COMPARATIVE STUDY BETWEEN NORMAL SLAB AND U BOOT BETON SLAB

Surabhi Patil ${ }^{1}$, Saloni Pakaye ${ }^{2}$, Dhruv Sudra ${ }^{3}$
1,2,3UG Student, Universal College of Engineering, Vasai, Maharashtra, India.

Abstract

In this modern age different types of structure are been observed which are more efficient that the structures been made in past. In our project report we have been specifically focused on design and construction of slabs in R.C.C buildings and bridges eliminating the traditional method of slab construction by using hollow blocks and making a voided slab which has many advantages over the regular span and is more efficient too. The purpose of the study is to analyse the voided slab by using U-boot blocks and preparing a report mentioning how efficient the voided slab can be over and regular slab. Structural calculations and their outcomes are calculated in this paper comparing the traditional and u boot technology system

Key Words: (efficient, U boot technology)

1.INTRODUCTION

In modern day construction there is always advancements and new technologies coming under use which helps the ease the work of construction in many ways. A voided slab may be a ferroconcrete slab during which voids reduce the slab's weight. In this slab, lightweight void formers are placed between the very best and thus rock bottom reinforcements before concrete casting to exchange concrete within the center of the slab. In our project we will the studying about the square beton blocks called U-boot blocks and will be comparing the voided slab to a normal slab and observe the differences between them.

1.1 OBJECTIVE

1. Identification of various structural models for project execution of low cost sanitation system which prevents to stand the cost, time and durability.
2. Proposal of innovation in construction methods and materials in the form of U-boot technology of casting and modular rebar sets in various repetations for effective low cost, manufacture time and maximum durability.
3. To compare the self-weight of conventional slab and selfweight of voided slab.
4. To be able to create slabs with larger span which can support large loads without beam.
5. Ability to build mushroom pillars due to absence of beam and reduce the number of columns.
6. Create higher number of floors creating more useable space for people.
7. Build an environmentally green and sustainable buildings.

1.2 NEED FOR U BOOT PROJECT

By using this technology we can save more concrete and steel by that structure is more economical for us. Less use of iron in the slabs, pillars and foundation up to a total of 15%. There are anti-seismic advantages connected to reduced building weight slimmer pillars and foundations, there are low chance of seismic effect on the buildings. Due to the fact, that the structural behaviour of this new kind of monolithic flat slab is the same as for solid slab, excluding slab-edge column connection, we surely can talk appropriateness of use and advantages of the new technology.

2. METHODOLOGY

We used Daliform official software to calculate and find the appropriate u boot beton size for calculations of slab by inputing the slab size, all types of load resulting in SAFE structure.
The inputs done resulted in using us $H .10 \mathrm{~cm}$ single UBoot beton for slab

2.1 DESIGN OF NORMAL RCC SLAB

Design RCC slab of dimension 5.58 meter X 4.34 meter simply supported from all the four sides on beam with width 300MM

1) Assume =monolithic construction
$\mathrm{LL}=3 \mathrm{Kn} / \mathrm{m}^{2}$
FF $=1 \mathrm{Kn} / \mathrm{m}^{2}$
FCK $=20 \mathrm{Mpa}$
$\mathrm{FY}=415 \mathrm{Mpa}$
2) $\mathrm{Ly} / \mathrm{Lx}=5.58 / 4.34=1.2857<2$

Hence two way slab
Leff for monolithic slab
Leff $=4340-300 / 2-300 / 2=4040 \mathrm{~mm}$
3) Calculation of depth of slab

Leff / dx = 20 x modification factor
$4040 / \mathrm{dx}=20 \mathrm{X} 1.4$
Dx= 144.285 mm
Take clear cover $=30 \mathrm{~mm}$ and $\emptyset=12 \mathrm{~mm}$
Therefore $\mathrm{D}=\mathrm{dx}+$ clear cover + dia $/ 2$

$$
\begin{aligned}
& =144.285+30+12 / 2 \\
& =180.285 \mathrm{~mm}
\end{aligned}
$$

