plots each vendors’ DRv vs.FPRvWe note that

vendors do acknowledge their classification errors, as we
see a detection rate from 56.82% to 85.29%, with a false
positive rate ranging from 0.03% to 6.91%. Had they kept
their original classification, one would have that Pl − Pf
= 0 for every duplicate and consequently DRv = 1 and

FPRv = 0. Notice that by keeping the original

classification all clean samples remain clean, hence FNv
= 0, and all malicious samples remain malicious, hence
FP = 0.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4470

acc .

acc

acc

acc

Fig. 2. Distribution of samples in terms of the changes in the number of positive classifications between last and first submissions, (Pl − Pf).

Fig. 3. TPRv vs. FPRv according to M
dups

For our second approach regarding vendors’ accuracy,
we take into account our observations from Figure 2 and
our dataset C to define another metric MC

Intuitively a sample is classified as goodware according
to this metric, i.e. negative, if every vendor v ∈ V classifies it
as clean. To understand if our intuition is sound, we plot
Figure 4, a subset of Figure 2, showing the frequency Pl −

Pf for samples that were classified as clean in their first

submission, i.e., samples with Pf = 0. These account for

4,902 samples, 3,741 (76.32%) of which do not increase in
classification.

To arrive at a positive (i.e. malware) sample definition,
we relate Figure 4 with Figure 2. Specifically we want to
find a minimum threshold of positive classifications to
define a sample as malware. We chose five as the threshold,
observing that percentage of samples that decrease in 5 or
more positive

Fig. 4. Distribution of samples that started as goodware and changed in
the number of positive classifications between the last and first
submission, i.e., Pl − Pf for samples with Pf = 0.

classifications is 0.46%, meaning it is an upper bound
for samples that decrease from 5 or more to zero
classifications. With the previous definitions, we can

define a vendors’ v classification (according to MC) as:

• TPv , true positive for v, if v and at least 5 other
vendors in V classify it positively;

• TNv , true negative for v, if v and all other vendors in

V classify it negatively;

• FPv , false positive for v, if v is the only vendor in
V classifying it positively;

• FNv , false negative for v, if v classifies it negatively
and at least 5 other vendors in V classify it
positively.

Figure 5 plots each vendors’ DRv vs. FPRv according to
MC Using this metric we note that vendors detection
rate is more scattered than under Mdups, ranging from
20.17% to 83.50%, whereas false positive rate is similar,

ranging from 0.01% to 5.77%.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4471

acc acc

acc.

Given the impossibility of finding a source that is able
to unanimously label each sample in our dataset, we want
to find the vendors that perform the best under both
metrics Mdups and MC .

a sample s ∈ C as:

 Fig. 5. TPRv vs. FPRv according to MC

Our approach to this problem is to filter the top 20 vendors

Vdups and VC, according to each metric and define V∗

=Vdups ∩ VC. Given we have to maximize two variables,
TPR and FPR, we decided to take advantage of the linear
equation in the form mx + b = y to choose the top vendors.
This form allows us to choose an m and b such that there are

20 vendors above the line, the top vendors V∗. By tweaking
the variable m one can change the line’s steepness, reflecting
in a preference between TPR and FPR

• TPR preference: m < 1, less steepness therefore
higher FPR and TPR values;

• FPR preference: m > 1, more steepness, lower FPR
and TPR values.

Since we have no a priori preference between TPR nor FPR,
we search for the maximum b such that there are exactly
20 vendors above x + b in each graphic (Figures 3 and 5).

Figure 6 shows the DRv vs. FPRv for the resulting 11

Vendors under each metric, Mdups in green and MC in red

 acc acc

with DRv varying from 63.49% to 83.50% and FPRv
fro m 0.01% to 3.67%.

Fig. 6. TPRv vs. FPRv according to M
dups

C. DATA LABELLING

Having defined a collegiate set of vendors V∗ to classify
the samples in our dataset, we can now turn our focus
into labeling the reports as goodware or malware. To do
so, w e use C, together with NSRL and VS, to derive three
different metrics to label the reports as benign or

malicious, over the set of vendors V∗. The first and most
real metric we define is MV

 that labels

 real

a sample s ∈ C as:

• s ∈ Malwarereal if at least 5 vendors in V∗

classify s positively;
• s ∈ Goodwarereal if all vendors in V∗ classify

s negatively.

Since the labeling information is solely provided by V∗’s
vendors, this metric’s ground truth is highly dependent
on their performance, which means labeling errors may be
present (as we have discussed in III-B). Due to this,
samples that are classified positively by no more than
four vendors, are discarded.

Our second metric , restricts the previous
metric Mreal to achieve a better ground truth. We do this

by including information from NSRL and VirusShare.com.
This metriclabels a sample s ∈ C as:

• s ∈ Malwareloose if s ∈ Malwarereal and it

belongs to CVS and does not belong to CNSRL;

• s ∈ Goodwareloose if s ∈ Goodwarereal and it

belongs to CNSRL and does not belong to CVS.
that is

Malwareloose = (Malwarereal ∩ CVS) \ CNSRL

Goodwareloose = (Goodwarereal ∩ CNSRL) \ CVS

By taking into account the presence in NSRL, that rein-
forces cleanliness, and VirusShare.com, that reinforces
maliciousness, this metric is more reliable, ground truth
wise, at the expense of a smaller number of samples.

Our third and final metric MV , is the strictest one,

 Strict

labeling a sample s ∈ C
as:

• s ∈ Malwarestrict if all v ∈ V∗ classify it positively

and

s ∈ CVS \ CNSRL;

• s ∈ Goodwarestrict if s ∈ Goodwareloose.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4472

Obviously this is the most reliable metric, in the sense
that it is closely related to the samples’ ground truth,
leaving little room for disagreement. However, this is
achieved again at the cost of a smaller number of samples.

