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Abstract - Machine learning is amongst the most celebrated 
research avenues today and is growing as the harbinger of 
advancements in every field. It is receiving growing attention in 
the area of privacy and security for building robust systems. 
Malware ascription is a relatively unexplored area, and it is 
rather difficult to attribute malware and detect authorship. 
Our work focuses on leveraging machine learning models for 
malware detection by determining the relation between the 
training dataset and the output achieved. To this end, we 
develop three different datasets that include pure malware 
data, non-malware data, and obscure malware data. We 
present three different scenarios to train the model and test its 
effectiveness in a more simulated scenario to a more realistic 
one. In our model, we apply temporal-based methodologies to 
train and validate the classifier. Further, we study how much 
we can reduce the training dataset without compromising 
the optimal results. Upon applying a multi-layer approach, we 
improved our base model by 20%. Our reports are extremely 
useful in malware ascription. 
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1.INTRODUCTION  

Detection and mitigation of malware is an evolving 
problem in the cyber security field. [1] The number of 
reported security breaches due to virus, worms, trojans, etc, 
has been growing considerably in recent years [2] with 
reports of infections due to malware making the headlines, 
now more than ever. Almost every week one such security 
vulnerability is reported which may be seen as a failure by 
the security community on the control and detection of 
malicious content. 

The very first challenge that we face is the definition of 
mal- ware. Malware is considered to be “a program with 
malicious intent” [3] which in itself is a dubious definition. 
Not only the same programs are classified differently as 
malware and goodware depending on the vendor, but also 
some programs fall within a gray area for which no clear 
classification can be deemed correct. An example is what 
is called adware, advertising-supported software, that 
although not performing directly malicious actions, perform 
arguably non-requested actions. The non-existence of 
concrete metrics and properties that uniquely distinguish 
malware from goodware requires an extra effort in the 

preparation of datasets for evaluation of malware 
detectors. 

Due to the significant number of malware attacks, and 
taking into consideration the increasing popularity and huge 
success of Machine Learning (ML) methodologies in 
classification in different domains [4]–[7], it is only 
natural to see these techniques applied to complement 
classical  methodologies for malicious-content detection [3], 
[8]–[22], in particular, supervised learning techniques. 
However, several issues have arised regarding the usage of 
these ML techniques in the scope of malware analysis [19]–
[22]. 

On the sometimes ambiguous scenario that is the task 
of distinguishing malware from goodware, some of these 
results largely depend on the datasets used for evaluation, 
often not representing the real-world. In this paper we 
address this pertinent questions and make a comparative 
analysis of a supervised learning approach in three 
different scenarios (depicted in Figure 1): a strict scenario 
where only very well- characterized samples are 
considered, a loose scenario where a wider set of still 
well-studied samples is considered, and finally a realistic 
scenario where we get closer to the reality faced by 
vendors of malware detection solutions. 

 

Fig. 1.  Representation of our Sstrict, Sloose and Sreal 

scenarios. 

Throughout this work we will perform a comparative 
analysis of the three above scenarios under two distinct 
environments: 

• laboratory conditions where traditional cross-
validation methodologies can be applied; 

• real-world conditions where time is relevant and we 
analyze the behavior of the classifier with temporal-
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based methodologies. 

We show that without much tweaking, and using simple 
features, a Logistic Regression (LR) model is able to 
achieve an Area Under the Receiver Operating 
Characteristic (AUROC) of 0.91 when ideal laboratory 
conditions are met, but these results go down to an 
AUROC of 0.75 when we change into a real-world scenario. 

With the purpose of actually evaluating the usage of 
ML methodologies for malware detection as a complement 
to traditional malware detection techniques, we also 
analyze how the size of the training set can influence the 
performance of the classifier under the three studied 
scenarios. For this, we use the aforementioned temporal-
based methodologies to come up with conclusions on how 
large the training set need to be to ensure optimal results 
from the classifier. 

We finish off by improving our base model to include 
more dynamic features, as well as providing a multi-layer 
approach which adds the ability of classifying malware 
samples from different classes, in contrast with simply 
providing if a sample is malware or not. These 
improvements boost our AUROC to 0.98 in ideal laboratory 
conditions and 0.95 in a real-world scenario. 

As the main contributions of this paper a) we propose 
three different scenarios to train and validate the model 
which range from a more simulated scenario to a more  
realistic one, b) temporal-based methodologies to train 
and validate the classifier, c) we study how much can we 
reduce the training  dataset  without  compromising  the  
optimal  results, d) we improve our base model by 7% to 
27%. 

           This paper is outlined as follows: in Section II we 
present the related work and justify how it motivated our 
work; in Section III we describe and analyze  the  available  
dataset and how it was labeled; in Section IV we propose a 
feature selection and describe the used model; Section V 
encloses our main contributions, describing our three 
scenarios and how they are to be evaluated, using regular 
cross-validation and our defined temporal-based 
methodology, together with the results of said evaluation; in 
Section VI we provide improvements to our base model; in 
Section VIII we discuss our main achievements; Section IX 
concludes the paper and discusses avenues for further 
research. 

1.2 RELATED WORK 

We use this section to present prior work that closely relates 
to the topic of our research and our areas of 
contribution. Specifically, detecting malicious software by 
training super- vised models on static information, and 
validation methodologies that resemble real-world 
conditions. 

Shabtai et al. [23] provide a survey directed at the ap- 
plication of ML classifiers to detect malware from static 
features. Their work concerns the design and evaluation 
of such systems. Our contributions are inspired by the 
concern of how to correctly evaluate ML classifiers, 
regarding size, reliability of labeling metrics and 
chronological evaluation. 

In the topic of methodologies that resemble real-world 
conditions, Srndić et al. [18] train and validate their 
malicious PDF detector under laboratory and real-world 
conditions. Lab- oratory conditions consist on applying 
regular cross-validation, whereas real-world conditions 
validate a newer dataset with a model created from 
outdated data (i.e. older then the validation), and also 
validate the model when the validation set spans one week 
and the training is gathered in the previous 4 weeks. They 
show that laboratory conditions inflate the results, when 
compared to real-world conditions. 

Miller et al. [10] also introduce sample temporal 
consistency. They show the impact of performance 
measurement technique on a dataset containing 1.1 million 
samples, when using cross-validation and temporally 
consistent samples. As noted by others, regular cross-
validation showed inflated results when compared to 
temporally consistent samples. 

Our work enhances these methodologies by analyzing 
the performance variation when the distance between the 
training and validation set increases and decreases, as well 
as analysis on how reducing the size of the training without 
compromising the results. 

Kolter et al.  [10] learn  to  detect  malicious  
executables in a dataset with under 4,000 samples, 
obtained from reliable sources, and evaluate their model 
under standard cross- validation and by gathering newer 
malware samples to validate for new and unseen samples. 
They show how the model provides optimal results under 
cross-validation, but for the unseen samples lower scores 
are obtained. Our work considers these results to compare 
how reliability affects performance. 