Take D $=200 \mathrm{~mm}$
Therefore $\mathrm{dx}=200-30-6$

$$
=164 \mathrm{~mm}
$$

Calculation of loads acting on slab

- dead load $=25 \times 0.2=5 \mathrm{Kn} / \mathrm{m}^{2}$
- $\mathrm{LL}=3 \mathrm{Kn} / \mathrm{m}^{2}$
- $\mathrm{FF}=1 \mathrm{Kn} / \mathrm{m}^{2}$

Total load $=9 \mathrm{Kn} / \mathrm{m}^{2}$
Factored total load $=9 \mathrm{X} 1.5=13.5$
Consider 1 meter width of the slab
$\mathrm{Wu}=13.5 / 1=13.5 \mathrm{Kn} / \mathrm{m}$
4) Calculation for bending moment and shear force

Ly/lx	$\alpha \mathrm{x}$	$\alpha \mathrm{y}$
1.2	0.084	0.059
1.285	x	y
1.3	0.093	0.055

$\mathrm{X}=0.09165 \quad \mathrm{Y}=0.0556$
$\mathrm{MX}=\alpha \mathrm{XX} w \mathrm{Xlx}^{2}$
$=0.09165 \mathrm{X} 13.5 \mathrm{X} 4.34^{2}$
= $5.37225 \mathrm{Kn} . \mathrm{m}$
$\mathrm{My}=\alpha \mathrm{XX} \mathrm{wXlx}{ }^{2}$
$=0.0556 \times 13.5 \times 4.34$
$=3.2591 \mathrm{Kn} . \mathrm{m}$

$$
\begin{aligned}
\mathrm{Vx} & =\alpha \mathrm{x} \text { X w X lx } \\
& =0.09165 \times 13.5 \times 4.34 \\
& =5.36977 \mathrm{KN}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Vy} & =\alpha \mathrm{y} \mathrm{X} \mathrm{w} \mathrm{X} \mathrm{~lx} \\
& =0.0556 \times 13.5 \times 4.34 \\
& =3.2576 \mathrm{KN}
\end{aligned}
$$

5) Check for flexure
$\mathrm{Mx}=0.138 \mathrm{fck} \mathrm{bdx}^{2}$ req
$23.292 \times 10^{6}=0.138 \times 20 \times 1000 \times \mathrm{dx}^{2}$ req
dx req $=91.864 \mathrm{~mm}$
SAFE.
6) Calculation of reinforcement

$$
\text { Ast } \mathrm{x} \text { req }=\frac{0.5 \times f c k \times b d x}{f y} \times
$$

$$
\left[1-\sqrt{1-\frac{4.6 M x}{f c k \times b d x^{2}}}\right]
$$

$$
=\frac{0.5 \times 20 \times 1000 \times 164}{415}
$$

$$
*\left[1-\sqrt{1-\frac{4.6 \times 23.292 \times 10^{6}}{20 \times 1000 \times 164^{2}}}\right]
$$

$$
=415.37 \mathrm{~mm}
$$

Assume dia of bar $=12 \mathrm{~mm} \phi$

Spacing
$\frac{\text { area of one bar }}{\text { ast required }(x)} \times 1000=\frac{\pi / 4 \times 12}{415.393} \times 1000=272.26 \mathrm{~mm} \cong$ 250 mm

Or
$3 \times d=492$

Provide 250 mm c/c
ast (x) provided $=\frac{\pi / 4 \times 12}{250} \times 1000$

$$
=452.389 \mathrm{~mm}^{2}
$$

Provide $12 \mathrm{~mm}-250 \mathrm{~mm}$ c-c as shorter span reinforcement
7) Calculation of reinforcement along longer span

$$
\begin{aligned}
\text { Dy } & =\text { D-30-12-(12/6) } \\
& =200-30-12-6 \\
& =152 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\begin{array}{c}
\text { Ast } \\
\frac{0.5 \times 20 \times 1000 \times 152}{415}
\end{array} & \times\left(1-\sqrt{1-\frac{4.6 \times 14.138 \times 10^{6}}{20 \times 1000 \times 152^{2}}}\right) \\
= & 267.51 \mathrm{~mm}^{2}
\end{aligned}
$$