Taking the previously defined metrics, the task of creating
labeled datasets based on them is trivial. We apply each of
the previously defined metrics, MV ,MV and MV to our

 Strict loose real

classified dataset C to obtained three new datasets, Cstrict
⊆ Cloose ⊆ Creal ⊆ C. Table I provides information
regarding the size and number of malware and goodware in
each of our datasets.

3. FEATURE AND MODEL SELECTION

In this subsection we describe our approach to feature
selection and linear model choice.

TABLE I SIZES FOR DATASETS Creal , Cloose AND Cstrict .

A. FEATURE SELECTION

One of the most important stages in Machine Learning is
the selection of the features to analyze, and features based on
static imports have shown promising results in ML
applications for malware detection [11], [16]. In this
section we describe the adopted static features that were
fed into our model.

Although Cuckoo provides enormous amounts of
usable information, we chose to start with simple features
as to have a basic understanding of how doable our
approach is. More so, one of our main concerns is how the
same feature gives different results under our different
scenarios, hence the performance between scenarios and
methodologies is more relevant than absolute
performance. With that in mind, we chose to use the static
imports as features.

Using Celery [30], a distributed task queue for Python,
we optimized the parsing of the available HTML reports,
extracting samples that contained information regarding
static imports into a new set Fstatic. We then joined the

samples with static imports Fstatic to the labeled

samples Creal, obtaining a total of 155,057 labeled samples

with static imports Cstatic = Creal ∩ Fstatic.

We then vectorized imports by creating a binary
vector where each position corresponds to a specific import.
If a given import i is present in a sample, its feature vector
x will have the value 1 at that position xi. Likewise, if a

given import j is not present in a sample, its feature
vector x will have the value 0 at that position xj .

Due to the amount of samples and variety of imports,
each sample got a vector x of 7,280 dimensions (i.e. there are
7,280 different imports). To reduce this number, and to
remove any noise due to incorrect parsing of static imports
by Cuckoo, we applied a variance threshold.

The variance threshold calculates the variance for each
import, removing those that are below a given threshold. In
our case, since we are working with a binary vector, each
import can be represented as Bernoulli random variable,
hence their variance is given by p(1 − p). With that in mind,
we removed any import that did not vary in more than
99% of samples.

The resulting dataset Cstatic got reduced to 153,374 sam-
ples, each with a 64 dimensional binary vector.

B. MODEL SELECTION

In this subsection we go over the classifier used to
create the model that separates malware from goodware.
Our main concerns when choosing a classifier regard the
ability to produce a probabilistic output, good scaling for
large number of features and samples, and ease of use.

Taking into consideration the guidelines given in [22],
[23] and related work in [11], [12], [14], [16], we decide
to use Logistic Regression (LR) as our model. This model
fits our needs as it gives the probability of a random
variable X being 0 or 1, given a set of constraints (i.e.
features), scales well with samples and features and it is
readily available from several libraries, facilitating
implementation [31].

LR can be defined with the form

ρ(x) = 1

, x = β0 + β1x1 + ... + β x

1 + e−x

where βn is the learned weight for feature xn. This
weight is learned through iteration in order to minimize
the error between the predicted values and the actual
values. In other words, given an n-th dimensional set of
features, LR will try to create an hyperplane that divides
samples from two classes. As LR is based on the logistic
function (or sigmoid func- tion), each feature xn can vary
from −∞ to +∞ and still the output is contained
between 0 and 1, hence providing probabilistic values.

Dataset Creal Cloose Cstrict

Malware 98,582 45,306 24,658

Goodware 56,475 1,989 1,989

Total 155,057 47,295 26,647

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4473

∗

4. EVALUATION AND RESULTS

In this section we aim at doing a comparative analysis
on three different scenarios Sstrict, Sloose and Sreal, built

on top of the previously defined metrics. This
comparison is done using standard cross-validation
methodologies and a proposed temporal-based
methodology.

We further provide an analysis on how to reduce the size
of the training set, without compromising the final results.

A. EVALUATION

With regards to our evaluation methodology, as we
have previously mentioned, our purpose is to understand
how lab- oratory conditions compare to real-world
conditions. We now detail how we achieve and compare
these conditions.

Given the purpose of our work, we choose to measure
our results by plotting an AUROC graph, which measures
the TPR at different FPR levels, metrics that are commonly
used across similar work [11], [12], [16].

The three scenarios that we will focus on will rely on

metrics MV V V

real, Mloose and Mstrict, over the dataset C:

• Real Scenario Sreal, applies the metric MV containing

 98,582 malware samples and 56,475 goodware

samples.

• Loose Scenario Sloose, applies the metric MV,

containing 45,306 malware samples and 1,989
goodware samples.

• Strict Scenario Sstrict, applies the c metric MV ,

 containing 24,658 malware samples and 1,989
goodware samples.

Given these three scenarios, we consider the following
evaluation metrics:

a)Cross-validation (Figure 7): To gain insight on how each
model generalizes our scenarios, we apply a k-fold cross-
validation, with k = 10. This methodology splits the dataset
into k subsets (i.e., folds), selecting a single fold for validation
and the remaining k − 1 folds for training. This process is
repeated k times, ensuring every fold is used for
validation and training.

 Fig. 7. Cross-Validation evaluation example with 10 folds.

Although the cross-validation methodology enables to
mea- sure the generalization capabilities of a model, it
does not account for temporal ordering of the samples.
Since we want to measure the score when training samples
pre-date the validation samples, we now define a couple of
temporal based validations. These are validated on the best
performing model from cross-validation for all 3 scenarios.

b)Temporal based validation: The first temporal based
validation, which we designate as Past-to-Present validation,
Figure 8, can be resumed as an iterative methodology
where the validation set is fixed with the most recent
samples, and the training set with the oldest. At each
iteration the training set is extended with more recent
samples and scored against the validation, until all samples
are used.

