
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2157

Optimization of Feedforward Neural Network Training using Modified

Local Leader Phase Spider Monkey Optimization

Daniel Kwegyir1, Emmanuel Asuming Frimpong2, Daniel Opoku3

1-3Department of Electrical and Electronic Engineering, College of Engineering, Kwame Nkrumah University of
Science and Technology, Kumasi, Ghana

---***--
Abstract – An optimal trainer for feedforward neural
networks (FNNs) is presented. The trainer is an enhanced
variant of the spider monkey optimization (SMO) algorithm.
The enhanced variant has been named as modified local
leader phase spider monkey optimization (MLLP-SMO). The
enhancement of the SMO was done by modifying its local
leader phase. The modification offers chances to each spider
monkey that is selected for update, to update to a better
position. The performance of the MLLP-SMO was assessed
using six datasets. The datasets relate to fault detection,
heart attack, iris species, breast cancer, diabetes and XOR
function. The indicators used for the performance
assessment are mean squared error (MSE) during training
phase and classification accuracy of trained FNN. The
MLLP-SMO trainer was compared with four other
optimization algorithms. The four other optimization
algorithms are the original SMO, particle swarm
optimization (PSO), grey wolf optimization (GWO) and
genetic algorithm (GA). The results obtained show that the
MLLP-SMO performs better than the other algorithms. Its
MSEs during training were largely lower than those of the
other algorithms and the accuracy of its trained FNNs
chiefly higher than the others. The MLLP-SMO is
recommended for adoption as an optimal trainer for FNNs.

Key Words: Artificial neural network, Classification,
Optimization, Nature inspired algorithm, Spider monkey
optimization, Neural network training

1. INTRODUCTION

Artificial Neural Network (ANN) is a machine learning
tool that models how the human brain processes,
visualizes, and recognizes objects [1]. ANN has been used
for different applications in diverse fields. In engineering,
ANNs have been used in, for example, fault detection,
classification and location, transient stability prediction,
and load forecasting. Different types of ANNs have been
used in literature. Commonly used ones include
feedforward neural network [2], recurrent neural network
[3], radial basis function neural network [4], and Kohonen
self-organizing maps [5].

The performance of ANNs in applications depends on
factors such as network architecture (i.e., number of
neurons in the input, hidden and output layers), weights of
connections between neurons, and biases of neurons. The

weights and biases of neurons are determined in the
learning (also known as training) process. Learning in
ANNs is a process of using optimization algorithms to find
a set of weights and biases that best map inputs to outputs
[6]. In the learning process, a training algorithm (i.e.,
trainer) modifies the structural features (i.e., weights and
biases) of the ANN for each training iteration to achieve a
better performance. The trainer is removed once the ANN
has finished learning and is ready to be used for an
application such as prediction or classification.

Broadly, there are two approaches to training ANNs. The
approaches are supervised learning and unsupervised
learning. The supervised learning process enables ANNs to
learn the input and output relationships of a training data
set while the unsupervised learning process learns from
previously undetected patterns in a data set, with no
initial outputs [7].

Classical learning methods for training neural networks
are back-propagation [8] and Gradient Decent [9]. These
methods, which are deterministic, make use of
mathematical optimization models to train ANNs. These
training methods are simple and fast [6]. However, their
performances become poor when initial solutions are not
carefully chosen. They also suffer from the problem of
local optima entrapment. To improve the classification
accuracy of ANNs, high performing optimization
techniques are required to produce optimal ANN weights
and biases [10]. Accordingly, several optimization
techniques have been proposed for enhanced ANN
training [11].

The optimization techniques for enhanced ANN training
largely employ meta-heuristic optimization algorithms
(MHOAs). Generally, the training process of a MHOA starts
with an initial random solution which is improved as the
training progresses. MHOAs that have been used to train
neural networks are ant colony optimization, artificial bee
colony optimization, bacterial foraging optimization, bat
algorithm, biography-based optimization, bird mating
optimization, genetic algorithm, and particle swarm
optimization. Others are grey wolf optimization, chemical
reaction optimization, cuckoo search optimization, firefly
optimization, gravitational search algorithm, invasive
weed optimization, krill herd optimization, moth-flame

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2158

optimization, social spider optimization and tabu search
optimization [11].
These metaheuristic methods largely perform better than
deterministic training methods. However, the current
performances of these algorithms still leave a lot of room
for improvement in optimizing the performance of ANNs.
This is because the existing MHOAs do not provide a good
trade-off between exploration and exploitation in
optimizing the performance of ANNs [11]. Exploration
helps in the attainment of global optimum while
exploitation aids in achieving local optimum. Therefore,
there is the need to explore the use of hybrid approaches
(i.e., combine two or more MHOAs) or come up with new
MHOAs that have excellent exploitation and exploration
attributes. This should provide greater improvement in
ANN training [11].