Assume $12 \phi \mathrm{~mm}$ bar

Spacing $=\frac{\pi / 4 \times 12^{2}}{267.57} \times 1000=422.77 \mathrm{~mm}$

Or
$3 d=3 \times 157=462 \mathrm{~mm}$

Provide min spacing of 300 mm

Ast y provided $=\frac{\pi / 4 \times 12^{2}}{300} \times 1000=377 \mathrm{~mm}^{2}$

Provide12 mm @ 300mm c-c as longer span reinforcement
8) Check for shear

Calculation of nominal shear
$\tau v=\frac{v x / y}{b d x / y}=\frac{5.36 \times 10^{3}}{1000 \times 164}=0.0326 \mathrm{~N} / \mathrm{mm}^{2}$

Calculation of percentage of steel (Pt \%)

Pt \% = ast px / bdx x 100

$$
=\frac{452.389}{1000} \times 100=0.275 \%
$$

Determination of design shear stress in conc.
$0.25 \quad 0.36$
0.275 x

Therefore ${ }^{\tau} \mathrm{C}=0.372$
$\tau_{v_{(0.0326)}}<\tau_{c_{(0.372)}}<k_{(1.20)}$

SAFE.
9) Check for deflection (MF)

Fs $=0.5 f y$ ast x required/ ast x provided $=0.58 \times 415 \times 415.393 / 452.389$ $=221.075$

Pt\% = 0.275\%

From graph of modification factor
MF=1.65

Therefore leff/dx = 20×1.65
4040/dx=20x 1.65
$d x=122.42$
dx required < dx provided
SAFE
10) Torsional reinforcement

Ast $(\mathrm{t})=3 / 4 \mathrm{x}$ Ast xp
$=3 / 4 \times 452.384$
$=339.288 \mathrm{~mm}^{2}$

$$
\begin{aligned}
\text { Size of mesh } & =\mathrm{lx} / 5 \\
& =4340 / 5 \\
& =868
\end{aligned}
$$

Therefore $868 \times 864 \mathrm{~mm}$ is mesh size.

Assume diameter of bar $=10 \mathrm{~mm}$

Spacing $=\frac{\pi / 4 \times 10^{2}}{339.288} \times 1000=231.48 \mathrm{~mm} \cong 225 \mathrm{~mm}$

Therefore Ast provided $=\frac{\pi / 4 \times 10^{2}}{225} \mathrm{x} 1000$

$$
=349.065 \mathrm{~mm}^{2}
$$

Therefore provide torsional mesh of $868 \mathrm{~mm} \times 868 \mathrm{~mm}$ of 10 mm @ 225 mm c-c on all four corners.

Minimum reinforcement
Ast min $=12 \%$ bxD

$$
\begin{aligned}
& =0.12 / 100 \times 1000 \times 200 \quad(12 \mathrm{~mm} \phi) \\
& =240 \mathrm{~mm}^{2}
\end{aligned}
$$

Spacing $=\frac{\pi / 4 \times 10^{2}}{240} \times 1000$

$$
=471.238 \mathrm{~mm}
$$

Or
$5 \mathrm{xd}=820 \mathrm{~mm}$ or $\mathrm{min}=450 \mathrm{~mm}$

Ast min provided $=\frac{\pi / 4 \times 10^{2}}{240} \times 1000$

$$
=251.327 \mathrm{~mm}^{2}
$$

Therefore provide $12-450 \mathrm{~mm} \mathrm{c}-\mathrm{c}$ as min reinforcement

Ast x provided $=113.097 \mathrm{~mm}^{2}$

Torsional reinforcement
Ast $(\mathrm{t})=3 / 4 \times 113.097$
$=84.823 \mathrm{~mm}^{2}$

