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Abstract – In this paper,  a  frequency estimation 

problem is reformulated as a linear regression problem 

based on the autoregressive model relating the periodic 

data to its past instances. This frequency estimation 

approach, based on the autoregressive relation in data, is 

shown to be less prone to noise compared to the approach 

based on the differential relation in data. Incorporating the 

autocorrelation function of the periodic data is shown to 

improve the noise-rejection feature of this frequency 

estimation approach.  
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1. INTRODUCTION 
State and parameter estimation is central to signal 

processing, control systems design, and other fields which 

make use of system identification and characterization 

techniques [1], [2], [3]. Frequency estimation is one 

example of parameter estimation which finds its use in 

many disciplines of Science including Physics [4], [5], 

Engineering [5], [6],  Finance, and Economics  [7].  

In [8] we presented a frequency estimation problem 

formulated as a linear regression problem based on the 

differential relationship in the periodic data. This 

approach was shown to be prone to noise due to the 

inherent differential operators in the model formulation 

which amplify noise. In this paper, we present one way to 

model the frequency estimation problem as a linear 

regression problem based on the autoregressive (rather 

than differential) relationship in the periodic data.   

The rest of this paper is organized as follows. Section 2 

presents the dynamics of a free/unforced oscillation 

response model which is adopted as the baseline model 

for frequency estimation. Section 3 gives a detailed 

account of formulating the frequency estimation problem 

as a linear regression problem based on an autoregressive 

model. Both the autoregressive model data and its 

autocorrelation function are used for frequency 

estimation, with the drawbacks of each option mentioned. 

Section 4 presents simulation results for the models in 

Section 3 and gives a discussion on these results. Section 5 

concludes this work with a summary of major findings and 

some remarks.   

2. A FREE DAMPED OSCILLATORY MODEL 
2.1 Differential Dynamics 
An unforced harmonic oscillation can be modeled by the 

following homogeneous ODE as shown below [8], 

    
  

 
      

        (1) 

 with its solution taking the following form, 

 ( )            (   √      )       (2) 

where   is the amplitude,   is the signal offset,   is the 

phase offset and the parameter   (  )   is the damping 

ratio. 

2.1 Autoregressive Dynamics 
The dynamics in equation (1) above can be approximated 

as the difference equation in the discrete-time domain by 

adopting some discretization methods such as Runge-

Kutta or Euler methods. Using centered differencing with a 

discretization time parameter  , equation (1) is 

approximated discretely as, 

     
      

 

      
    

      

      
          (3) 

which can also be written compactly as, 

                      (4) 

with   and    as the coefficients in equation (3) above. The 

next section presents the linear regression problem based 

on the autoregressive model in equation (4) above. 

3. REGRESSION-BASED FREQUENCY ESTIMATION 
Given a data   (  ) of size   (i.e.            ) from an 

oscillatory process, we can formulate the problem of 

frequency estimation as a linear regression problem by 

adopting equation (4) as part of the regression cost 

function shown below, 

 (   )  ∑ (               )
    

        (5) 

The resulting optimal solution to this regression problem 

is given by, 
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 From which the frequency and damping ratio are 

estimated as, 
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As in [8] the time-series data   (  ) can be replaced by the 

autocorrelation function   (  )  of the data for robustness 

against noise.  

4. SIMULATION RESULTS & DISCUSSION 
The linear regression model presented above is simulated 

with both noiseless and noisy data in this section. 

4.1 Frequency Estimation With Noiseless Data 
4.1.1 Signal Data-based Frequency Estimation 
Fig. 1 below shows the plot of data from which the 

frequency should be estimated with the regression model 

described in the previous section. The data was generated 

with the following parameters corresponding to 

equation(4);      ,      ,             , 

                        ,   (   )          . 

Fig. 1 Noiseless data. 

In Fig. 2 below an offset estimate      ∑   
 
    

          has been removed from the data.  

Fig. 2 Zero-mean noiseless data. 

This offset estimate is      lower than the exact value of 

     0. Fig. 3 shows the first time advance (i.e. a set 

*    +) of the zero-mean data.  

Fig. 3 The first derivatives of zero-mean data. 

Fig. 4 below shows the second time advance (i.e. a set 

*    +) of the zero-mean data.  

Fig. 4 The second derivatives of zero-mean data. 

Fig. 5 shows the graph simulated based on estimates of 

frequency and damping ratio obtained from the data-

based linear regression model outlined in the previous 

section. This graph is superimposed on the zero-mean 

data. 
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Fig. 5 Frequency and Q-factor estimates simulated. 

The recovered frequency and damping ratio estimates are, 

                 (10) 

             (11) 

with the estimated frequency being off by        from 

the exact value and the estimated damping ratio being off 

by       from the exact value.  

4.1.2 Autocorrelation-based Frequency Estimation 
In this section the oscillatory data   (  )  is replaced by its 

autocorrelation function   (  ) to carry out frequency 

estimation. Fig. 6 shows the plot of the zero-mean data 

and its autocorrelation function. 