Sebastián, M. et al. [24] develop AVClass, a tool that 
given a set of antivirus vendors, outputs the most likely 
family name. They test their tool under 10 datasets, 
totaling 8.9 M samples, with results showing an F1 
measure up to 93.9 on labeled datasets. The tool takes 
as input the labels as seen in VirusTotal, tokenizes the 
labels,  replaces  known  aliases and general names (e.g. 
win32, trojan, generic), ending with possible family 
names. These remaining names are counted and the most 
frequent one is given as family name. Our work takes 
advantage of this tool, not to label malware families, but 
minimal modifications, to label more general malware 
classes (e.g. trojan, virus). 
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Deo, A. et al. [19] focus over the problem of ML 
models becoming antiquated over time, given how 
malware evolves. This problem is seen as concept drift, 
where the performance of a model over time diminishes, 
as the statistical properties of malware (i.e. features) 
change over time. They study how probabilistic predictors 
can help minimize the aforementioned problem, by 
indicating when retraining of a given model is necessary. 

Jordaney, R. et al. [21] also study the problem of 
concept drift in malware classification models, focusing on 
providing metrics, based on statistical comparison of 
samples, to detect when should a model be retrained. 

Both [19] and [21] are on the subject of our work, 
regarding the problem of concept drift, but differ on the 
study- case. In our work  we  acknowledge  the  concept  
but  focus on its relative effects and how one can balance 
the size of needed training data vs. validation data, 
when maintaining a temporal consistent dataset. Whereas 
their work provide indicators for when should a model 
be retrained when the problem of concept drift becomes 
significant. 

2. DATA COLLECTION, ANALYSIS AND LABELING 

Malware classification is non-deterministic task, as several 
nuances  make  vendors  disagree  on  what  they  classify  
as malware. Not only subtleties related to programs such 
as adware or remote management consoles, for which 
one can find arguments to classify them in either class, but 
also because some vendors are more accurate than others 
when classifying malware. 

In order to be able to study how temporal consistency and 
ground truth influences a model trained to detect 
malicious and non-malicious applications, we gathered a 
large dataset of publicly available samples that includes 
both malware and goodware with no a priori labeling. 

In this section we will provide an overview of the 
collected data, in particular its sources, followed by an 
analysis on these samples, and a discussion on the cross-
checking mechanisms we used to perform the labeling. In 
the end of this section we will provide 3 metrics for analysis 
that differ in the confidence one can provide on the samples’ 
labeling. 

A. DATA SOURCES 

To study how temporal consistency and ground truth 
influences a model trained to detect malicious and non-
malicious applications, we started by gathering a dataset of 
malware and goodware. This dataset was obtained from 
Malwr [25], an online service that runs static and dynamic 
analysis on user submitted files using Cuckoo Sandbox [26]. 
Although Malwr accepts any kind of file, we are interested 
solely in Portable Executable (PE) files, not only because 
Windows’ systems are relevant targets of malicious 

applications, but also due to the fact that our initial 
approach will focus on static information obtained from 
these PE files. 

Malwr service provides the analysis of the submitted 
files as well as the MD5 of such files, but no labeling as 
whether a sample corresponds to a malicious or non-
malicious application. To perform this labeling we use the 
anti-virus’ signatures given by VirusTotal [27] at the time of 
analysis (incorporated in Malwr’s reports), as a means of 
labeling the gathered reports. VirusTotal is an online service 
where one can submit a suspicious file and in return obtain 
a list with the analysis performed by a significant number of 
vendors on whether the sample is clean or not. 

However, as  mentioned  before,  these  classifications are 
not unanimous, and we still need to assign a labeling to 
each sample. For this reason, we enrich our knowledge 
regarding  samples’  ground  truth  by  aggregating  
metadata that was collected  keeping in  mind  the  analysis  
carried  out at National Software Reference Library (NSRL) 
[28] and VirusShare.com [29], specifically the samples’ 
MD5. NSRL contains a collection of digital signatures of 
known, traceable software applications, whereas 
VirusShare.com is a repository of malware samples, so  a  
sample  belonging  to  the  NSRL set gives us a higher 
confidence that it is indeed goodware, whereas one 
belonging to VirusShare.com set gives us a higher confidence 
that it is malware. 

In summary, we collected reports from the PE samples 
available in Malwr, and complemented it with metadata 
from NSRL and VirusShare. The following subsection 
quantifies our corpus, providing a better understanding of 
the available samples. 

B. DATA ANALYSIS 

We collected our data from Malwr between April 16th, 2013 
and October 10th, 2016. Our data can be divided in three 
sets: 

a) set R of raw reports, containing 388,702 PE samples; b) a 
set C ⊆ R of 284,880 classified reports by 38 vendors (V) 
that is obtained by restricting the original set R (that 
includes 97 vendors) to those reports whose vendors are 
present in at least 95% of the classified samples. 
 

With regards to duplicated submissions, there are 
27,798 samples submitted more than once, for a total of 
74,916 duplicated submissions Cdups averaging 2.7 

submissions per duplicate. Understanding how vendors 
change their signatures on samples is crucial, as we use it to 
label the dataset. With this in mind, and inspired by Miller et 
al. [11], we start our analysis by studying the differences 
between the number of positive (i.e. a sample of 
malware) and negative (i.e. a sample that is not malware) 
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classifications over the last and first submission of the 
same sample. 

For each duplicated sample in Cdups we counted the 

number of positive classifications on the first and last 
submissions, Pf  and Pl  respectively. If Pf  > Pl  then 

we are looking at a possible false positive (FP), as the 
number of vendors classifying the sample as malware 
decreased. Conversely, if Pl > Pf we are looking at a 

potential false negative (FN). For the case Pf = Pl we 

conclude that vendors are confident regarding their 
classification for the sample. 

Figure 2 shows the frequency of Pl −Pf for each duplicated 

sample. We first note that 44.32% of duplicated samples 
change in classification, among which 38.72% increase 
its classification, whereas only 5.61% decrease. Such 
discrepancy between positive and negative changes suggest 
a preference for false negatives over false positives, as also 
noted by Miller et al. [11]. 

Another interesting analysis on our dataset is 
understanding the vendors Detection Rate (DR) (or True 
Positive Rate), and False Positive Rate (FPR). Although 
these formulas are trivially defined respectively as 

DR   =       TP           =         TP               (1) 
                                                                                                 

                                                                                                                               #malware             TP + FN 

DR       =          FP           =          FP          (2) 

                          

                                                                                                                                                                       #goodware           TN+FP 

we lack ground truth for what is #malware and 
#goodware. To solve this, we propose relative metrics 
to compute what is positive (#malware) and negative 
(#goodware). 

Our first approach is to take advantage of duplicated 

sub- missions to define an accuracy metric, Mdups. As 
we have previously shown, 44.32% of duplicated 
samples change in classification, which can be translated 
into vendors acknowledging their own errors. 