Size of mesh $=4340 / 5$

$$
=868 \mathrm{~mm}
$$

$868 \times 868 \mathrm{~mm}$ mesh size

Assume diameter $=6 \mathrm{~mm}$

Spacing $=\frac{\pi \times 3^{2}}{240} \times 1000$

$$
=333.33 \mathrm{~mm}
$$

Take 250 mm spacing

Ast (t) provided $=\frac{\pi \times 3^{2}}{250} \times 1000$

$$
=113.097 \mathrm{~mm}^{2}
$$

11) Development length (ld)

$$
\frac{M x}{V x}+l o=\frac{23.292 \times 10^{6}}{5.36 \times 10^{3}}+(12 \times 12)
$$

$$
=4489 \mathrm{~mm} .
$$

$L d=\frac{\phi \sigma s}{4 \tau b d}=\frac{12 \times\left(\frac{f y}{1.15}\right)}{4 \times 1.6 \tau b d}=\frac{12 \times(0.87 \times 415)}{4 \times 1.6 \times 1.2}$

$$
=564.14 \mathrm{~mm}
$$

SAFE.

Provide ld $=564.14 \mathrm{~mm}$

2.2 QUANTITY AND ESTIMATION OF NORMAL SLAB

 QUANTITY OF STEEL1) Length of straight bar shorter span $=4.34+2 \times 9 \times 0.012$ 2×0.03
$=4.496 \mathrm{~m} \quad$ (main steel)
2) Length of straight bar longer span $=5.58+2 \times 9 \times 0.012-$ 2×0.03

$$
=5.736 \quad \mathrm{~m}
$$

(distribution steel)
3) Number of bar in shorter span $=(5.736 / 0.250)+1$

$$
=24 \mathrm{bars}
$$

4) Number of bar in longer span $=(4.496 / 0.300)+1$

$$
=16 \mathrm{bars}
$$

MAIN STEEL BENT UP BAR

1) Length of bent up bar on shorter span $=0.45 x+$ (length of shorter span)

$$
\begin{aligned}
\text { Here } \mathrm{x} & =0.20-2 \times 0.03-0.012 \\
& =0.128 \mathrm{~m}
\end{aligned}
$$

Therefore, length of bent up bar on shorter span $=$ $0.45 \times 0.128+(4.496)$

$$
=4.554 \mathrm{~m}
$$

DISTRIBUTION STEEL BENT UP BAR

1) Length of bent up bar on longer span $=0.45 x+$ (length of longer span)

$$
x=0.128
$$

Therefore, length of bent up bar on longer span $=$ $0.45 \times 0.128+(5.736)$

$$
=5.794 \mathrm{~m}
$$

Torsional steel with 30 mm cover $10 \mathrm{~mm} \emptyset 225 \mathrm{~mm}$ c-c
Top side $=(0.868 / 0.225)+1$

$$
=5 \text { nos. }
$$

10 bars on one corner
Therefore, total number of bars in all four corner for top reinforcement $=10 \times 4$
bars
Total number of bars in all four corner for bottom nforcement $=10 \times 4$

$$
=40
$$

's
Bars on top of bent up bar on shorter span
Length of top extra bar (bent up) $=(868 / 250)+1$

$$
=5 \text { nos. }
$$

Therefore, no of bars = 10 nos.
Bars on top of bent up bar on longer span
Length of top extra bar (bent up) $=(5580 / 5)$
No of bars $=(1116 / 300)+1$

$$
=5 \text { bars }
$$

Therefore, 5 bars on one side and 5 on other so the total number of bars 10 bars.

Minimum steel on shorter span
No of bars $=(5736 / 450)+1$

$$
=14 \text { bars }
$$

Volume of slab $=\mathrm{L} \times \mathrm{B} \times \mathrm{H}$

$$
\begin{aligned}
& =5.58 \times 4.34 \times 0.2 \\
& =4.843 \mathrm{~m}^{3}
\end{aligned}
$$

1) Volume of slab of main bar on shorter span

$$
\begin{aligned}
V_{1} & =\pi \times r^{2} \times h \\
& =\pi \times 0.006^{2} \times 4.496 \\
& =0.0005084 \mathrm{~m}^{3}
\end{aligned}
$$

Total volume $=0.0005084 \times 12$

$$
=6.1008 \times 10^{-3} \mathrm{~m}^{3}
$$

2) Volume of slab of main bar on longer span

$$
\begin{aligned}
V_{2} & =\pi \times r^{2} \times h \\
& =\pi \times 0.006^{2} \times 5.736 \\
& =6.487 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