Spider monkey optimization (SMO) is a recently
introduced MHOA that has demonstrated enhanced
exploration and exploitation ability [12]. The SMO was
inspired by the foraging behaviour of spider monkeys
[12]. The SMO has been successfully applied to solve
complex problems in optimization. It has been shown to
outperform artificial bee colony optimization and particle
swarm optimization in terms of dependability,
effectiveness, and precision [12]. Hence, in this work, the
SMO has been explored to optimize the training of ANNs.
First, the effectiveness of SMO is further enhanced through
a modification of its local leader phase. Second, the
enhanced SMO is used as an optimized trainer for a
feedforward neural network (FNN). FNNs are one of the
most widely used neural network models. The improved
SMO is called modified local leader phase spider monkey
optimization (MLLP-SMO). The performance of the MLLP-
SMO is compared with the original SMO. The MLLP-SMO is
further compared with the grey wolf optimizer, particle
swarm optimization, and genetic algorithm which are high
performing optimization algorithms [6, 11].

The rest of the paper is structured as follows; Section 2
gives a description of the Feedforward neural network
(FNN) Section 3 presents the modified local leader phase
spider monkey optimization (MLLP-SMO) algorithm.
Section 4 presents the MLLP-SMO FNN trainer. In Section
5, the approach used to test the proposed MLLP-SMO
trainer, including the datasets used for evaluating the
performance of the MLLP-SMO trainer is presented. The
evaluation results are presented and discussed in Section
6. Conclusions drawn are presented in Section 7.

2. FEEDFORWARD NEURAL NETWORK

Feed-forward neural networks have been widely used for

various studies. They are made up of interconnected

neurons that are structured in parallel layers. The layers

are classified into input layer, hidden layer, and output

layer. There are no feedbacks from one layer to another.

Depending on the number of parallel layers that exist in

the networks, FNNs can be classified as single or multi-

layered networks. Single-layered FNNs have only input,

and output neurons interconnected together. Multi-

layered FNNs have input layer, single or multiple hidden

layers, and an output layer [13]. A multi-layered FNN with

a single hidden layer, inputs, outputs, biases, and

interconnecting weights is illustrated in fig -1.

1x

2x

nx
ijw jkw

jb kb

1O

2O

kO

Input layer Hidden layer output layer

Fig -1: Architecture of FNN with one hidden layer

In Fig -1, nxxx ,...,, 21 are the input variables, ijw is the

input weights from the ith input neuron to the jth hidden

neuron, jb is the input bias of the jth hidden neuron, jkw

is the connection weight of the jth hidden neuron to the

kth output neuron and kb is the bias of the kth output

neuron. In the working of the FNN, the weighted sums of

the input data are propagated to the hidden layer neurons.

The weighted sums of the outputs of the hidden layer

neurons are then propagated to the neurons in the output

layer. The outputs of the hidden layer neurons are

obtained by taking the inputs to the neurons and their

biases through an activation (or transfer) function. The

weighted sums of the outputs of the hidden layer neurons

are propagated to the inputs of the hidden layer neurons.

The outputs of the output layer neurons, which are the

outputs of the FNN are determined by also applying an

activation function to the weighted inputs and biases [14].

Commonly used activation functions are tan-sigmoid

(tansig) and log-sigmoid (logsig) transfer functions [15].

The weighted sums of the input neurons, jS , are given by

(1) where n is the number of input neurons and h is the

number of hidden layer neurons. The outputs of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2159

hidden layer neurons, jH , for log-sigmoid activation

functions, are given by (2). The weighted sums of the

outputs of the hidden layer neurons, Yk, where m is the

number of output layer neurons are given by (3). The final

outputs of the network, kO , using a log-sigmoid activation

functions, are given by (4) [6, 14].

n

i
iijj xwS

1

 , ni ,..,2,1 , hj ,..,2,1

(1)

)(exp1

1
log

jj
jj

bS
SsigH

 , hj ,...,2,1

(2)

h

j
jjkk HwY

1

 , mk ,...,2,1

(3)

)(exp1

1
log

kk
kk

bY
YsigO

 , mk ,...,2,1

(4)

It is noted from (4) that the output kO of the FNN highly

depends on the weights and biases. Thus, the optimization

of the weights and biases will yield highly accurate

outputs. Hence, the focus of any FNN training algorithm

should be to optimize the values of the weights and biases.

3. PROPOSED MODIFIED LOCAL LEADER PHASE
SPIDER MONKEY OPTIMIZATION (MLLP-SMO)
ALGORITHM

The SMO algorithm mimics the foraging behaviour of

spider monkeys. It follows a fission-fusion concept. The

foraging behaviour is basically based on food scarcity or

availability which causes the spider monkeys to either

split (fission) or combine (fusion). The SMO operates in

seven phases. These are initialization, local leader phase,

global leader phase, global leader learning phase, local

leader learning phase, local leader decision phase and

global leader decision phase [16].

In the local leader phase of the SMO algorithm, the update

of a spider monkey (ijSM) is done by a greedy approach

where the fitness of ijSM at a new position is accepted

only when it is better than the fitness at the old position.