With that in mind, for each vendor v ∈ V, we define 

a duplicated sample for v (according to Mdups) as: 

• TPv , true positive for v, if v classified it positively 

in both the first and last submissions; 

• TNv , true negative for v, if v classified it negatively 

in both the first and last submissions; 

• FPv , false positive for v, if v classified it positively in 

the first submission and negatively in the last 
submission; 

• FNv , false negative for v, if v classified it negatively in 

the first submission and positively in the last submission. 
Figure 3 plots each vendors’ DRv  vs.FPRvWe note that 

vendors do acknowledge their classification errors, as we 
see a detection rate from 56.82% to 85.29%, with a false 
positive rate ranging from 0.03% to 6.91%. Had they kept 
their original classification, one would have that Pl − Pf 
= 0 for every duplicate and consequently DRv = 1 and 

FPRv = 0. Notice that by keeping the original 

classification all clean samples remain clean, hence FNv 
= 0, and all malicious samples remain malicious, hence 
FP = 0. 
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Fig. 2. Distribution of samples in terms of the changes in the number of positive classifications between last and first submissions, (Pl − Pf ). 

 

 

 

 

 

 

 

Fig. 3. TPRv vs. FPRv according to M
dups

 

For our second approach regarding vendors’ accuracy, 
we take into account our observations from Figure 2 and 
our dataset C to define another metric MC  

Intuitively a sample is classified as goodware according 
to this metric, i.e. negative, if every vendor v ∈ V classifies it 
as clean. To understand if our intuition is sound, we plot 
Figure 4, a subset of Figure 2, showing the frequency Pl − 

Pf for samples that were classified as clean in their first 

submission, i.e.,  samples with Pf = 0. These account for 

4,902 samples, 3,741 (76.32%) of which do not increase in 
classification. 

To arrive at a positive (i.e. malware) sample definition, 
we relate Figure 4 with Figure 2. Specifically we want to 
find a minimum threshold of positive classifications to 
define a sample as malware. We chose five as the threshold, 
observing that percentage of samples that decrease in 5 or 
more positive 

 

 

 

 

 
 

 

Fig. 4. Distribution of samples that started as goodware and changed in 
the number of positive classifications between the last and first 
submission, i.e., Pl − Pf  for samples with Pf  = 0. 

classifications is 0.46%, meaning it is an upper bound 
for samples that decrease from 5 or more to zero 
classifications. With the previous definitions, we can 

define a vendors’ v classification (according to MC  ) as: 

• TPv , true positive for v, if v and at least 5 other 
vendors in V classify it positively; 

 
• TNv , true negative for v, if v and all other vendors in 

V classify it negatively; 
 

• FPv , false positive for v, if v is the only vendor in 
V classifying it positively; 

• FNv , false negative for v, if v classifies it negatively 
and at least 5 other vendors in V classify it 
positively. 

Figure  5  plots  each  vendors’  DRv  vs.  FPRv  according to 
MC   Using this metric we note that vendors detection 
rate is more scattered than under Mdups, ranging from 
20.17% to 83.50%, whereas false positive rate is similar,  

ranging from 0.01% to 5.77%.  
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Given the impossibility of finding a source that is able 
to  unanimously label each sample in our dataset, we want 
to find the vendors that perform the best under both 
metrics Mdups and MC   . 

 

 

 

 

 

a sample s ∈ C as: 

 

                         Fig. 5.  TPRv vs. FPRv according to MC
 

Our approach to this problem is to filter the top 20 vendors 

Vdups  and VC, according to each metric and define V∗ 

=Vdups ∩ VC. Given we have to maximize two variables, 
TPR and FPR, we decided to take advantage of the linear 
equation in the form mx + b = y to choose the top vendors. 
This form allows us to choose an m and b such that there are 

20 vendors above the line, the top vendors V∗. By tweaking 
the variable m one can change the line’s steepness, reflecting 
in a preference between TPR and FPR 

• TPR preference: m < 1, less steepness therefore 
higher FPR and TPR values; 

• FPR preference: m > 1, more steepness, lower FPR 
and TPR values. 

Since we have no a priori preference between TPR nor FPR, 
we search for the maximum b such that there are exactly 
20 vendors above x + b in each graphic (Figures 3 and 5). 

Figure  6  shows  the  DRv   vs.  FPRv   for  the  resulting  11 

Vendors under each metric, Mdups     in green and MC in red 

                                                     acc                                         acc 

with DRv  varying from 63.49% to 83.50% and FPRv  
fro m 0.01% to 3.67%. 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 6. TPRv vs. FPRv according to M
dups 

 

C. DATA LABELLING 

Having defined a collegiate set of vendors V∗ to classify 
the samples in our dataset, we can now turn our focus 
into labeling the reports as goodware or malware. To do 
so, w e  use C, together with NSRL and VS, to derive three 
different metrics to label the reports as benign or 

malicious, over the set of vendors V∗. The first and most 
real  metric  we  define  is  MV

      that labels 

                                             real 

a sample s ∈ C as: 

• s ∈ Malwarereal  if at least 5 vendors in V∗  

classify s positively; 
• s  ∈   Goodwarereal   if  all  vendors  in  V∗   classify  

s negatively. 

Since the labeling information is solely provided by V∗’s 
vendors, this metric’s ground truth is highly dependent 
on their performance, which means labeling errors may be 
present (as we have discussed in III-B). Due to this, 
samples that are classified positively by no more than 
four vendors, are discarded. 

Our second metric  ,  restricts the previous 
metric  Mreal to achieve a better ground truth. We do this 

by including information  from  NSRL  and  VirusShare.com.  
This  metriclabels a sample s ∈ C as: 

• s ∈ Malwareloose if s ∈ Malwarereal and it 

belongs to CVS  and does not belong to CNSRL; 

 
• s ∈ Goodwareloose if s ∈ Goodwarereal and it 

belongs to CNSRL and does not belong to CVS. 
that is 

 
Malwareloose =  (Malwarereal ∩ CVS) \ CNSRL 

Goodwareloose =  (Goodwarereal ∩ CNSRL) \ CVS 

By taking into account the presence in NSRL, that rein- 
forces cleanliness, and VirusShare.com, that reinforces 
maliciousness, this metric is more reliable, ground truth 
wise, at the expense of a smaller number of samples. 

Our third and final metric MV , is the strictest one, 

                                                Strict 

labeling a sample s ∈ C 
as: 

• s ∈ Malwarestrict if all v ∈ V∗ classify it positively 

and 

s ∈ CVS \ CNSRL; 

• s ∈ Goodwarestrict if s ∈ Goodwareloose. 
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Obviously this is the most reliable metric, in the sense 
that it is closely related to the samples’ ground truth, 
leaving little room for disagreement. However, this is 
achieved again at the cost of a smaller number of samples. 

Taking the previously defined metrics, the task of creating 
labeled datasets based on them is trivial. We apply each of 
the previously defined metrics, MV      ,MV  and  MV  to our 

                                       Strict       loose               real 

classified dataset C  to obtained three new datasets, Cstrict  
⊆ Cloose  ⊆  Creal  ⊆  C. Table I provides information 
regarding the size and number of malware and goodware in 
each of our datasets. 