Total volume $=6.487 \times 10^{-4} \times 8$

$$
=5.1896 \times 10^{-3} \mathrm{~m}^{3}
$$

3) Main steel bent up

$$
\begin{aligned}
V_{3} & =\pi \times r^{2} \times h \\
& =\pi \times 0.006^{2} \times 4.554
\end{aligned}
$$

Total volume $=5.150 \times 10^{-4} \times 12$

$$
=6.180 \times 10^{-3} \mathrm{~m}^{3}
$$

4) Distribution steel bent up

$$
\mathrm{V}_{4}=\pi \times \mathrm{r}^{2} \times \mathrm{h}
$$

$$
\begin{aligned}
& =\pi \times 0.006^{2} \times 5.794 \\
& =6.553 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

Total volume $=6.553 \times 10^{-3} \times 8$

$$
=5.241 \times 10^{-3} \mathrm{~m}^{3}
$$

5) Torsional steel

$$
\begin{aligned}
V_{5} & =\pi \times r^{2} \times h \\
& =\pi \times 0.005 \times 0.868 \\
& =6.817 \times 10^{-5} \mathrm{~m}^{3}
\end{aligned}
$$

Total volume $=6.817 \times 10^{-5} \times 80$

$$
=5.454 \times 10^{-3} \mathrm{~m}^{3}
$$

6) Bars on top of bent up bar (x direction)

$$
\begin{aligned}
V_{6} & =\pi \times r^{2} \times h \\
& =\pi \times 0.006^{2} \times 4.398 \\
& =5.084 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

Total volume $=5.084 \times 10^{-4} \times 10$

$$
=5.084 \times 10^{-3} \mathrm{~m}^{3}
$$

7) Bars on top of bent up bar (y direction)

$$
\begin{aligned}
V_{7} & =\pi \times r^{2} \times h \\
& =\pi \times 0.006^{2} \times 5.736 \\
& =6.487 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

Total volume $=6.487 \times 10^{-4} \times 10$

$$
=6.487 \times 10^{-3} \mathrm{~m}^{3}
$$

8) Minimum steel

$$
\begin{aligned}
V_{8} & =\pi \times r^{2} \times h \\
& =\pi \times 0.006^{2} \times 4.396 \\
& =5.084 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

Total volume $=5.084 \times 10^{-4} \times 14$

$$
=7.1176 \times 10^{-3}
$$

Volume of concrete $=$ volume of slab $\left(\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\mathrm{V}_{4}+\mathrm{V}_{5}+\mathrm{V}_{6}+\mathrm{V}_{7}+\mathrm{V}_{8}\right)$

$$
\begin{aligned}
& =4.843-0.0468 \\
& =4.796 \mathrm{~m} 3
\end{aligned}
$$

The calculation for u boot slab remains as same as normal slab but the quantities will differ :

2.3 QUANTITIES CALCULATED FOR U BOOT SLAB

Top reinforcement
Shorter span length $=4.34+2 \times 9 \times 0.006-2 \times 0.050$ $=4.348 \mathrm{~m}$
No of bars $=(4.348 / 0.125)+1$

[^0]Longer span length $=5.58+2 \times 9 \times 0.006-2 \times 0.050$

$$
\begin{gathered}
=5.588 \mathrm{~m} \\
\text { No of bars }=(5.588 / 0.250)+1 \\
=24 \text { bars }
\end{gathered}
$$

Same amount of steel for bottom reinforcement.
X-direction $=36$ bars, Y -direction $=24$ bars
Shear reinforcement length $=170 \mathrm{~mm}$
No of stirrups on one strip $=45$
Total no of stirrups $=45 \times 6$

$$
\text { = } 270 \text { no. }
$$

TORSIONAL STEEL
Size of mesh $=868 \times 868 \mathrm{~mm}$
Spacing $=300 \mathrm{~mm}$
Ast $_{p}=\left(\pi \times 3^{2} / 300\right) \times 1000$

$$
=94.24 \mathrm{~mm}^{2}
$$

Provide torsional mesh of $868 \times 868 \mathrm{~mm}$ of 6 Ø @ 300 mm c-c spacing
No of bars $=(868 / 300)+1$

$$
=3.89=4 \text { bars }
$$

Total bars $=4 \times 4 \times 2$

$$
=32 \text { bars }
$$

Volume $=\pi \times \mathrm{r}^{2} \times \mathrm{h}$

$$
\begin{aligned}
& =\pi \times 3^{2} \times 868 \\
& =24542.12 \mathrm{~mm}^{3} \\
& =2.545 \times 10^{-5} \mathrm{~m}^{3}
\end{aligned}
$$