Fig. 8. Past-to-Present evaluation example with 20/80 test/training,

10 folds in training.

The second temporal based validation, which we
designate as Present-to-Past validation, Figure 9, is the
opposite of Past- to-Present with regards to the starting
position of the training set. Again the validation is fixed
the most recent samples, but now the training set starts
with the temporally closest samples to the validation set.
At each iteration the training set is extended, this time with
older samples and scored against the validation, until all
samples are used.

Past-to-Present and Present-to-Past validations both
require two parameters, specifically the size of the
validation set, and how the increments to the training set
are made. For our

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4474

Fig. 9. Present-to-Past evaluation example with 20/80 test/training, 10

folds in training

evaluation, we use the 20% most recent samples as
validation, and split the remaining 80% into 10 folds, hence
the validation is done 10 times, with each iteration
increasing the training size by one fold.

These two validation methodologies give us the ability
to account for temporal consistency. Moreover, they enable
us to compare the importance of older vs newer samples to
classify recent samples.

We designate the third and last temporal based
validation as Temporal Window validation, Figure 10.
This validation methodology is inspired on regular
cross-validation, in the sense that it splits the dataset
into folds, but changes how the folds are used.
Specifically it takes n temporal consistent and contiguous
folds, i.e., each fold immediately precedes the next one,
and uses the last fold (more recent samples) for
validation, and the previous folds for training (older
samples). By starting with the n first folds and sliding one
fold on each iteration, we apply a sliding window of size n
over the dataset.

Fig. 10. Temporal window evaluation example with window of size
3 over a 10 fold dataset.

For this last validation methodology, we again split the
dataset into 10 folds. The sliding window size, n, is
chosen during the results phase, as its choice depends
on previous results. We measure the AUROC during each
validation’s iteration and use the average measurement to
discuss the results.

B. RESULTS

We implement our experiments in Python, by using Jupyter
Interactive Notebooks [32] to facilitate data visualization.
We use scikit-learn [33] for ML, and Pandas [34] for data
analysis. Our experiments were conducted on an Ubuntu
Virtual Machine with 16 cores and 16GB of RAM, in order to
minimize training and validation times.

 We now focus on applying the evaluation methodologies to
our scenarios. This enables us to compare the different
conditions, and consequently results, that affect malware
detection. We start with what we determine as laboratory
conditions, ideal conditions for the problem of malware
detection. These are met when we apply the strict metrics

MV C, obtaining scenario Sstrict. , to the dataset.

Under these conditions, our model provides the best results,
with an AUROC of 0.91, as shown by the red curve in
Figure 11. We argue that such high values are easily
attained from factors like a small and reliable dataset, and
the use of cross-validation, which mixes samples and
ignores possible dependencies on malware samples.

Fig. 11. Cross-Validation ROC and AUROC for our model under
Sstrict, Sloose and Sreal.

To understand how reliability influences the models’
result, we use scenarios Sloose and Sreal, which are less
reliable and include more samples.

Under these more relaxed, real-world conditions, the
model’s results hold an AUROC of 0.90 under Sloose, as

shown by the blue curve in Figure 11, and an AUROC of 0.75
under Sreal, as seen by the green curve in Figure 11.

From Sstrict to Sloose, the only change is the
amount of malware labeled samples, which significantly
increase. The difference is interesting, as although the
number of malware labeled samples increase significantly,
the results are not that affected. This suggests that
although the reliability for malware decreases, its impact
is not as noticeable as expected. This might also suggest
that vendors do converge on their definition of malware,
under our MV loose metric. If vendors did not converge
on what is malware, adding more samples would

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4475

real

culminate in worse results, as separation between malware
and goodware would become harder.

When looking at the changes from Sloose to Sreal, not
only the amount of malware labeled samples increase, but
also the number of goodware labeled samples, both by a
significant amount. The way this impacts the results is
pretty significant, as we observe a high decrease in the
AUROC. The metricMV∗

that labels malware and goodware
for this scenario S disregards the cross-check from outside
repositories, which in turn degrade the reliability
significantly, as well as increase the dataset size notably.
We attribute the results’ degradation mainly to the
unreliability of goodware labeling, not only because we
have previously seen that increase in malware does not
significantly impact results (from Sstrict to Sloose), but also
due to the tendency for false negatives in vendors (Figure
2), which in turn lead us to incorrectly label goodware for
the samples in C.

The results we described show how moving from
laboratory conditions to more real-world conditions degrade
the model’s performance. We now focus on using our
previously defined temporal based methodologies to further
converge into a real- world scenario.

We start by applying our Past-to-Present validation to
the three scenarios, Sstrict, Sloose and Sreal. As previously

defined, this validation starts with an older set of training
samples and iteratively adds newer samples, validating
each iteration on a fixed set of the most recent samples.
Since our interest is to measure performance variation
over time, we plot in Figure 12 the AUROC at every iteration
(i.e., fold), for each of our three scenarios.

Fig. 12. AUROC for each iteration of the Past-to-Present evaluation.
Folds order consistent with temporal order (i.e., fold 0 contains older

samples than fold 1)

When directly comparing the average AUROC for cross-
validation and our Past-to-Present validation, we note that
for both Sstrict and Sloose the AUROC remains identical,

while for Sreal the score decreases from 0.75 to 0.67. This

decrease is intuitive to the methodology, as we are
forcing temporal consistency between samples.

For both Sstrict and Sloose we note only a slight increase as
new folds are added. They still relate, as we have
previously noted for cross-validation, arguably given their
metrics MV loose and MVstrict are not very different. The
small variation to the cross-validation methodology can be
justified by using small dataset size for both cases.

As for Sreal we note higher variation and lower overall

score, as the reliability of the metric MVgoes down. This is
expected, not only because we are enforcing temporal
consistency between samples, but as new folds are added,
the training gets bigger, while the test remains the same.
Our main observation for this validation methodology is that
there is a slight tendency for AUROC to increase, as we move
forward in time, close to the validation set.