3. FEATURE AND MODEL SELECTION 

In  this  subsection  we  describe  our  approach  to  feature 
selection and linear model choice. 

 

 

 

 

 

 

TABLE I SIZES  FOR  DATASETS Creal , Cloose  AND Cstrict . 

A. FEATURE SELECTION 

One of the most important stages in Machine Learning is 
the selection of the features to analyze, and features based on 
static imports have shown promising results in ML 
applications for malware detection [11], [16]. In this 
section we describe the adopted static features that were 
fed into our model. 

Although Cuckoo provides enormous amounts of 
usable information, we chose to start with simple  features  
as  to have a basic understanding of how doable our 
approach is. More so, one of our main concerns is how the 
same feature gives different results under our different 
scenarios, hence the performance between scenarios and 
methodologies is more relevant than absolute 
performance. With that in mind, we chose to use the static 
imports as features. 

Using Celery [30], a  distributed  task  queue  for  Python, 
we optimized the parsing of the available HTML reports, 
extracting samples that contained information regarding 
static imports into a new set Fstatic. We then joined the 

samples with static imports Fstatic to the labeled 

samples Creal, obtaining a total of 155,057 labeled samples 

with static imports Cstatic   = Creal  ∩ Fstatic. 

We then vectorized imports by creating a binary 
vector where each position corresponds to a specific import. 
If a given import i is present in a sample, its feature vector 
x will have the value 1 at that position xi. Likewise, if a 

given import j is not present in a sample, its feature 
vector x will have the value 0 at that position xj . 

Due to the amount of samples and variety of imports, 
each sample got a vector x of 7,280 dimensions (i.e. there are 
7,280 different imports). To reduce this number, and to 
remove any noise due to incorrect parsing of static imports 
by Cuckoo, we applied a variance threshold. 

The variance  threshold  calculates  the  variance  for  each 
import, removing those that are below a given threshold. In 
our case, since we are working with a binary vector, each 
import can be represented as Bernoulli random variable, 
hence their variance is given by p(1 − p). With that in mind, 
we removed any import that did not vary in more than 
99% of samples. 

The resulting dataset Cstatic got reduced to 153,374 sam- 
ples, each with a 64 dimensional binary vector. 

B. MODEL SELECTION 

In this subsection we go over the classifier used to 
create the model that separates malware from goodware. 
Our main concerns when choosing a classifier regard the 
ability to produce a probabilistic output, good scaling for 
large number of features and samples, and ease of use. 

Taking into consideration the guidelines given in [22], 
[23] and related work in [11], [12], [14], [16], we decide 
to use Logistic Regression (LR) as our model. This model 
fits our needs as it gives the probability of a random 
variable X being 0 or 1, given a set of constraints (i.e. 
features), scales well with samples and features and it is 
readily available from several libraries, facilitating 
implementation [31]. 

LR can be defined with the form 

ρ(x) =  1
 

, x = β0 + β1x1 + ... + β x 

1 + e−x 

where βn  is the learned weight for feature xn. This 
weight is learned through iteration in order to minimize 
the error between the predicted values and the actual 
values. In other words, given an n-th dimensional set of 
features, LR will try to create an hyperplane that divides 
samples from two classes. As LR is based on the logistic 
function (or sigmoid func- tion),  each  feature  xn  can  vary  
from  −∞  to  +∞  and  still the output is contained 
between 0 and 1, hence providing probabilistic values. 

 

 

 

Dataset Creal Cloose Cstrict 

Malware 98,582 45,306 24,658 

Goodware 56,475 1,989 1,989 

Total 155,057 47,295 26,647 
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4. EVALUATION AND RESULTS 

In this section we aim at doing a comparative analysis 
on three different scenarios Sstrict, Sloose and Sreal, built 

on top of the previously defined metrics. This 
comparison is done using standard cross-validation 
methodologies and a proposed temporal-based 
methodology. 

We further provide an analysis on how to reduce the size 
of the training set, without compromising the final results. 

A. EVALUATION  

With regards to our evaluation methodology, as we 
have previously mentioned, our purpose is to understand 
how lab- oratory conditions compare to real-world 
conditions. We now detail how we achieve and compare 
these conditions. 

Given the purpose of our work, we choose to measure 
our results by plotting an AUROC graph, which measures  
the TPR at different FPR levels, metrics that are commonly 
used across similar work [11], [12], [16]. 

The  three  scenarios  that  we  will  focus  on  will  rely  on 

metrics MV                  V        V 

                     
real,    Mloose  and Mstrict, over the dataset C: 

• Real Scenario Sreal, applies the metric MV  containing 

      98,582 malware samples and 56,475 goodware 

samples.  

• Loose Scenario Sloose, applies the metric MV, 

containing  45,306  malware  samples  and  1,989  
goodware samples. 
 

• Strict Scenario Sstrict, applies the c  metric MV  ,  
    

           containing 24,658 malware samples and 1,989 
goodware   samples. 

Given  these  three  scenarios,  we  consider  the  following 
evaluation metrics: 

a)Cross-validation (Figure 7): To gain insight on how each 
model generalizes our scenarios, we apply a k-fold cross- 
validation, with k = 10. This methodology splits the dataset 
into k subsets (i.e., folds), selecting a single fold for validation 
and the remaining k − 1 folds for training. This process is 
repeated k times, ensuring every fold is used for 
validation and training. 

 

                Fig. 7.  Cross-Validation evaluation example with 10 folds. 

Although the cross-validation methodology enables to 
mea- sure the generalization capabilities of a model, it 
does not account for temporal ordering of the samples. 
Since we want to measure the score when training samples 
pre-date the validation samples, we now define a couple of 
temporal based validations. These are validated on the best 
performing model from cross-validation for all 3 scenarios. 

b)Temporal based validation: The first temporal based 
validation, which we designate as Past-to-Present validation, 
Figure 8, can be resumed as an iterative methodology 
where the validation set is fixed with the most recent 
samples, and the training set with the oldest. At each 
iteration the training set is extended with more recent 
samples and scored against the validation, until all samples 
are used. 

 
Fig. 8.  Past-to-Present evaluation example with 20/80 test/training, 

10 folds in training. 

The second temporal based validation, which we 
designate as Present-to-Past validation, Figure 9, is the 
opposite of Past- to-Present with regards to the starting 
position of the training set. Again the validation is fixed 
the most recent samples, but now the training set starts 
with the temporally closest samples to the validation set. 
At each iteration the training set is extended, this time with 
older samples and scored against the validation, until all 
samples are used. 

Past-to-Present and Present-to-Past validations both 
require two parameters, specifically the size of the 
validation set, and how  the  increments  to  the  training  set  
are  made.  For  our 
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Fig. 9. Present-to-Past evaluation example with 20/80 test/training, 10 

folds in training 

evaluation, we use the 20% most recent samples as 
validation, and split the remaining 80% into 10 folds, hence 
the validation is done 10 times, with each iteration 
increasing the training size by one fold. 