Total volume $=2.545 \times 10^{-5} \times 32$

$$
=0.000785 \mathrm{~m}^{3}
$$

Volume of steelV ${ }_{1}=\pi \times \mathrm{r}^{2} \times \mathrm{h}$

$$
\begin{aligned}
& =\pi \times 0.003^{2} \times 4.348=1.229 \times 10^{-4} \\
& =1.229 \times 10^{-4} \times 36=0.00442 \mathrm{~m}^{3} \\
& =0.00442 \times 2=8.84 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

$\mathrm{V}_{2}=\pi \times \mathrm{r}^{2} \times \mathrm{h}$

$$
=\pi \times 0.003^{2} \times 5.736=1.6218 \times 10^{-4}
$$

$$
=1.6218 \times 10^{-4} \times 24=0.00389 \mathrm{~m}^{3}
$$

$$
=0.00389 \times 2=7.78 \times 10^{-3} \mathrm{~m}^{3}
$$

$\mathrm{V}_{3}=\pi \times \mathrm{r}^{2} \times \mathrm{h}$
$=\pi \times 0.003^{2} \times 0.17=4.806 \times 10^{-6}$
$=4.806 \times 10^{-6} \times 270=0.00129 \mathrm{~m}^{3}$
$\mathrm{V}_{4}=\pi \times \mathrm{r}^{2} \times \mathrm{h}$
$=\pi \times 0.003^{2} \times 0.868=2.45 \times 10^{-5}$
$=2.45 \times 10^{-5} \times 32=0.000785 \mathrm{~m}^{3}$
Volume of single block of u-boot $=0.0213 \mathrm{~m}^{3}$
Total no of blocks $=7 \times 9=63$ nos.

2.4 COST COMPARISION

For Normal Slab

Sr No	Material	Quantity	Rate	Amount
1	Cement	39 bags	180	7020
2	Sand	2.014 cu m	350	705
3	Aggregate	4.028 cu m	900	3625

For U Boot Slab
Sr No Material Quantity Rate Amount

1 Cement

27 bags 180

2	Sand	1.463 cu m	350	512
3	Aggregate	2.925 cu m	900	2633
4	Uboot	63	350	22050

2 4

Miss. Surabhi Prabhat Patil
UG Student of Universal College of Engineering, Vasai, Maharashtra,

Miss. Saloni Satyawan Pakaye UG Student of Universal College of Engineering, Vasai, Maharashtra,

Mr. Dhruv Bharat Sudra UG Student of Universal College of Engineering, Vasai, Maharashtra,

The U-boot technology is an advanced, economical, asthetically innovative and fastest method of construction of a slab. The purpose of the partial results of designing of which are presented, is focused on modelling and comparison of the variants of lightweight slab construction in terms of structural weight, cost of material and labour resources as well as in terms of the total construction cost. The usage of U-boot technology is extremely rare because of lack of awareness in our country. The responsibility of saving natural and renewable resources for our future generaations should be the moto of every individual hence, this technology should be utilized more

REFERENCES

[1] Subramanian K and Bhuvaneshwari P Finite Element Analysis of Voided Slab with high density Polypropylene Void Formers International Journal of Chem Tech Research, CODEN (USA): IJCRGG ISSN: 0974-4290, Vol.8, No.2, pp. 746-753, 2015.
[2] [17] Harishma K.R and Reshmi K N A study on Bubble Deck slab, International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) Vol. II, Special. Issue X, March 2015
[3] [18] http://www.daliform.com
[4] [19] https://theconstructor.org
[5] [20] https://www.engineeringcivil.com

BIOGRAPHIES
 India. India India

[^0]: = 36 bars