The deficiency of this approach is that ijSM with low

fitness but near the global solution is deprived of a chance

to update. The effect is that the algorithm could move in a

non-optimal direction and skip the true solution. From (5),

the update of an ijSM position is highly dependent on β

and the impact of a random spider (rjSM). β is a uniformly

distributed random number in the range of (-1,1). α is a

random number generated in the range (0,1).

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝛼 × 𝐿𝐿𝑘𝑗 − 𝑆𝑀𝑖𝑗 + 𝛽 × (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗)

 (5)

Due to the uneven opportunity given to each ijSM in the

position update at this phase, there is the possibility that

sSM ij with good fitness or all sSM ij chosen by prα will

not update towards the global optima for a particular

iteration. This will cause the algorithm to shift to produce

non-optimal results. pr is the perturbation rate and

normally ranges from 0.1 to 0.8.

To enhance the SMO , each ijSM chosen by prα to

update, is given a chance in the search space of the local

leader phase, according to the fitness of their old position,

to update to a better position. The number of chances

offered to an ijSM

to update is defined according to a

fitness proportionate selection in genetic algorithm [17]

and the total number of sSM ij in the search space (Y). The

number of chances given to each ijSM for the next

iteration is defined by (6).

Y
SMfit

SMfit
SMofchancesofNo

N
i oldij

oldij
ij

)(

)(
.

(6)

Where)(oldijSMfit is the fitness of ijSM in its old position

and N is the number of sSM ij . If after the number of

chances, an ijSM does not update to a better position, then

it is set to its old position. The pseudocode for the

proposed MLLP algorithm for the position update is

presented as follows:

for each member th
ij kSM group

 for each Dj ,...2,1 do

 if prα 1,0 then

 ijkjijij SMLLαSMf 1,0

 ijrjij SMSMg

 While (chances to update has not elapsed), do

 ijijijchances gβfSM 1,1)(

 if)()()(ijijchance SMfitSMfit

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2160

)()(ijchanceijnew SMSM

 break

 else if (chances elapsed)

ijijnew SMSM)(

 break

 end if

 end while

 end if

 end for

end for

To use the MLLP algorithm to update the position of a

spider monkey, ijSM , to obtain a new position,)(ijnewSM , a

random number denoted by α is generated within the

limits of 0 and 1. This random number is then compared to

the perturbation rate (pr). If α is greater than pr, the ijSM

is selected to update its position in the thj dimension.

First, the effect of the local leader’s position (kjLL) on

ijSM is checked by ijf , as defined in the pseudocode. The

effect of the random spider (rjSM) on ijSM is also checked

by ijg . The ijSM is then given some chances with a value

defined according to (6) to update to a better position in

the search space. For each position generated under the

chances given ()(ijchancesSM), its fitness is checked and

compared to the fitness of the old position (ijSM) of the

spider monkey. The spider monkey is assigned the new

position ()(ijnewSM) if the fitness value at the new position

is better than the fitness at the old position. The position

update is then completed irrespective of whether the

number of chances is elapsed. On the other hand, if a

better position is not found in the search space after the

number of chances offered a spider monkey is elapsed, its

position is not updated but set to the old position (ijSM).

This process is repeated for all spider monkeys in the

search space.

In the proposed position update algorithm, ijf checks for

how far the ijSM is drawn towards the local leader (kjLL)

in the thj dimension, whilst ijg checks the influence of the

random spider rjSM in the thj dimension. The number of

chances as defined in (6) balances ijf and ijg by giving

proportionate opportunity to each ijSM to update by

prα , according to its old fitness value and maintains the

stochastic nature of the local leader phase. Figure 1 is a

flowchart that shows the implementation of the MLLP-

SMO.

The implementation of the MLLP-SMO algorithm is

summarized as follows:

Step 1: Initialize population, local leader limit, global

leader limit, maximum number of groups, and

perturbation rate.

Step 2: Evaluate population. Here, the fitness of each

spider monkey in the population is determined

using their initial positions on the objective

function of the problem being solved.

Start

Initialize population, local leader limit, global leader
limit, maximum number of groups and perturbation rate

Evaluate the population

Identify global and local leaders

Update the position of each local leader
using MLLP algorithm

Update the position of global leader

Learn through global leader learning
phase

Learn through local leader learning phase

Position update by local leader decision
phase

Decide fission or fusion

Is termination condition
satisfied?

No

Declare the global leader position as the
optimal solution

Yes

Fig -2: Implementation of MLLP-SMO algorithm

Step 3: Identify local and global leaders. This involves the

selection of spider monkeys with best fitness in

each group as local leaders and the individual with

best fitness amongst all the groups as global leader.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2161

Step 4: Update the position of each spider monkey using

the MLLP algorithm. Spider monkeys with α

greater than the perturbation rate update their thj

dimension position towards the positions of their

local leaders and a random spider monkey’s

position.

Step 5: Update the position of global leader using global

leader phase update rule. Spider monkeys with

fitness probability greater than the perturbation

rate update their positions in the thj dimension.

Step 6: Learn through global leader learning phase. Here,

spider monkey with best fitness after global leader

phase is selected as global leader and its update is

checked against the global leader limit.