These two validation methodologies give us the ability 
to account for temporal consistency. Moreover, they enable 
us to compare the importance of older vs newer samples to 
classify recent samples. 

We designate the third and last temporal based 
validation as Temporal Window validation, Figure 10. 
This validation methodology is inspired on regular 
cross-validation, in the sense that it splits the dataset 
into folds, but changes how the folds are used. 
Specifically it takes n temporal consistent and contiguous 
folds, i.e., each fold immediately precedes the next one, 
and uses the last fold (more recent samples) for 
validation, and the previous folds for training (older 
samples). By starting with the n first folds and sliding one 
fold on each iteration, we apply a sliding window of size n 
over the dataset. 

 

Fig. 10.  Temporal window evaluation example with window of size 
3 over a 10 fold dataset. 

For this last validation methodology, we again split the 
dataset into 10 folds. The sliding window size, n, is 
chosen during the results phase, as its choice depends 
on previous results. We measure the AUROC during each 
validation’s iteration and use the average measurement to 
discuss the results. 

B. RESULTS 

We implement our experiments in Python, by using Jupyter 
Interactive Notebooks [32] to facilitate data visualization. 
We use scikit-learn [33] for ML, and Pandas [34] for data 
analysis. Our experiments were conducted on an Ubuntu 
Virtual Machine with 16 cores and 16GB of RAM, in order to 
minimize training and validation times. 

 We now focus on applying the evaluation methodologies to 
our scenarios. This enables us to compare the different 
conditions, and consequently results, that affect malware 
detection. We start with what we determine as laboratory 
conditions, ideal conditions for the problem of malware 
detection. These are met when we apply the strict metrics 

MV  C, obtaining scenario Sstrict. , to the dataset. 

Under these conditions, our model provides the best results, 
with an AUROC of 0.91, as shown by the red  curve  in 
Figure 11. We argue that such high values are easily 
attained from factors like a small and reliable dataset, and 
the use of cross-validation, which mixes samples and 
ignores possible dependencies on malware samples. 

 

 

Fig. 11.   Cross-Validation ROC and AUROC for our model under 
Sstrict,  Sloose  and Sreal. 

To understand how reliability influences the models’ 
result, we use scenarios Sloose and Sreal, which are less 
reliable and include more samples. 

Under these more relaxed, real-world conditions, the 
model’s results hold an AUROC of 0.90 under Sloose, as 

shown by the blue curve in Figure 11, and an AUROC of 0.75 
under Sreal, as seen by the green curve in Figure 11. 

From Sstrict  to Sloose, the only change is the 
amount of malware labeled samples, which significantly 
increase. The difference is interesting, as although the 
number of malware labeled samples increase significantly, 
the results are not that affected. This suggests that 
although the reliability for malware decreases, its impact 
is not as noticeable as expected. This might also suggest 
that vendors do converge on their definition of malware, 
under our MV loose metric.  If  vendors  did  not converge 
on what is malware, adding more samples would 
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real 

culminate in worse results, as separation between malware 
and goodware would become harder. 

When looking at the changes from Sloose to Sreal, not 
only the amount of malware labeled samples increase, but 
also the number of goodware labeled samples, both by a 
significant amount. The way this impacts the results is 
pretty significant, as we observe a high decrease in the 
AUROC. The metricMV∗    

that labels malware and goodware 
for this scenario S disregards the cross-check from outside 
repositories, which in turn degrade the reliability 
significantly, as well as increase the dataset size notably. 
We attribute the results’ degradation mainly to  the  
unreliability  of goodware  labeling,  not  only because we 
have previously seen that increase in malware does not 
significantly impact results (from Sstrict to Sloose), but also 
due to the tendency for false negatives in vendors (Figure 
2), which in turn lead us to incorrectly label goodware for 
the samples in C. 

The results we described show how moving from 
laboratory conditions to more real-world conditions degrade 
the model’s performance. We now focus on using our 
previously defined temporal based methodologies to further 
converge into a real- world scenario. 

We start by applying our Past-to-Present validation to 
the three scenarios, Sstrict, Sloose and Sreal. As previously 

defined, this validation starts with an older set of training 
samples and iteratively adds newer samples, validating 
each iteration on a fixed set of the most recent samples. 
Since our interest is to measure performance variation 
over time, we plot in Figure 12 the AUROC at every iteration 
(i.e., fold), for each of our three scenarios. 

Fig. 12. AUROC for each iteration of the Past-to-Present evaluation. 
Folds order consistent with temporal order (i.e., fold 0 contains older 

samples than fold 1) 

When directly comparing the average AUROC for cross- 
validation and our Past-to-Present validation, we note that 
for both Sstrict and Sloose the AUROC remains identical, 

while for Sreal the score decreases from 0.75 to 0.67. This 

decrease is intuitive to the methodology, as we are 
forcing temporal consistency between samples. 

For both Sstrict and Sloose we note only a slight increase as 
new folds are added. They still relate, as we have 
previously noted for cross-validation, arguably given their 
metrics MV loose and MVstrict are not very different. The 
small variation to the cross-validation methodology can be 
justified by using small dataset size for both cases. 

As for Sreal we note higher variation and lower overall 

score, as the reliability of the metric MVgoes down. This is 
expected, not only because we are enforcing temporal 
consistency between samples, but as new folds are added, 
the training gets bigger, while the test remains the same. 
Our main observation for this validation methodology is that 
there is a slight tendency for AUROC to increase, as we move 
forward in time, close to the validation set. 

From these observations, we argue about the possibility that 
with fixed validation set of the most recent samples, a 
model benefits by using samples temporally closer to 
validation. 

Our next result, which uses our Present-to-Past validation 
methodology  will  further  help  analyze  the  
aforementioned detail. The Present-to-Past validation 
enhances the previous results under real-world conditions. 
This methodology starts by fixing the validation set to the 
most recent samples, but with the training set starting at 
the temporally closest samples to validation. At each 
iteration, older samples are added to the training set and 
validated on the fixed, most recent, samples. By applying 
this methodology to the three scenarios, Sstrict, Sloose and 

Sreal, we plot Figure 13, where the X axis increases as older 

samples are added to the training set (e.g. fold 0 contains 
newer samples than fold 1), hence measuring the 
performance  variance  over  time.  Similarly  to  the  previous 
observation,  the  average  AUROC  suffers  a  decrease  when 
compared to cross-validation. For Sstrict  we note a 

change from 0.91 to 0.90, for Sloose  the score is the 

same, and for Sreal  0.75 to 0.69. 

 

Fig. 13. AUROC for each iteration of the Present-to-Past evaluation. 
Folds order is the inverse of temporal order (i.e., fold 0 contains 

newer samples than fold 1) 

The comparison between scenarios is identical to what was 
observed in cross-validation and Past-to-Present: scenarios 
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Sstrict and Sloose display very similar results, with Sreal 
dropping behind due to its less reliable labeling metric. It 
is noticeable that using the entire dataset does not bring 
much improvement to the final results. In fact, for Sreal 
the score even drops after fold #2. 