Fig. 6 Zero-mean data and its autocorrelation function. 

Fig. 7 below shows the first time advance of the 

autocorrelation function shown in Fig. 6 above. 

Fig. 7 Autocorrelation function’s first time-advance. 

Fig. 8 below shows the second time-advance of the 

autocorrelation function shown in Fig. 6 above. 

Fig. 8 Autocorrelation function’s second time-advance. 

Fig. 9 below shows the graph simulated based on 

frequency estimate and damping ratio estimate obtained 

from the autocorrelation-based linear regression model 

outlined in the previous section.  

Fig. 9 Frequency and Q-factor estimates simulated. 

The recovered frequency and damping ratio estimates are, 

                  (12) 

            (13) 
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with the estimated frequency being off by       from the 

exact value. The damping factor can be observed from the 

plot in Fig. 9 that the estimated damping ratio is smaller 

than that of the autocorrelation function based on the 

slower damping effect on the estimate compared to that 

seen on the autocorrelation function.  

4.2 Frequency Estimation With Noisy Data 
4.2.1 Signal Data-based Frequency Estimation 
In this section, we look at the same frequency estimation 

approaches but here we subject them to the noise-infested 

signal data. The signal data has the same parameter setup 

as in the previous case except that here the is also an 

additive zero-mean white noise with an amplitude of     .  

Fig. 10 The plot of noisy data. 

Fig. 10 above shows the plot of this noisy signal data.  

Fig. 11 Zero-mean noisy data. 

Fig. 11 above shows the zero-mean of the noise data after 

removing the offset. The offset   was estimated as before 

and found to be          which is      off from the exact 

value. Fig. 12 below shows the first time advance of the 

noisy zero-mean data. Unlike in the differential 

formulation [8], Fig. 12 shows that the autoregressive 

formulation does not amplify noise judging by the 

magnitude of the original data in Fig. 11 and that of Fig. 12.  

Fig. 12 The first time advance of zero-mean data. 

Fig. 13 below shows the second time advance of the noisy 

zero-mean data. Again the noise is not amplified as 

compared to the case of differential formulation in [8]. 

Fig. 13 The second time advance of zero-mean data. 

Fig. 14 below shows the graph simulated based on the 

estimated values of frequency and damping ratio obtained 

from the noisy data used in the linear regression model 

outlined in the previous section. This graph is 

superimposed on the zero-mean data.   

Fig. 14 Frequency and Q-factor estimate simulated. 

It is clear that failed the model using noisy data fails to 

estimate both the frequency and damping ratio. The 

estimated frequency and damping ratio are given as, 

                  (14) 

           (15) 
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which are both out by more than     . Despite this 

model failing to give good estimates under overwhelming 

noise, it is worth noting that it does not have the noise-

amplification feature which seemed to be inherent in the 

differential formulation of the same problem [8]. Next, we 

look at how the autocorrelation based estimation model 

handle the same problem under the same noise 

conditions, 

4.2.2 Autocorrelation-based Frequency Estimation 
Fig. 15 below shows the plot of the autocorrelation of the 

noisy data superimposed on the plot of the noisy data 

itself. 

Fig. 15 Data and its autocorrelation function. 

Fig. 16 shows the first time advance of the autocorrelation 

function of noisy data. As expected, both Fig 15 and Fig 16 

plots show a significant noise-rejection or noise-

attenuation due to the integrating effect inherent in the 

autocorrelation function operation. 

Fig. 16  Autocorrelation function’s first time-advance. 

Fig. 17 shows the second time-advance of the noisy data’s 

autocorrelation function, looking practically noise-free. 

Fig. 17 Autocorrelation function’s second time-advance. 

Fig. 18 below shows the graph based on the estimated 

frequency and damping ratio using autocorrelation-based 

linear regression. This graph is superimposed on the 

autocorrelation function itself. 

Fig. 18 Frequency and Q-factor estimate simulated. 

The recovered frequency and damping ratio estimates are, 

                 (16) 

           (17) 

with the estimated frequency being off by       from the 
exact value. This frequency estimation is still very good 
even given the condition of noise-infested signal data. The 
estimated damping factor can still be observed from the 
plot in Fig. 9 to be smaller than that of the autocorrelation 
function based on the slower damping effect on the 
estimate compared to that seen on the autocorrelation 
function. The amplitude and phase offset were not 
estimated in this work since the main focus was on 
estimating the frequency. 

5. CONCLUSIONS 
We have successfully shown how the frequency estimation 

problem can be posed as a linear regression problem 

based on the autoregressive relationship of the oscillatory 

data. It was shown that this model not as prone to noise as 

the model formulated based on the differential 

relationship in the oscillatory data. However, both 

formulations are not robust under overwhelming noise in 

the data. Replacing the oscillatory data with its 
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autocorrelation function proved to be a robust approach 

against noise-infested data 
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