From these observations, we argue about the possibility that
with fixed validation set of the most recent samples, a
model benefits by using samples temporally closer to
validation.

Our next result, which uses our Present-to-Past validation
methodology will further help analyze the
aforementioned detail. The Present-to-Past validation
enhances the previous results under real-world conditions.
This methodology starts by fixing the validation set to the
most recent samples, but with the training set starting at
the temporally closest samples to validation. At each
iteration, older samples are added to the training set and
validated on the fixed, most recent, samples. By applying
this methodology to the three scenarios, Sstrict, Sloose and

Sreal, we plot Figure 13, where the X axis increases as older

samples are added to the training set (e.g. fold 0 contains
newer samples than fold 1), hence measuring the
performance variance over time. Similarly to the previous
observation, the average AUROC suffers a decrease when
compared to cross-validation. For Sstrict we note a

change from 0.91 to 0.90, for Sloose the score is the

same, and for Sreal 0.75 to 0.69.

Fig. 13. AUROC for each iteration of the Present-to-Past evaluation.
Folds order is the inverse of temporal order (i.e., fold 0 contains

newer samples than fold 1)

The comparison between scenarios is identical to what was
observed in cross-validation and Past-to-Present: scenarios

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4476

Sstrict and Sloose display very similar results, with Sreal
dropping behind due to its less reliable labeling metric. It
is noticeable that using the entire dataset does not bring
much improvement to the final results. In fact, for Sreal
the score even drops after fold #2.

With these results, our original observation that samples
closer to the validation set benefit the model becomes
more convincing. In fact, we argue that there should be
an ideal number of necessary training folds, temporally
consistent with the validation fold (i.e. any fold from
training predates validation), needed to maximize the
overall score.

Finally, we analyze how does such reduced training
set behaves in our scenarios; for this purpose, we define a
sliding window that moves forward in time through
each scenario for training and validation. We propose a
reduction on the training size to n = 3 folds predating
the validation fold. We choose n = 3, since we have seen
that the scores either do not improve (for Sstrict and

Sloose) or actually go down (for Sreal) with higher

folds. In summary, we have selected 30% of each dataset
for training purposes and the next 10% for validation (3
training folds, 1 validation fold), and then started moving
the window forward in time (1 fold at a time) to obtain
the following results (Figure 14): for Sstrict, Sloose and

Sreal, we obtain AUROC values of 0.89, 0.88 and 0.76,

respectively. These results come to reaffirm our argument
that we can reduce the size of the training set, without
losing any significant score.

Fig. 14. ROC and AUROC for our three scenarios, under the
Temporal Window methodology.

Comparing these results with the baseline cross-validation,
we note a decrease for each scenario, specifically a
decrease from 0.91 to 0.89 for Sstrict, from 0.90 to 0.88

for Sloose and from 0.75 to 0.73 for Sreal. We should

highlight that the results that use temporal consistency
should better reflect the reality than standard cross-
validation, since we are requiring tempo- rally ordered
samples. Another important idea that should be stressed is
that for cross validation we used a fairly reasonable amount
of data for training purposes, whereas in this last case we
used a restricted amount of data. This might be a relevant

issue in a few year’s time. The results obtained are
summarized in Table II.

TABLE II

SINGLE LAYER RESULTS SUMMARY.

With a better understanding of how the model behaves
under different methodologies, we now diverge to how we
improved not only the overall results, but also the
information provided by the model.

5. MODEL IMPROVEMENTS

Having a solid baseline model for our malware detection
task together with how laboratory vs. real-world scenarios
change the model outcome, we now take this section to
present the improvements made in order to obtain a more
robust model to detect malware. We start by describing
our first improvement, applying a multi layer model to
extract more information regarding a sample. We then
take this enhanced model and increase the number of
features to include dynamic content and how it impacted
the model’s results.

 A. MULTILAYER MODEL

On the previous chapter we ended up with a simple LR
model LR that given a set of static imports from a
sample, would give the probability of it being malware.

In this section we provide a new model E comprises a
simple ensemble stacking approach, which instead of
using a single LR classifier, multiple ones are used,
layered into two steps.

The first step (layer EL0) is composed of n LR

models, where n is the number of possible classes. Each
model is trained to output the likelihood of sample
belonging to one of the n classes, in a one-vs-all
methodology (i.e. a sample either belongs to Cn or not),
having as input the raw features (e.g. static imports).

The second step (layer EL1) is identical to LR, but

now takes as features the output of each classifier from the

AUROC Sstrict Sloose Sreal Train/Test

%

Cross-

Validation
0.91 0.90 0.75 90 / 10

Past-to-

Present
0.90 0.90 0.67 10 to 90 /

10

Present-

to-Past
0.90 0.90 0.69 10 to 90 /

10

Sliding-

Window
0.89 0.88 0.73 30 / 10

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4477

previous layer, outputting the likelihood of a sample being
malware.

In summary, as depicted in Figure 15, we define a 2 layer
ensemble stacking with n classifiers on the first layer to a
single classifier in the second layer.

 Fig. 15. Multi layer model representation.

B. MALWARE CLASSES

We now present our approach on selecting the n
classes of interest. This represents another labeling
problem, but now instead of having to label between
goodware and malware, we have to label the malware as
belonging to some subclass.

With this in mind, we chose 6 malware classes: virus,
trojan, worm, ransom, spyware and other.

To help label our malware samples into the
aforementioned classes, we take a tool by Sebastián, M.
et al. [24], AVClass, which was built to normalize a
malware sample name into the most likely family, and
modify it such that instead of providing a family name,
it would provide one (or more) of the 6 previously
defined classes. Specifically, we changed it in a way that
given a set of malware names, the output would be a
distribution over the 6 malware classes.