With these results, our original observation that samples 
closer to the validation set benefit the model becomes 
more convincing. In fact, we argue that there should be 
an ideal number  of  necessary  training  folds,  temporally  
consistent with the validation fold (i.e. any fold from 
training predates validation), needed to maximize the 
overall score. 

Finally, we analyze how does such  reduced training 
set behaves in our scenarios; for this purpose, we define a 
sliding window that moves forward in time through 
each scenario for training and validation. We propose a 
reduction on the training size to n = 3 folds predating 
the validation fold. We choose n = 3, since we have seen 
that the scores either do not improve (for Sstrict and 

Sloose) or actually go down (for Sreal) with higher 

folds. In summary, we have selected 30% of each dataset 
for training purposes and the next 10% for validation (3 
training folds, 1 validation fold), and then started moving 
the window forward in time (1 fold at a time) to obtain 
the following results (Figure 14): for Sstrict, Sloose and 

Sreal, we obtain AUROC values of 0.89, 0.88 and 0.76, 

respectively. These results come to reaffirm our argument 
that we can reduce the size of the training set, without 
losing any significant score. 

Fig. 14.   ROC and AUROC for our three scenarios, under the 
Temporal Window methodology. 

Comparing these results with the baseline cross-validation, 
we note a decrease for each scenario, specifically a 
decrease from 0.91 to 0.89 for Sstrict, from 0.90 to 0.88 

for Sloose and from 0.75 to 0.73 for Sreal. We should 

highlight that the results that use temporal consistency 
should better reflect the reality than standard cross-
validation, since we are requiring tempo- rally ordered 
samples. Another important idea that should be stressed is 
that for cross validation we used a fairly reasonable amount 
of data for training purposes, whereas in this last case we 
used a restricted amount of data. This might be a relevant 

issue in a few year’s time. The results obtained are 
summarized in Table II. 

 

 

 

 

 

 

 

 

TABLE II 

SINGLE LAYER RESULTS SUMMARY. 

With a better understanding of how the model behaves 
under different methodologies, we now diverge to how we 
improved not only the overall results, but also the 
information provided by the model. 

5. MODEL IMPROVEMENTS 

Having a solid baseline model for our malware detection 
task together with how laboratory vs. real-world scenarios 
change the model outcome, we now take this section to 
present the improvements made in order to obtain a more 
robust model to  detect  malware.  We start  by  describing  
our first improvement, applying a multi layer model to 
extract more information regarding a sample. We then 
take this enhanced model and increase the number of 
features to include dynamic content and how it impacted 
the model’s results. 

    A. MULTILAYER MODEL 

On the previous chapter we ended up with a simple LR 
model LR that given a set of static imports from a 
sample, would give the probability of it being malware. 

In this section we provide a new model E  comprises a 
simple ensemble stacking approach, which instead of 
using a single LR classifier, multiple ones are used, 
layered into two steps. 

The first step (layer EL0 ) is composed of n LR 

models, where n is the number of possible classes. Each 
model is trained to output the likelihood of sample 
belonging to one of the n classes, in a one-vs-all 
methodology (i.e. a sample either belongs to Cn or not), 
having as input the raw features (e.g. static imports). 

The second step (layer EL1 ) is identical to LR, but 

now takes as features the output of each classifier from the 

AUROC Sstrict Sloose Sreal Train/Test 

% 

Cross-

Validation 
0.91 0.90 0.75 90 / 10 

Past-to-

Present 
0.90 0.90 0.67 10 to 90 / 

10 

Present-

to-Past 
0.90 0.90 0.69 10 to 90 / 

10 

Sliding-

Window 
0.89 0.88 0.73 30 / 10 
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previous layer, outputting the likelihood of a sample being 
malware. 

In summary, as depicted in Figure 15, we define a 2 layer 
ensemble stacking with n classifiers on the first layer to a  
single classifier in the second layer. 

  

 

                   Fig. 15.  Multi layer model representation. 

B.  MALWARE CLASSES 

We now present our approach on selecting the n 
classes of interest. This represents another labeling 
problem, but now instead of having to label between 
goodware and malware, we have to label the malware as 
belonging to some subclass. 

With this in mind, we chose 6 malware classes: virus, 
trojan, worm, ransom, spyware and other. 

To help label our malware samples into the 
aforementioned classes, we take a tool by Sebastián, M. 
et al. [24], AVClass, which was built to normalize a 
malware sample name into the most likely family, and 
modify it such that instead of providing a family name, 
it would provide one (or more) of the 6 previously 
defined classes. Specifically, we changed it in a way that 
given a set of malware names, the output would be a 
distribution over the 6 malware classes. 

To calculate each class weight we apply the following 
formula 

 

where fc is the frequency for the class c and the 
denominator in the above equation is the number of times 
all classes appear. For example, if a given set of names 
contain the name trojan 3 times and the name virus one 
time, then the weights would be 

Wtrojan =3/
4 

= 0.75, Wvirus =
1/4 

= 0.25, 

Wc = 0, c ∈ {worm, spyware, other, ransom} 

 Having these malware classes defined for our multi 
layer model, we also added the goodware class for 
samples that are not malware. Doing so gives us 7 

possible classes, 6 of which are malware only. It is worth 
mentioning that if a sample belongs to the goodware 
class, it cannot belong to any other, likewise, if it 
belongs to any malware class, it cannot belong to the 
goodware class. Table III discriminates the amount of 
each malware class. 

 

 

 

 

 

 

 

 

 

 

TABLE III 

SAMPLES BELONGING TO EACH OF THE 6 MALWARE CLASSES FOR Creal , 

                                     Cloose AND Cstrict 

In the base model, we used static imports as features 
for our malware detection model. Although the results are 
reasonable, the information which can be retrieved 
from static imports alone is limited. As an example, if a 
sample is compressed, encrypted or packed, its behavior 
cannot be inferred from static imports only. To overcome 
these limitations, we resort to more dynamic information 
provided by Cuckoo. 

    C. CATEGORY CALLS 

The first type of dynamic information we extracted were 
the number of dynamic category calls. When Cuckoo 
runs and monitors a sample, it registers some low level 
library calls, which it then assigns to a fixed number of 
categories. There are a total of 14 different categories 
defined by Cuckoo: anomaly, device, filesystem, hooking, 
misc, network, process, registry, services, socket, 
synchronization, system, threading and windows. After 
using Celery [30] to extract the number of each category 
calls for the samples, we obtained a total of 148,036 
samples with information regarding category calls. 