Step 7: Learn through local leader learning phase. This

entails selecting a spider monkey with the best

fitness as the local leader and checking its update

against the local leader limit count.

Step 8: Position update by local leader decision phase. For

this, spider monkeys belonging to a particular local

group whose local leader is not updating up to the

local leader limit are given opportunity to update

through random initialization.

Step 9: Decide fission or fusion using global leader

decision phase. The global leader either divides the

spider monkeys into groups if the stopping criteria

(i.e., maximum number of groups) is not met or

fuse them into a single group if otherwise.

Step 10: If termination condition (i.e., maximum number

of groups is reached or minimum error specified is

attained) is satisfied, declare the global leader

position as the optimal solution. Otherwise, go

back to Step 4.

4. PROPOSED MLLP-SMO TRAINER

The training of neural networks entails the continuous

mapping of input datasets to the output datasets to find

the optimal set of weights and biases within a minimum

number of iterations. The determination of optimal

weights and biases produces trained ANNs with high

classification accuracy [18].

Performances of trainers, during and after training, are

assessed using error functions. The lower the error, the

better the performance. Commonly used error functions

are mean square error (MSE), sum of squared error (SSE)

and root mean square error (RMSE). In this work, the

mean square error function was used to assess the

training performance. Consequently, the objective function

for training the FNN with the MLLP-SMO is to minimize

the MSE of each training iteration. The MSE is given by (7).

n
j

m
i

j
i

j
i

n

da
MSE 1

2

1

(7)

where n is the total number of training samples, m is the

number of output samples, j
ia is the actual output of the

𝑖 input data point from the j training sample and j
id is the

desired output of the i input data point from the j training

sample. The weights (w) and biases (b) supplied to the

MLLP-SMO as variables to be optimized.

Fig -3 is a flowchart that summarizes the training process

of the FNN using the proposed MLLP-SMO trainer. The

process is further outlined as follows:

1. Divide input and output datasets into training,
validation, and testing data.

2. Supply the training and validation datasets to the feed-
forward neural network (FNN).

3. Initialize population size (i.e., number of spider
monkeys), local leader limit, global leader limit,
maximum group, and perturbation rate of the MLLP-
SMO.

4. Generate initial weights and biases using the MLLP-
SMO and supply to feed-forward neural network to
begin the search and training process.

5. Train the FNN network with the received weights and
biases on the training and validation datasets.

6. Check the mean square error (MSE) between each
input training sets and respective output training sets.

7. If stopping criteria or minimum MSE is not attained,
search through solution space of MLLP-SMO for better
weights and biases for further training.

8. If stopping criteria or minimum MSE is attained, output
the FNN with the optimal weights and biases.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2162

Input dataset

Start

Training and
validation datasets

Generate weights and
biases

Train FNN

Compute MSE of
training sets

Initialize parameters
of MLLP-SMO

Is minimum MSE or
maximum number of
iterations attained?

No

End

Yes

Fig -3: Flowchart for FNN training with MLLP-SMO

5. APPROACH USED TO TEST PROPOSED
TRAINER

The performance of the proposed MLLP-SMO trainer was

evaluated using widely used datasets. The performance of

the MLLP-SMO was then compared with the original SMO

and some good performing trainers in literature. The

other trainers that the MLLP-SMO was compared with are

particle-swarm optimization (PSO), grey wolf optimizer

(GWO), and genetic algorithm (GA). The same datasets

were used for all the trainers in both the training and

testing phases. All training and testing were done using a

windows operating system-based computer having the

following specifications: Intel (R) Core TM i7-10750H with

CPU of 2.60 GHz and 16.0GB RAM. Sub-section 5.1

presents the parameters used for the MLLP-SMO, GWO,

PSO, GA and SMO. The datasets used for training and

testing are presented in sub-section 5.2.

5.1 Parameters used for trainers

Table -1 presents the parameters used for the MLLP-SMO,
SMO, GWO, GA and PSO trainers. The parameters for GWO,
GA and PSO were taken from [6]. For each trainer, the
initial weights and biases for the FNN were randomized in
the range of (-10,10). Due to the randomized selection of
weights and biases, each algorithm was run five separate
times. For each trainer, the weights and biases for the run
that produced the least MSE become the optimized
weights and biases for the associated FNN.

5.2 Datasets for FNN training and testing

The trainers (i.e., MLLP-SMO, SMO, GWO, GA and PSO)
trained the FNN using 6 detection/classification datasets
from the Kaggle repository [19]. The datasets are fault
detection dataset [20] heart attack analysis and prediction
dataset [21], iris species dataset [22], Pima Indians
diabetes dataset [23], breast cancer Wisconsin
(diagnostic) data set [24], and 4-bit XOR. The dataset for
fault detection has 6 input variables and 2 output classes.
The 6 input variables are three-phase currents and
voltages. The 2 classes of outputs are no-fault condition
and fault condition. The heart attack analysis and
prediction datasets contain 13 input variables (or
attributes) and two output classes. The input variables are
age, sex, constrictive pericarditis, chest pain type, resting
blood pressure, serum cholestoral, fasting blood sugar,
resting electrocardiographic results, maximum heart rate
achieved, exercise induced angina, ST depression induced
by exercise relative to rest, slope of the peak exercise ST
segment, number of major vessels colored by flourosopy,
and Thallium Stress. The two output classes which give a
diagnosis of heart disease (i.e., angiographic disease
status) are: less than 50% diameter narrowing and greater
than 50% diameter narrowing. The iris dataset is an