To calculate each class weight we apply the following
formula

where fc is the frequency for the class c and the
denominator in the above equation is the number of times
all classes appear. For example, if a given set of names
contain the name trojan 3 times and the name virus one
time, then the weights would be

Wtrojan =3/
4

= 0.75, Wvirus =
1/4

= 0.25,

Wc = 0, c ∈ {worm, spyware, other, ransom}

 Having these malware classes defined for our multi
layer model, we also added the goodware class for
samples that are not malware. Doing so gives us 7

possible classes, 6 of which are malware only. It is worth
mentioning that if a sample belongs to the goodware
class, it cannot belong to any other, likewise, if it
belongs to any malware class, it cannot belong to the
goodware class. Table III discriminates the amount of
each malware class.

TABLE III

SAMPLES BELONGING TO EACH OF THE 6 MALWARE CLASSES FOR Creal ,

 Cloose AND Cstrict

In the base model, we used static imports as features
for our malware detection model. Although the results are
reasonable, the information which can be retrieved
from static imports alone is limited. As an example, if a
sample is compressed, encrypted or packed, its behavior
cannot be inferred from static imports only. To overcome
these limitations, we resort to more dynamic information
provided by Cuckoo.

 C. CATEGORY CALLS

The first type of dynamic information we extracted were
the number of dynamic category calls. When Cuckoo
runs and monitors a sample, it registers some low level
library calls, which it then assigns to a fixed number of
categories. There are a total of 14 different categories
defined by Cuckoo: anomaly, device, filesystem, hooking,
misc, network, process, registry, services, socket,
synchronization, system, threading and windows. After
using Celery [30] to extract the number of each category
calls for the samples, we obtained a total of 148,036
samples with information regarding category calls.

To normalize the category calls value, we decide to
trans- form the values to follow a normal distribution. We do
this by using scikit-learn’s [33] QuantileTransformer with a
normal distribution, which splits the possible values into
bins such that the resulting distribution is of type Gaussian
with a mean of 0. This way we have a greater number of

Dataset Creal Cloose
Cstrict

Trojan 97,054 44,329 24,176

Other 49,443 24,126 14,750

worm 24,554 14,837 9,381

Virus 21,055 12,531 6,899

spyware 20,724 10,172 5,955

Ransom 7,761 1,924 1,160

Malware total 98,582 45,306 24,658

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4478

bins around the mean, allowing for better discrimination,
whereas very large values fall into the same bin.

D. LIBRARY CALLS

Our second type of dynamic information are the number of
library calls. While category calls provide the number of calls
for a given category, library calls provide the count for each
library call, hence being a subset of the previous.

Cuckoo [26] registers the number of calls for 163
different functions, ranging from opening and closing files,
to opening and closing sockets. Again we used Celery [30] to
extract these numbers, obtaining information from 148,036
samples.

Given we are dealing with a high number of features
(163 different library calls), we decided to apply the same
variance threshold as in Section IV-A, to remove features
that do not vary in most samples. By choosing a threshold
of 80%, we remove library calls that do not vary in more
than 80% of the samples, effectively reducing the number
of library calls to 144. With regards to how these features
can vary from 0 to

+∞, as before, we again apply a quantile transformer with
a normal distribution.

E. CUCKOO SIGNATURES

For our third and last type of dynamic information, we
resort to Cuckoo’s [26] custom signatures. These
signatures are built from certain activities that Cuckoo
deems malicious or suspicious. For example, if a sample
allocates memory and then makes it executable, it might
suggest some sort of packing or obfuscation.

To extract these signatures, we use Celery [30] and
obtain a total of 124,821 samples and 61 different
signatures. As with our static import features, we use a
binary vector for each sample, where each position
corresponds to a specific signature. Re-iterating on how
we represent this, if a given signature i is present in a
sample, its feature vector x will have the value 1 at that
position xi. Likewise, if a given signature j is not present in

a sample, its feature vector x will have the value 0 at that
position xj .

We joined these features Fdynamic to the labeled
samples Creal, obtaining a total of 122,633 labeled

samples with the new features Cdynamic = Creal ∩

Fdynamic.

Given there is a lower amount of available samples, we
provide in Table IV the new sizes for Creal, Cloose and
Cstrict, which take into account the new features
Fdynamic.

TABLE IV

NEW SIZES FOR DATASETS Creal , Cloose AND Cstrict .

6. IMPROVED MODEL RESULTS

We now present the results of our new model E, validated
using the same methodology as described in V.

Specifically we test the model using the baseline cross-
validation methodology, followed by our three temporally
consistent scenarios: Past-to-Present, Present-to-Past and
Tem- poral Window. We test each methodology using the
three different scenarios: Sstrict, Sloose and Sreal.

Starting with laboratory conditions, we apply the cross-
validation evaluation to model E with the labeled dataset
Cstrict and features Cdynamic, providing scenario Sstrict. For
this scenario, we obtain an AUROC of 98%, as presented
by the red curve in Figure 16.

Relaxing to more real-world conditions, under the form of
a less reliable ground truth, we test the datasets Cloose

and Creal on features Cdynamic. As shown in Figure 16, the
score under AUROC is 98% for Sloose (blue curve) and
95% for Sreal (green curve).

Fig. 16. Multi layer results for dynamic features in laboratory

conditions.

As with previous results, one notes that from Sstrict to
Sloose the results are not affected at all, when the change
between the scenarios is merely in the number of
malware samples. Between Sloose to Sreal we again note
the already seen pattern, the score is lowest when using
the most realistic dataset.

The comparison between scenarios does not yield any
new information from what was seen in Section V-B. What

Dataset Creal Cloose Cstrict

Malware 94,438 44,544 22,999

Goodware 24,344 1,788 1,800

Total 118782 46,332 24799

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4479

is more interesting is that the absolute values are
boosted in all scenarios, which show indeed that using
the multi-layer approach with dynamic features improve
the model’s results.