To normalize the category calls value, we decide to 
trans- form the values to follow a normal distribution. We do 
this by using scikit-learn’s [33] QuantileTransformer with a 
normal distribution, which splits the possible values into 
bins such that the resulting distribution is of type Gaussian 
with a mean of 0. This way we have a greater number of 

Dataset Creal Cloose 
Cstrict 

Trojan 97,054 44,329 24,176 

Other 49,443 24,126 14,750 

worm 24,554 14,837 9,381 

Virus 21,055 12,531 6,899 

spyware 20,724 10,172 5,955 

Ransom 7,761 1,924 1,160 

Malware total 98,582 45,306 24,658 
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bins around the mean, allowing for better discrimination, 
whereas very large values fall into the same bin. 

D. LIBRARY CALLS 

Our second type of dynamic information are the number of 
library calls. While category calls provide the number of calls 
for a given category, library calls provide the count for each 
library call, hence being a subset of the previous. 

Cuckoo [26] registers the number of calls for 163 
different functions, ranging from opening and closing files, 
to opening and closing sockets. Again we used Celery [30] to 
extract these numbers, obtaining information from 148,036 
samples. 

Given we are dealing with a high number of features 
(163 different library calls), we decided to apply the same 
variance threshold as in Section IV-A, to remove features 
that do not vary in most samples. By choosing a threshold 
of 80%, we remove library calls that do not vary in more 
than 80% of the samples, effectively reducing the number 
of library calls to 144. With regards to how these features 
can vary from 0 to 

+∞, as before, we again apply a quantile transformer with 
a normal distribution. 

E. CUCKOO SIGNATURES 

For our third and last type of dynamic information, we 
resort to Cuckoo’s [26] custom signatures. These 
signatures are built from certain activities that Cuckoo 
deems malicious or suspicious. For example, if a sample 
allocates memory and then makes it executable, it might 
suggest some sort of packing or obfuscation. 

To extract these signatures, we use Celery [30] and 
obtain a total of 124,821 samples and 61 different 
signatures. As with our static import features, we use a 
binary vector for each sample, where each position 
corresponds to a specific signature. Re-iterating on how 
we represent this, if a given signature i is present in a 
sample, its feature vector x will have the value 1 at that 
position xi. Likewise, if a given signature j is not present in 

a sample, its feature vector x will have the value 0 at that 
position xj . 

We joined these features Fdynamic to the labeled 
samples Creal, obtaining a total of 122,633 labeled 

samples with the new features Cdynamic = Creal ∩ 

Fdynamic. 

Given there is a lower amount of available samples, we 
provide in Table IV the new sizes for Creal, Cloose and 
Cstrict, which take into account the new features 
Fdynamic. 

 

 

 

 

 

 

TABLE IV 

NEW  SIZES  FOR  DATASETS Creal , Cloose  AND Cstrict . 

6. IMPROVED MODEL RESULTS 

We now present the results of our new model E, validated 
using the same methodology as described in V. 

Specifically we test the model using the baseline cross- 
validation methodology, followed by our three temporally 
consistent scenarios: Past-to-Present, Present-to-Past and 
Tem- poral Window. We test each methodology using the 
three different scenarios: Sstrict, Sloose  and Sreal. 

Starting with laboratory conditions, we apply the cross- 
validation evaluation to model E with the labeled  dataset 
Cstrict and features Cdynamic, providing  scenario  Sstrict.  For 
this scenario, we obtain an AUROC of 98%, as presented 
by the red curve in Figure 16. 

Relaxing to more real-world conditions, under the form of 
a less reliable ground truth, we test the datasets Cloose 

and Creal on features Cdynamic. As shown in Figure 16, the 
score under AUROC is 98% for Sloose (blue curve) and 
95% for Sreal  (green curve). 

 

Fig. 16.  Multi layer results for dynamic features in laboratory 

conditions. 

As with previous results, one notes that from Sstrict to 
Sloose the results are not affected at all, when the change 
between the scenarios is merely in the number of 
malware samples. Between Sloose to Sreal we again note 
the already seen pattern, the score is lowest when using 
the most realistic dataset. 

The comparison between scenarios does not yield any 
new information from what was seen in Section V-B.  What  

Dataset Creal Cloose Cstrict 

Malware 94,438 44,544 22,999 

Goodware 24,344 1,788 1,800 

Total 118782 46,332 24799 
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is more interesting is that the absolute values are 
boosted in all scenarios, which show indeed that using 
the multi-layer approach with dynamic features improve 
the model’s results. 

Having applied the same cross-validation to our 
modified model, obtaining interesting results, we now go 
over to test how our temporal based methodologies are 
affected. 

We start again with Past-to-Present validation to each 
scenario Sstrict, Sloose and Sreal. Figure 17 shows the 
AUROC at every iteration (i.e. fold) for each scenario: 96% 
for Sstrict and Sloose, and 92% Sreal. 

 

Fig. 17. AUROC for each iteration of the Past-to-Present evaluation. 
Folds order consistent with temporal order (i.e. fold 0 contains older 

samples than fold 1) 

When comparing the average AUROC between cross- 
validation and Past-to-Present validation, we note that 
both Sstrict and Sloose decrease 2%,  while  Sreal  
decreases  3%. This decrease is not a surprise, given the 
temporal consistency enforcement between samples. 

The results are consistent with was previously seen in 
Section V-B, with the added factor that the absolute values 
are higher, and the tendency to increase is more present as 
we move forward in time, close to the validation set. 

Following the previous evaluation order, we now 
present the results using our Present-to-Past validation 
methodology. In Figure 18 we present the AUROC for each 
iteration, where higher folds represent older samples. Here 
we see values of 97% for Sstrict, 98% for Sloose  and 96% 

Sreal. 

Fig. 18. AUROC for each iteration of the Present-to-Past evaluation. 

Folds order is the inverse of temporal order (i.e. fold 0 contains newer 
samples than fold 1) 

When comparing to cross-validation, we note Sstrict is 

affected as expected, whereas Sloose  is not. The fact that 

the datasets vary in size and so the amount  of 
goodware and malware used for testing in each may 
vary, can justify how the Sloose  is not affected, whereas 

Sstrict  is. 

Sreal seems to have a higher value than in cross-
validation, but it is rounded, which slightly inflates the 
value. In practice both  cross-validation  and  Present-to-

Past  are  identical  for Sreal. 

In these results, the noticeable increase in the first 3 folds 
(0, 1 and 2) for Sstrict and Sloose goes even more in favor 

with our argument that samples closer to the validation 
set benefit the model. More so as the AUROC stabilizes from 
those folds on. This effect is not as accentuated for Sreal, 

although using more and older folds do not provide 
significantly better results. 

Finally, we retest how a reduced training set behaves 
in our scenarios by using our Temporal Window 
methodology. As previously mentioned, the first 3 folds 
seem to provide enough information to obtain good 
results, hence we apply the same sliding window size of 
n = 3 as in Section V-B. Starting at the oldest fold, we 
apply this window and slide it by one fold at each 
iteration. Figure 19 shows how all our scenarios Sstrict, 

Sloose and Sreal score the same AUROC of 94%, although 

with different curves. 