Table -1: Parameters used for trainers.
Algorithm Parameter Value

MLLP-

SMO

Maximum number of groups

Number of spider monkeys

Local leader limit

Global leader limit

Perturbation rate

Max. no. of iterations

5

100

50

150

0.1

250

SMO Maximum number of groups

Number of spider monkeys

Local leader limit

Global leader limit

Perturbation rate

Max. no. of iterations

5

100

50

150

0.1

250

GWO α

Population size

Linearly

decreased from 2

to 0

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2163

Max. no. of generations 200

250

GA Type

Selection

Crossover

Mutation

Population size

Max. no. of generations

MATLAB

optimizer

Roulette wheel

Single point

(probability=1)

Uniform

(probability=0.01)

200

250

PSO Topology

Cognitive constant

Social constant

Population size

Inertia constant

Maximum number of

iterations

Fully-connected

1

1

200

0.3

250

example of discriminant analysis and classification. The
dataset has 4 input variables namely sepal length, sepal
width, petal length and petal width, all in centimeters. The
dataset classifies iris plants into 3 species namely, setosa,
versicolor and verginica. The breast cancer dataset
contains 30 input variables and two output classes. The
output classes are benign and malignant. The 30 input
variables were assessed to be excessive so the ‘ranksearch’
tool in Weka software (a machine learning tool) was used
to select the features (variables) whose usage will give the
best performance [25]. Consequently, the following five
attributes were selected as input variables: radius mean,
texture mean, perimeter mean, area mean, and
smoothness mean. The XOR was selected to represent a
non-linear dataset. It has four attributes with two outputs
classes of 0 and 1. The last dataset is the Pima Indians
diabetes dataset. This dataset
has 8 input variables and 2 output classes. The input
variables are number of pregnancies had, glucose level,
blood pressure, skin thickness, insulin level, body mass
index, diabetes pedigree function and age. The two output
classes are “patient does not have diabetes” and “patient
has diabetes”. Each of these datasets provided a unique
level of difficulty for the classification.

5.3 Architecture of FNN
For each FNN, the number of neurons in the input layer
equaled the number of input variables (i.e., attributes) for
each dataset. With regards to the number of neurons in
the hidden layer, the optimal number is determined on a
trial-and-error basis using varied number of neurons.
However, a number that is equal to 2N+1, where N is the
number of neurons in the input layer, is commonly used in
literature [6]. Each FNN had 1 neuron in the output layer
which outputted the varied classifications of outputs of the
datasets.

The structure of the FNN for each dataset is shown in
Table -2. The FNN for fault prediction had 6 neurons (1
each for the 6 input variables) in the input layer, 10
neurons in the hidden layer and 1 neuron in the output
layer. The FNN for indicating potential heart attack had 13
neurons (1 each for the 13 input variables) in the input
layer, 27 neurons in the hidden layer, and 1 neuron in the
output layer. The FNN for identifying iris species had 4
neurons (1 each for the 4 input variables) in the input
layer, 9 neurons in the input layer and 1 neuron in the
input layer. The FNN for breast cancer detection had 5
neurons (1 each for the 5 input variables) in the input
layer, 11 neurons in the hidden layer and 1 neuron in the
output layer. The FNN for XOR classification had 4 neurons
(1 each for the 4 input variables) in the input layer, 9
neurons in the hidden layer and 1 neuron in the output
layer. The FNN for detecting diabetes in Pima Indians had
8 neurons in the input layer, 17 neurons in the hidden
layer and 1 neuron in the output layer.

The FNN for fault detection was trained such that the
output neuron produced an output of either 0 or 1. An
output of 0 indicated a no-fault condition whereas an
output of 1 communicated the presence of a fault. The
FNN for classifying heart attack datasets, was trained to
produce an output of 0 if there is less than 50% diameter
narrowing and 1 if there is greater than 50% diameter
narrowing. The FNN for the iris species classification was
trained to give outputs of 1, 2 and 3 for setosa species,
versicolor species and verginica species, respectively.
Regarding the breast cancer status classification, the FNN
was trained to output 0 for a benign condition and 1 for a
malignant cancer. For the FNN that will serve as an XOR
classifier, the FNN was trained to produce outputs of 0s’
and 1s in line with XOR outputs.

The following divisions of the datasets were used for
training, validation, and testing. For the dataset on fault
detection, 700 sets were used for training, 300 for
validation and 633 for testing. Regarding the heart attack
dataset, 162 was used for training, 50 for validation and
91 for testing. As regards the iris species dataset, 100 was
used for training, 50 for validation and 150 for testing. For
the breast cancer dataset, 298 was used for training, 100
for validation and 171 for testing. Relating to the XOR
dataset, 10 was used for training, 4 for validation and 16
for testing. Lastly, for the Pima Indians diabetes dataset,
438 was used for training, 100 for validation and 230 for
testing.