Having applied the same cross-validation to our
modified model, obtaining interesting results, we now go
over to test how our temporal based methodologies are
affected.

We start again with Past-to-Present validation to each
scenario Sstrict, Sloose and Sreal. Figure 17 shows the
AUROC at every iteration (i.e. fold) for each scenario: 96%
for Sstrict and Sloose, and 92% Sreal.

Fig. 17. AUROC for each iteration of the Past-to-Present evaluation.
Folds order consistent with temporal order (i.e. fold 0 contains older

samples than fold 1)

When comparing the average AUROC between cross-
validation and Past-to-Present validation, we note that
both Sstrict and Sloose decrease 2%, while Sreal
decreases 3%. This decrease is not a surprise, given the
temporal consistency enforcement between samples.

The results are consistent with was previously seen in
Section V-B, with the added factor that the absolute values
are higher, and the tendency to increase is more present as
we move forward in time, close to the validation set.

Following the previous evaluation order, we now
present the results using our Present-to-Past validation
methodology. In Figure 18 we present the AUROC for each
iteration, where higher folds represent older samples. Here
we see values of 97% for Sstrict, 98% for Sloose and 96%

Sreal.

Fig. 18. AUROC for each iteration of the Present-to-Past evaluation.

Folds order is the inverse of temporal order (i.e. fold 0 contains newer
samples than fold 1)

When comparing to cross-validation, we note Sstrict is

affected as expected, whereas Sloose is not. The fact that

the datasets vary in size and so the amount of
goodware and malware used for testing in each may
vary, can justify how the Sloose is not affected, whereas

Sstrict is.

Sreal seems to have a higher value than in cross-
validation, but it is rounded, which slightly inflates the
value. In practice both cross-validation and Present-to-

Past are identical for Sreal.

In these results, the noticeable increase in the first 3 folds
(0, 1 and 2) for Sstrict and Sloose goes even more in favor

with our argument that samples closer to the validation
set benefit the model. More so as the AUROC stabilizes from
those folds on. This effect is not as accentuated for Sreal,

although using more and older folds do not provide
significantly better results.

Finally, we retest how a reduced training set behaves
in our scenarios by using our Temporal Window
methodology. As previously mentioned, the first 3 folds
seem to provide enough information to obtain good
results, hence we apply the same sliding window size of
n = 3 as in Section V-B. Starting at the oldest fold, we
apply this window and slide it by one fold at each
iteration. Figure 19 shows how all our scenarios Sstrict,

Sloose and Sreal score the same AUROC of 94%, although

with different curves.

For Sstrict, Sloose the score is equally and negatively

affected by 4%. The jagged curve on both scenarios indicate
that slight changes on the FPR threshold have significant
impact on the True Positive Rate (TPR), this may be
caused by the smaller dataset size, which in turn creates
uneven folds for malware and goodware..

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4480

Fig. 19. AUROC for our three scenarios, under the Temporal
Window methodology.

For Sreal, the fact that it only loses 1% when
compared to cross-validation shows that indeed our
argument about reducing the training set size is
sustained. Its curve is much smoother when compared
to the previous scenarios, as the dataset is bigger and
more even.

The improved layer results are summarized in Table V.

7. DISCUSSION

We have proposed different scenarios, based on
different labeling metrics, to study laboratory vs real-
world conditions. Our scenarios, Sstrict, Sloose and Sreal,

vary both in reliability

TABLE V

MULTI LAYER RESULTS SUMMARY.

and size, going from a more reliable and small dataset to a
larger and less reliable one. This (un)reliability is due to
the fact that for real world samples there is usually no
agreement among vendors on how to classify a given
sample, and for that we had to assign a labeling to such
samples according to our proposed metrics. We have
developed several comparative analysis between these three
scenarios, to evaluate how much the nature of the dataset
can influence the results. We have split the analysis into
two major validation conditions: the cross validation

methodology, where the time consistency is discarded; and
temporal-based methodologies. We tested our
methodologies by using a simple LR model, which was then
improved to transmit better information and to use more
features.

Following a cross-validation methodology, we have
con- firmed our intuitions: Sstrict showed up an AUROC of

0.91, Sloose have presented 0.9, whereas Sreal decreased

to 0.75. As we have argued, the results on Sstrict are

justified by factors like a small and reliable dataset, and the
use of cross-validation, which mixes samples and ignores
possible dependencies between them. This scenario is
composed by very well-known and analyzed samples.
Although Sloose slightly relaxes these requirements, it is

still composed by very well-known samples, which
partially justifies the com- parable AUROC (0.90). But this
difference is interesting, as although the number of
malware labeled samples increased significantly, the
results are not that affected. As we have noticed, this
might also suggest that vendors do converge on their
definition of malware, under our Mloose metric. The changes

observed from Sloose to Sreal are more remarkable, but

somehow expected. The metric that labels malware and
goodware for the scenario Sreal disregards the cross-

check from outside repositories, which in turn degrades the
reliability significantly, while increasing the dataset size
notably. As we have already noticed, we attribute the result’s
degradation mainly to the unreliability of goodware
labeling, not only because we have previously seen that the
increase in malware does not significantly impact the results
(from Sstrict to Sloose), but also due to the tendency for

false negatives in vendors (Figure 2), which in turn lead us
to incorrectly label as goodware some of the malicious
samples in C.

When temporal consistency comes into play, the results
on different scenarios do not differ much, nevertheless we
can observe more pronounce trends. The great conclusion
that we can take stands on the relative position of the
training set with respect to the validation set and its size.
Indeed, samples closer to the validation set seem to benefit
the model. We argue that there should be an ideal number
of necessary training folds (30% of the dataset), temporally
consistent with the validation fold (10% of the dataset),
needed to maximize the overall score. This supports our
argument that we can reduce the size of the training set,
without losing any significant score.