For Sstrict, Sloose the score is equally and negatively 

affected  by 4%. The jagged curve on both scenarios indicate 
that slight changes on the FPR threshold have significant 
impact on the True Positive Rate (TPR), this may be 
caused by the smaller dataset size, which in turn creates 
uneven folds for malware and goodware.. 
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Fig.  19.    AUROC  for  our  three  scenarios,  under  the  Temporal  
Window methodology. 

For Sreal, the fact that it only loses 1% when 
compared to cross-validation shows that indeed our 
argument about reducing the training set size is 
sustained. Its curve is much smoother when compared 
to the previous scenarios, as the dataset is bigger and 
more even. 

The improved layer results are summarized in Table V. 

7. DISCUSSION 

We have proposed different scenarios, based on 
different labeling metrics, to study laboratory vs real-
world conditions. Our scenarios, Sstrict, Sloose  and Sreal, 

vary both in reliability 

TABLE V 

MULTI LAYER RESULTS SUMMARY. 

and size, going from a more reliable and small dataset to a 
larger and less reliable one. This (un)reliability is due to 
the fact that for real world samples there is usually no 
agreement among vendors on how to classify a given 
sample, and for that we had to assign a labeling to such 
samples according to our proposed metrics. We have 
developed several comparative analysis between these three 
scenarios, to evaluate how much the nature of the dataset 
can influence the results. We have split the analysis into 
two major validation conditions: the cross validation 

methodology, where the time consistency is discarded; and 
temporal-based methodologies. We tested our 
methodologies by using a simple LR model, which was then 
improved to transmit better information and to use more 
features. 

Following a cross-validation methodology, we have 
con- firmed our intuitions: Sstrict showed up an AUROC of 

0.91, Sloose have presented 0.9, whereas Sreal decreased 

to 0.75. As we have argued, the results on Sstrict are 

justified by factors like a small and reliable dataset, and the 
use of cross-validation, which mixes samples and  ignores  
possible dependencies between them. This scenario is 
composed by very well-known and analyzed samples. 
Although Sloose slightly relaxes these requirements, it is 

still composed by very well-known samples, which 
partially justifies the com- parable AUROC (0.90). But this 
difference is interesting, as although the number of 
malware labeled samples increased significantly, the 
results are not that affected. As we have noticed, this 
might also suggest that vendors do converge on their 
definition of malware, under our Mloose metric. The changes 

observed from Sloose to Sreal are more remarkable, but 

somehow expected. The metric that labels malware and 
goodware for the scenario Sreal disregards the cross-

check from outside repositories, which in turn degrades the 
reliability significantly, while increasing the dataset size 
notably. As we have already noticed, we attribute the result’s 
degradation mainly to the  unreliability  of  goodware  
labeling,  not  only because we have previously seen that the 
increase in malware does not significantly impact the results 
(from Sstrict to Sloose), but also due to the tendency for 

false negatives in vendors (Figure 2), which in turn lead us 
to incorrectly label as goodware some of the malicious 
samples in C. 

When temporal consistency comes into play, the results 
on different scenarios do not differ much, nevertheless we 
can observe more pronounce trends. The great conclusion 
that we can take stands on the relative position of the 
training set with respect to the validation set and its size. 
Indeed, samples closer to the validation set seem to benefit 
the model. We argue that there should be an ideal number 
of necessary training folds (30% of the dataset), temporally 
consistent with the validation fold (10% of the dataset), 
needed to maximize the overall score. This supports our 
argument that we can reduce the size of the training set, 
without losing any significant score. 

We finished our analysis by validating this temporal-
based results. For this purpose, we have defined a sliding 
window for each scenario, with the above parameters, that 
moved forward in time (1 fold at a time) and obtained the 
AUROC values of 0.89 for Sstrict, 0.88 for Sloose and 0.73 

for Sreal. Comparing these results with the baseline cross-

validation, we note a very slight decrease for each scenario. 

AUROC Sstrict Sloose Sreal Train/Test 

% 

Cross-

Validation 
0.99 0.99 0.96 90 / 10 

Past-to-

Present 
0.92 0.96 0.91 10 to 90 / 

10 

Present-

to-Past 
0.94 0.98 0.95 10 to 90 / 

10 

Sliding-

Window 
0.93 0.94 0.93 30 / 10 
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This decrease, although not significant, was more than 
expected due to the enforcement of temporal consistency as 
well as the significant reduction of the size of the training 
set. We should highlight that these results should be much 
closer to reality than the ones provided by cross 
validation techniques, since we are requiring temporal 
consistency and also a reasonable amount of data for 
training purposes, which might be a relevant issue in a 
few year’s time. Indeed, aiming at complementing 
antivirus’ vendors techniques with machine learning, we 
should not expect to gather and use all the samples ever 
seen for training purposes, and these results may be very 
useful on the choice of the right training set. 

Finally, we describe multiple improvements to our base 
model LR in order to improve the overall results. We 
started by using a multi layer approach to build a new 
model E, which enables the extraction of more detailed 
information regarding a malicious sample, specifically the 
malware class it belongs. We also introduced three new 
dynamic features, to improve the amount of information 
obtained from the samples. After applying the same 
evaluation methodologies to our new model E, we observed 
an increase in all cases. We note that the bigger the dataset, 
the higher the improvement, as Sstrict increased by 0.07 

(cross-validation), Sloose by 0.08 and Sreal (cross- 

validation) by 0.27 (present-to-past). This comes to show 
how the model was better able to learn from the new 
features. 

8. CONCLUSIONS 

In this paper we analyzed how ML techniques fit into 
the scope of malware detection and how could the chosen 
dataset influence the results of the classifier. 

Given the non-existence of a common agreement on how 
to label samples in a real world dataset, we have proposed 
three different metrics for labeling these samples, and 
presented three different scenarios, ranging from a more 
simulated scenario, where better results are achieved, to 
more realistic ones, where the AUROC results can go down 
by 23%. We have analyzed the different scenarios mainly 
on two kind of conditions: the laboratory conditions where 
the standard cross- validation methodology was applied 
discarding the importance of time in malware detection, 
and temporal-consistent techniques where we have 
trained and validated the model in a temporal-consistent 
manner. We have shown that for a modest compromise in 
accuracy temporal-consistent methodologies are adequate 
to classify malware samples. We have also concluded that 
we can reduce the size of the training dataset to avoid the 
need of training with all ever seen samples, and argue on 
how much it can be reduced without compromising 
optimal results. 

Having a sound understanding of the effects of 
different methodologies, we improved our model to yield 

higher results. We believe that the pertinent question of how 
much should we seek for great results on ML techniques 
applied to malware detection is worth to be further 
discussed, bearing in mind that it leads to classifiers that 
would not perform better over realistic conditions. Our 
reports are extremely useful in malware ascription. A future 
work we aim at optimizing our logistic regression model, 
at increasing and optimizing the features, and finally, at 
developing a supervised learning methodology to classify 
malware samples according to the main malware families. 
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