Table -2: Architecture of FNN for datasets
Datasets No. of input

variables

FNN architecture

Fault detection 6 6-10-1

Heart attack 13 13-27-1

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2164

Iris species 4 4-9-1

Breast cancer 5 5-11-1

4-bits XOR 4 4-9-1

Pima Indians diabetes 8 8-17-1

6. RESULTS AND ANALYSIS

This section presents the performance of the modified
local leader phase -spider monkey optimization (MLLP-
SMO) trainer and compares it with the performances of
the spider monkey optimization (SMO) trainer, the genetic
algorithm (GA) trainer, the grey wolf optimizer (GWO)
trainer, and the particle swarm optimization (PSO) trainer.
The performances were assessed using the mean squared
error (MSE), percentage classification accuracy and
boxplots (i.e. data fitting). The results have been presented
under 6 sub-sections in line with the datasets used.

6.1 Fault detection dataset

Table -3 presents the MSEs obtained during training and
the classification accuracies during testing, with regards to
the dataset for fault detection. It is noted from the Table -3
that the proposed MLLP-SMO produced the least MSE
during training. The FNNs trained by the MLLP-SMO and
the GWO were the best performing classifiers, with 100%
accuracy. These were followed by the GA and SMO trained
FNNs. The FNN trained by the PSO exhibited the least
classification accuracy. The boxplots for the classifications
are shown in Fig -4. It is noted from the figure that the
boxplots for the MLLP-SMO and GWO trained FNNs do not
have any outliers

Table -3: Performance of trainers for fault detection
dataset

Algorithm MSE

(Training)

Accuracy (%)

(Testing)

SMO 0.1633 76

MLLP-SMO 0.0125 100

GA 0.1670 80

GWO 0.0182 100

PSO 0.1951 75

whereas the plots for the GA and SMO trained FNNs, which
did not perform well, have several outliers. For the PSO
trained FNN, which performed poorly, the first quartile
(1Q), third quartile (3Q), mean and median were each
0.6298 giving an inter-quartile range (IQR) of 0.

Fault SMO MLLP-SMO GA GWO PSO

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

O
u

tp
u

t
d

a
ta

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Algorithm
Fig -4: Boxplots of FNN outputs for fault detection dataset

6.2 Iris species dataset

The MSEs obtained during training and the percentage

accuracies of the trained classifies during testing, for the

iris species dataset are presented in Table -4. It is noted

from the Table that the MLLP-SMO trainer had the least

MSE of 0.0103 during training. The SMO trainer had the

highest MSE of 0.5578. With regards to the classification

accuracy during testing, all the FNNs performed very well.

The MLLP-SMO and the GWO equally had the highest

classification accuracy of 99%. The SMO had the lowest

performance accuracy. Further details of the classification

accuracy are presented in the boxplots shown as fig -5. It

is observed from fig -5 that the boxplots for the various

FNNs closely matche that for the dataset. Although none of

the classifiers produced outputs that were outliers, none

of them achieved 100% accuracy because, for example,

some outputs that were expected to be 1s were

misclassified as 2s.

Table -4: Performance of trainers for Iris species dataset
Algorithm MSE

(Training)

Accuracy (%)

(Testing)

SMO 0.5578 94

MLLP-SMO 0.0103 99

GA 0.1030 95

GWO 0.0271 99

PSO 0.0361 97

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2165

Iris SMO MLLP-SMO GA GWO PSO

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
u

tp
u

t
d

a
ta

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Algorithm

Fig -5: Box plot for Iris datasets

6.3 Breast cancer dataset

For the breast cancer dataset, the MSEs obtained during
training and the classification accuracies are presented in
Table -5.

Table -5: Performance of trainers for breast cancer

dataset
Algorithm MSE

(Training)

Accuracy (%)

(Testing)

SMO 0.6940 89

MLLP-SMO 0.2041 94

GA 0.7582 84

GWO 0.2169 93

PSO 0.1942 95

It can be observed from the Table that the PSO had the

least MSE during training followed by the MLLP-SMO. The

trainer that had the highest MSE was the GA. With regards

to the accuracies of the trained FNNs, the FNN trained by

the PSO had the highest accuracy of 95%. This was

followed by the FNN trained by the MLLP-SMO with an

accuracy of 94%. The FNN trained by the GA was the least

performing classifier, with an accuracy of 84%. The

boxplots for the outputs of the classifiers are shown in fig -

6. It is noted from fig. -6 that the FNNs trained by the GA

and SMO had several outliers, which accounted for their

rather poor performances. The plots for the high

performing FNNs which were trained by the PSO, MLLP-

SMO and GWO closely matches that of the dataset.