We finished our analysis by validating this temporal-
based results. For this purpose, we have defined a sliding
window for each scenario, with the above parameters, that
moved forward in time (1 fold at a time) and obtained the
AUROC values of 0.89 for Sstrict, 0.88 for Sloose and 0.73

for Sreal. Comparing these results with the baseline cross-

validation, we note a very slight decrease for each scenario.

AUROC Sstrict Sloose Sreal Train/Test

%

Cross-

Validation
0.99 0.99 0.96 90 / 10

Past-to-

Present
0.92 0.96 0.91 10 to 90 /

10

Present-

to-Past
0.94 0.98 0.95 10 to 90 /

10

Sliding-

Window
0.93 0.94 0.93 30 / 10

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4481

This decrease, although not significant, was more than
expected due to the enforcement of temporal consistency as
well as the significant reduction of the size of the training
set. We should highlight that these results should be much
closer to reality than the ones provided by cross
validation techniques, since we are requiring temporal
consistency and also a reasonable amount of data for
training purposes, which might be a relevant issue in a
few year’s time. Indeed, aiming at complementing
antivirus’ vendors techniques with machine learning, we
should not expect to gather and use all the samples ever
seen for training purposes, and these results may be very
useful on the choice of the right training set.

Finally, we describe multiple improvements to our base
model LR in order to improve the overall results. We
started by using a multi layer approach to build a new
model E, which enables the extraction of more detailed
information regarding a malicious sample, specifically the
malware class it belongs. We also introduced three new
dynamic features, to improve the amount of information
obtained from the samples. After applying the same
evaluation methodologies to our new model E, we observed
an increase in all cases. We note that the bigger the dataset,
the higher the improvement, as Sstrict increased by 0.07

(cross-validation), Sloose by 0.08 and Sreal (cross-

validation) by 0.27 (present-to-past). This comes to show
how the model was better able to learn from the new
features.

8. CONCLUSIONS

In this paper we analyzed how ML techniques fit into
the scope of malware detection and how could the chosen
dataset influence the results of the classifier.

Given the non-existence of a common agreement on how
to label samples in a real world dataset, we have proposed
three different metrics for labeling these samples, and
presented three different scenarios, ranging from a more
simulated scenario, where better results are achieved, to
more realistic ones, where the AUROC results can go down
by 23%. We have analyzed the different scenarios mainly
on two kind of conditions: the laboratory conditions where
the standard cross- validation methodology was applied
discarding the importance of time in malware detection,
and temporal-consistent techniques where we have
trained and validated the model in a temporal-consistent
manner. We have shown that for a modest compromise in
accuracy temporal-consistent methodologies are adequate
to classify malware samples. We have also concluded that
we can reduce the size of the training dataset to avoid the
need of training with all ever seen samples, and argue on
how much it can be reduced without compromising
optimal results.

Having a sound understanding of the effects of
different methodologies, we improved our model to yield

higher results. We believe that the pertinent question of how
much should we seek for great results on ML techniques
applied to malware detection is worth to be further
discussed, bearing in mind that it leads to classifiers that
would not perform better over realistic conditions. Our
reports are extremely useful in malware ascription. A future
work we aim at optimizing our logistic regression model,
at increasing and optimizing the features, and finally, at
developing a supervised learning methodology to classify
malware samples according to the main malware families.

REFERENCES

[1] R. Vinayakumar, M. Alazab, K. P. Soman, P.
Poornachandran and S. Venkatraman, "Robust
Intelligent Malware Detection Using Deep Learning," in
IEEE Access, vol. 7, pp. 46717-46738, 2019, doi:
10.1109/ACCESS.2019.2906934.

[2] “AV-TEST Security Report 2016-2017,”
https://www.av- test.org/fileadmin/pdf/security
report/AV-TEST Security Report 2016- 2017.pdf,
accessed: 2018-05-08.

[3] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant, “Semantics-aware malware detection,” in
Security and Privacy, 2005 IEEE Symposium on.
IEEE, 2005, pp. 32–46.

[4] W. S. Lee and B. Liu, “Learning with positive and
unlabeled examples using weighted logistic
regression,” in ICML, vol. 3, 2003, pp. 448–455.

[5] T. Joachims, Learning to classify text using support
vector machines: Methods, theory and algorithms.
Kluwer Academic Publishers, 2002.

[6] L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing, “Object
bank: A high- level image representation for scene
classification & semantic feature sparsification,” in
Advances in neural information processing systems,
2010, pp. 1378–1386.

[7] C. H. Ding and I. Dubchak, “Multi-class protein fold
recognition using support vector machines and neural
networks,” Bioinformatics, vol. 17, no. 4, pp. 349–358,
2001.

[8] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon,
K. Rieck, andC. Siemens, “Drebin: Effective and
explainable detection of android malware in your
pocket.” in NDSS, 2014.

[9] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert,
“Deep learning for classification of malware system
call sequences,” in Australasian Joint Conference on
Artificial Intelligence. Springer, 2016, pp. 137–149.

[10] J. Z. Kolter and M. A. Maloof, “Learning to detect and
classify malicious executables in the wild,” Journal of
Machine Learning Research, vol. 7, no. Dec, pp. 2721–
2744, 2006.

[11] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz,
R. Bachwani,

R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu et
al., “Reviewer integration and performance
measurement for malware detection,” in Detection of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4482

Intrusions and Malware, and Vulnerability
Assessment.

Springer, 2016, pp. 122–141.

[12] N. Nissim, A. Cohen, R. Moskovitch, A. Shabtai, M.
Edry, O. Bar- Ad, and Y. Elovici, “Alpd: Active learning
framework for enhancing the detection of malicious
pdf files,” in Intelligence and Security Informatics
Conference (JISIC), 2014 IEEE Joint. IEEE, 2014, pp.
91–98.

[13] R. Perdisci, W. Lee, and N. Feamster, “Behavioral
clustering of http- based malware and signature
generation using malicious network traces.” in NSDI,
vol. 10, 2010, p. 14.

[14] K. Rieck, P. Trinius, C. Willems, and T. Holz,
“Automatic analysis of malware behavior using
machine learning,” Journal of Computer Security, vol.
19, no. 4, pp. 639–668, 2011.

[15] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G.
Bringas, “Opcode se- quences as representation of
executables for data-mining-based unknown malware
detection,” Information Sciences, vol. 231, pp. 64–82,
2013.

[16] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo,
“Data mining methods for detection of new malicious
executables,” in Security and Privacy, 2001. S&P
2001. Proceedings. 2001 IEEE Symposium on.

IEEE, 2001, pp. 38–49.

[17] G. Schwenk, A. Bikadorov, T. Krueger, and K. Rieck,
“Autonomous learning for detection of javascript
attacks: Vision or reality?” in Pro- ceedings of the 5th
ACM workshop on Security and artificial intelligence.
ACM, 2012, pp. 93–104.

[18] N. Š rndic and P. Laskov, “Detection of malicious pdf
files based on hierarchical document structure,” in
Proceedings of the 20th Annual Network & Distributed
System Security Symposium, 2013.

[19] A. Deo, S. K. Dash, G. Suarez-Tangil, V. Vovk, and L.
Cavallaro, “Prescience: Probabilistic guidance on
the retraining conundrum for malware detection,”
in Proceedings of the 2016 ACM Workshop on
Artificial Intelligence and Security. ACM, 2016, pp.
71–82.

[20] E. Gandotra, D. Bansal, and S. Sofat, “Malware
analysis and classifica- tion: A survey,” Journal of
Information Security, vol. 2014, 2014.

[21] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini,
I. Nouretdinov,

L. Cavallaro, and E. SpA, “Transcend: detecting concept
drift in malware classification models,” in
Proceedings of the 26th USENIX Security
Symposium (USENIX Security 2017), 2017.

[22] C. Rossow, C. J. Dietrich, C. Grier, C.
Kreibich, V. Paxson,

N. Pohlmann, H. Bos, and M. Van Steen, “Prudent
practices for designing malware experiments: Status
quo and outlook,” in Security and Privacy (SP),
2012 IEEE Symposium on. IEEE, 2012, pp. 65–79.

[23] A. Shabtai, R. Moskovitch, Y. Elovici, and C.
Glezer, “Detection of malicious code by applying
machine learning classifiers on static features: A
state-of-the-art survey,” information security technical
report, vol. 14, no. 1, pp. 16–29, 2009.

[24] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero,
“Avclass: A tool for massive malware labeling,” in
International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 2016, pp. 230–
253.

[25] “Malwr, Free Malware Analysis Service,”
https://malwr.com/, accessed: 2017-05-26.

[26] “Cuckoo, Malware Analysis System,”
https://cuckoosandbox.org/, ac- cessed: 2017-05-
26.

[27] “VirusTotal,” https://www.virustotal.com/,
accessed: 2017-10-30.

[28] “National Software Reference Library,”
https://www.nist.gov/software- quality-
group/national-software-reference-library-nsrl/,
accessed: 2017-

10-30.

[29] “VirusShare - Repository of malware samples,”
https://virusshare.com/, accessed: 2017-10-30.

[30] “Celery, Distributed Task Queue,”
http://www.celeryproject.org/, ac- cessed: 2017-05-
26.

[31] J. Friedman, T. Hastie, and R. Tibshirani, The
elements of statistical learning. Springer series in
statistics New York, 2001, vol. 1.

[32] “Jupyter - Interactive Python Notebook,”
http://jupyter.org/, accessed: 2017-10-30.

[33] “scikit-learn, Machine Learning in Python,”
http://scikit- learn.org/stable/, accessed: 2017-05-
26.

[34] “Python Data Analysis Library,”
https://pandas.pydata.org/, accessed: 2017-05-26.

[35] Usman, N., Usman, S., Khan, F., Jan, M. A., Sajid, A.,
Alazab, M., & Watters, P. (2021). Intelligent dynamic
malware detection using machine learning in IP
reputation for forensics data analytics. Future
Generation Computer Systems, 118, 124-141.

[36] Dhalaria, M., & Gandotra, E. (2021). A Hybrid
Approach for Android Malware Detection and Family
Classification. International Journal of Interactive
Multimedia & Artificial Intelligence, 6(6).

[37] Hemalatha, J., Roseline, S. A., Geetha, S., Kadry, S., &
Damaševičius, R. (2021). An efficient DenseNet-based
deep learning model for malware detection. Entropy,
23(3), 344.

http://www.virustotal.com/
http://www.nist.gov/software-
http://www.nist.gov/software-
http://www.celeryproject.org/
http://jupyter.org/
http://scikit-/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4483

BIOGRAPHIES

Mr. KALYAN.S.V, is a student of CSE

department in Bachelor of

Engineering at Panimalar Institute of

Technology. His area of research

interest includes Data Science,

Entrepreneurship, Artificial

Intelligence and Machine Learning.

Mr. KALLURI VENKATA DATTA SAI

MANI, is a student of CSE department

in Bachelor of Engineering at

Panimalar Institute of Technology. His

area of research interest includes

Deep learning, Data Analytics, Data

Science and Machine Learning.

Mr. PALADUGU CHARAN, is a

student of CSE department in

Bachelor of Engineering at

Panimalar Institute of Technology.

His area of research interest includes

Data Analytics, Artificial Intelligence,

Data Science and Machine Learning.

Ms. SAISRI.K, is working as

Programmer Analyst in COGNIZANT.

She received her B.Tech in CSE from

Sri Venkateswara Engineering

College in 2021, Tirupati, Andhra

Pradesh. Her area of research

interest includes Data science,

Artificial Intelligence and Machine

Learning.