Breast cancer SMO MLLP-SMO GA GWO PSO

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
u
tp

u
t

d
a
ta

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Algorithm

Fig -6: Boxplot for breast cancer datasets

6.4 XOR dataset

Table -6 shows the MSEs computed for the trainers during

the FNN training. The Table also shows the classification

accuracies of the FNNs trained by the various trainers. The

MLLP-SMO had an exceptionally low MSE of 0.004 and was

followed by the GWO with a low MSE of 0.0812. The PSO

had the highest MSE of 0.6475. Both the FNNs trained by

the MLLP-SMO and GWO had classification accuracies of

100% and were therefore the best performing classifiers.

These were followed by the FNN trained by the GA which

had a classification accuracy of 87%. The classifiers

trained by the SMO and the PSO were equally poor

performing with each having an accuracy of 75%. The

boxplots of the various classifiers are presented in fig -7.

Table -6: Performance of trainers for XOR dataset
Algorithm MSE

(Training)

Accuracy (%)

(Testing)

SMO 0.5830 75

MLLP-SMO 0.0004 100

GA 0.4733 87

GWO 0.0812 100

PSO 0.6475 75

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2166

XOR SMO MLLP-SMO GA GWO PSO

-0.5

0.0

0.5

1.0

1.5

O
u

tp
u

t
d

a
ta

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Algorithm

Fig -7: Boxplot for XOR datasets

6.5 Pima Indians diabetes dataset

The MSEs obtained during the trainings are presented in

Table -7. The Table also shows the classification

accuracies of the FNNs trained by the various algorithms.

From Table -7, the MSEs are generally high. This is due to

the complex nature of the dataset. The MLLP-SMO trainer

however had the lowest MSE of 0.6023 and was followed

by the GWO with an MSE of 0.7571. The PSO had the

highest MSE of 1.3525. The generally high MSEs translated

into poor performing FNNs. All the classifiers had equally

poor accuracies of 65%. The boxplots for the outputs of

the classifiers are shown in fig -8. The plots show several

outliers for the classifiers trained by the SMO, GA and PSO.

The MLLP-SMO had the least number of outliers with the

GWO producing no outlier. Although the GWO produced

no outlier classification, that did not translate into higher

classification accuracy. This was because several of the

outputs were misclassified. Some desired outputs of 1

were misclassified as 0. Similar misclassifications were

recorded for all the other classifiers.

Table -7: Performance of trainers for Pima Indians dataset
Algorithm MSE

(Training)

Accuracy (%)

(Testing)

SMO 1.1037 65

MLLP-SMO 0.6023 65

GA 1.0640 65

GWO 0.7571 65

PSO 1.3525 65

Pima SMO MLLP-SMO GA GWO PSO

-4

-3

-2

-1

0

1

2

3

4

O
u
tp

u
t

d
a
ta

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Algorithm
Fig -8: Boxplot for Pima datasets

6.6 Heart attack dataset

Table -8 shows the MSEs obtained during training and the

accuracies of the classifiers during testing, for the heart

attack dataset. It is noted from the Table that the MLLP-

SMO had the least MSE, followed by the GWO. The trainer

that had the highest MSE was the GA. With regards to the

classification accuracy, none of the classifiers could attain

100% accuracy.

Table -8: Performance of trainers for heart attack dataset
Algorithm MSE

(Training)

Accuracy (%)

(Testing)

SMO 0.5257 84

MLLP-SMO 0.3399 89

GA 0.9709 67

GWO 0.3790 87

PSO 0.4805 85

This is due to the complex nature of the heart attack

dataset. Notwithstanding this, the MLLP-SMO trained FNN

produced the best performance, with a percentage

accuracy of 89%. The FNN trained using GWO followed

with a classification accuracy of 87% and then the FNN

trained by the PSO which had a classification accuracy of

85%. The GA trained FNN had the lowest accuracy of 67%.

7. CONCLUSIONS

The training of feedforward neural networks (FNN) has
been enhanced using a modified local leader phase spider
monkey optimization (MLLP-SMO) algorithm. The MLLP-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2167

SMO has been compared with four other algorithms. The
MLLP-SMO trainer had the least MSE in 5 out of the 6
datasets used for performance assessment. It shared the
top spot with the GWO, on trained FNN classifier accuracy,
in 3 out of the 6 datasets. The MLLP-SMO classifier was the
best performing classifier in 1 out of the 6 datasets. Its
classifier performed equally with the other classifiers in 1
out of the 6 datasets. The classifier trained by the MLLP-
SMO was however the second best performing, after the
PSO, in 1 out of the 6 datasets. Thus, the MLLP-SMO
outperformed all the other optimization algorithms as a
trainer for feedforward neural networks. The best
performance of the MLLP-SMO is due to its higher ability
to avoid local optima entrapment in training of the FNN to
produce optimal weights and biases. Thus, compared with
the other algorithms, the MLLP-SMO has better
exploitation and exploration abilities. The use of the
proposed MLLP-SMO trainer for training FNNs will yield
higher classification accuracies than the other algorithms.

REFERENCES

[1] R. Matsumura, K. Harada, Y. Domae, and W. Wan,

“Learning based industrial bin-picking trained with
approximate physics simulator,” Adv. Intell. Syst.
Comput., vol. 867, pp. 786–798, 2019.

[2] H. H. Abdallah, M. Chtourou and T. Guesmi and A.
Ouali, “Feedforward neural network‐based transient
stability analysis of electric power systems”, European
Transactions on Electrical Power, vol. 16, no. 6, pp.
577 – 590, 2006

[3] J. L. Lobo, J. Del Ser, A. Bifet, and N. Kasabov, “Spiking
Neural Networks and online learning: An overview
and perspectives,” Neural Networks, vol. 121, pp. 88–
100, 2020.

[4] J. A. Bullinaria, “Radial Basis Function Networks:
Algorithms,” Neural Comput. Lect. 14, pp. 1–12, 2015.

[5] T. Kohonen, “Essentials of the self-organizing map”,
Neural Networks, vol. 37, pp. 52-65, 2013.

[6] S. Mirjalili, “How effective is the Grey Wolf optimizer
in training multi-layer perceptrons,” Applied
Intelligence, vol. 43, no. 1, pp. 150–161, 2015.

[7] R. Sathya, and A. Abraham, “Comparison of supervised
and unsupervised learning algorithms for pattern
classification”, International Journal of Advanced
Research in Artificial Intelligence, vol. 2, no. 2, pp. 41-
80, 2013.

[8] M. Buscema, “Back Propagation Neural Networks”,
Substance Use & Misuse, vol. 33, no. 2, pp. 233-270,
1998.

[9] F. Dkhichi and B. Oukarfi, “Neural Network Training
By Gradient Descent Algorithms : Application on the
Solar,” International Journal of Innovative Research in
Science Engineering and Technology, vol. 3, no. 8, pp.
15696–15702, 2014.

[10] G. Wang, L. Guo, A. H. Gandomi, G. Hao, and H. Wang,
“Chaotic Krill Herd algorithm,” Inf. Sci. (Ny)., vol. 274,
pp. 17–34, 2014.

[11] D. Devikanniga, K. Vetrivel, and N. Badrinath, “Review
of meta-heuristic optimization based artificial neural

networks and its applications,” J. Phys. Conf. Ser., vol.
1362, no. 1, 2019.

[12] H. Sharma, G. Hazrati, and J. C. Bansal, “Spider monkey
optimization algorithm,” Stud. Comput. Intell., vol.
779, no. January, pp. 43–59, 2019.

[13] M. H. Sazli, “A brief review of feed-forward neural
networks”, Commun. Fac. Sci. Univ. Ank. Series A2-A3,

vol. 50, no. 1, pp 11-17, 2006.

[14] E. A. Frimpong, P. Y. Okyere and J. Asumadu, “On-line
determination of transient stability status using
multilayer perceptron neural network”, Journal of
Electrical Engineering, vol. 69, no. 1, pp. 58–64, 2018.

[15] M. H. Beale, M. T. Hagan, H. B. Demuth, Neural
Network
ToolboxTM, User Guide, MATLAB, R2016b, pp. 3-2 - 3-
5, 2016.

[16] H. Sharma, G. Hazrati, and J.C. Bansal, “Spider monkey
optimization algorithm, Evolutionary and Swarm
Intelligence Algorithms”, Studies in Computational
Intelligence, 779, 43–59, 2019.

[17] A.Younes, A. Elkamel, and S. Areibi, “Genetic
algorithms in chemical engineering: a tutorial”, Book
Chapter on Evolutionary Computations in Chemical
Engineering, World scientific book, pp. 1-32, 2008.

[18] “Genetic Algorithms - Parent Selection –
Tutorialspoint”.
[Online].https://www.tutorialspoint.com/genetic_alg
orithms/genetic_algorithms_parent_selection.htm.
[Accessed: 30-Apr-2021].

[19] https://www.kaggle.com/datasets, [Accessed: 30-
Apr-2021].

[20] “Fault detection and classification dataset”, [online]
https://www.kaggle.com/esathyaprakash/electrical-
fault-detection-and-classification [Accessed: 7-Jul-
2021].

[21] “Heart Attack Analysis & Prediction Dataset”, [Online].
https://www.kaggle.com/rashikrahmanpritom/heart
-attack-analysis-prediction-dataset. [Accessed: 14-
May-2021].

[22] “Iris Species” [Online].
https://www.kaggle.com/uciml/iris. [Accessed: 14-
May-2021].

[23] “Pima Indians Diabetes Database” [Online].
https://www.kaggle.com/uciml/pima-indians-
diabetes-database. [Accessed: 14-May-2021].

[24] “Breast Cancer Wisconsin (Diagnostic) Data Set”
[Online]. Available:
https://www.kaggle.com/uciml/breast-cancer-
wisconsin-data. [Accessed: 14-May-2021].

[25] https://sourceforge.net/projects/weka/files/weka-3-
6-windows-x64/3.6.9/ [Accessed: 16-Dec-2020].

https://www.kaggle.com/datasets
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification
https://sourceforge.net/projects/weka/files/weka-3-6-windows-x64/3.6.9/
https://sourceforge.net/projects/weka/files/weka-3-6-windows-x64/3.6.9/

