
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1461

Speed Limit Sign Detection using Deep Learning

Yogesh Valeja1, Shubham Pathare2, Dipen Patel3, Prof. Mohandas Pawar4

1UG Student, MIT ADT University, Pune
2UG Student, MIT ADT University, Pune
3UG Student, MIT ADT University, Pune

4Asst. Prof., MIT ADT University, Pune
---***---

Abstract - In 21’st century we have witnessed a vast
development in the field of Autonomous Self driving cars and
automation in various auto industries. It is not far when we
can see fully self-driving cars traveling from destination A to
destination B without any human interference, and we can
have a gist of that when Elon Musk introduced the first semi-
autonomous TESLA vehicle. In this ever-fast-growing
autonomous industry, we have tried to contribute to this
industry by integrating OpenCV with python to test our first
autonomous model in the CARLA environment which will
detect speed signs and control the speed of the vehicle
accordingly. We will use the YOLO object detection algorithm
for the purpose of Speed sign detection and train our model on
the same, we have gathered various images of Speed signs
from the CARLA environment which will be used as a strong
dataset for the training purpose.

Key Words: Self-Driving Simulator, Object Detection,
Speed Limit Sign Detection, Carla, Yolo, Deep Learning

1.INTRODUCTION

There is a high hype among individuals about autonomous
vehicles in the past several years and is constantly building
up. There has been a lot of research on self-driving cars, the
technology that enables society to remove the driver from
the front seat, not to mention, it’s crucial to understand how
these machines on wheels work.

Self-driving cars work on five major components:

1) Computer Vision: the eyes of the car; how it ‘sees’ the
road this is done through various types of sensors and not
just cameras.

2) Sensor Fusion: the process of combining information
from other sources just like how our brain combines
auditory and visual data to make decisions.

3) Localization: figuring out EXACTLY (down to single-digit
centimeters) where the car is on the road, to a very high
degree of accuracy

4) Path Planning: taking all the information about our
surroundings and making a decision about which way we
need to go to get to our destination.

5) Control: the process of physically moving the car based
on decisions made in “path planning”, by constantly
adjusting the steering, gas, and brakes.

In 2016, the Society of Automotive Engineers (SAE) released
documentation, SAEJ3016, defining six different levels of
automation for self-driving cars. In the year 2021, a detailed
revision of the SAEJ3016 document was carried out that
adds a few new terms clarifying the concepts and defining
responsibility in the event of a failure.

Level 0: No drivers assistance or automation

Level 1: Either Auto steering OR accelerating in limited
conditions and areas

Level 2: Auto steering and accelerating in limited conditions
and areas

Level 3: Partial automation in limited conditions and areas

Level 4: Complete automation in limited conditions and
areas.

Level 5: A level 5 vehicle can carry out all the driving tasks
in all the conditions and areas. The vehicle is solely
responsible for all the tasks and carrying them out safely.

For the following project, we are trying to detect the traffic
speed signs and letting the vehicle take its own decision and
warn the driver according to our specific application. As the
implementation of this project Physically can be expensive
as well as risky we have tried to create a virtual city
environment with all the factors like traffic lights, speed
signboards, pedestrians, and other vehicles using a virtual
simulator called Carla which is built on top of Unreal 4
engine and gives a strong base to run our research and test
our thesis virtually without harming any human life and is
very much cost-effective.

When we talk about the evergrowing advancement in
autonomous vehicles the main concern we encounter is the
vehicle making its own decision according to the
surrounding environment it senses. Our project Speed Sign
Detection and Vehicle Control follow a similar approach, in a
nutshell, it collects the surrounding environment with the
camera installed on a hood and detects for speed signboards
on the road, once it captures any of the max Speed signs it
compares with its own Speed and takes decision accordingly
which are two main components first being Warning Driver
if he exceeds max Speed set by the road and Second Being

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1462

lowering Down acceleration automatically if it exceeds the
max Speed set for that road.

2. LITERATURE SURVEY

To include an exhaustive examination of Speed Sign
Detection, we studied papers from various journals,
conferences, and acquired data. The following is how the
various papers are organized:

They discussed the basic chronology leading to autonomous
car production. This paper explores the historical context,
recent patterns and innovations, and semi-autonomous cars'
predictable future for public use [1].

They discussed the R-CNN, use the proposed Range of
Interest (ROIs) methods to set possible boundary boxes and
then run a classification system for each of these suggested
boxes.[2]

They suggested the Faster R-CNN to achieve greater
precision and higher latencies overall than making a
sequential area pipeline [3]

Furthermore, the unified object detection model YOLO was
developed. It can be educated directly on the full images in
them. YOLO is not trained on a set of detection rules but
instead trained on a set of non-negative output losses to
detect scenes [4].

They proposed a method that effectively detects and
monitors one or more moving objects in a variable context
simultaneously. The algorithm's key benefit was that it did
not rely on any previous environmental information [5].

They expressed the importance of deep learning applications
in image classification, object detection and face
identification. Experimental evidence shows that deep
learning technology is an efficient method to move from the
human-made function that relies on the drive of experience
to the learning that relies on the data drive. Extensive data is
the foundation of deep learning performance, large data, and
the rocket's fuel for deep learning [6].

The degenerative model fed by the degraded image has been
educated. The results showed that the model enhanced the
overall classifications of objects. The model trained with
reduced data has higher generalization ability, more
significant potential, and more robustness [7].

A method for improving YOLO v2's network structure and
obtained the YOLO-R network model. In pedestrian
identification, they have achieved successful outcomes [8].

A process for identifying and detecting welding joints used
on the production line of automobile door panels by using

the YOLO algorithm. It was suggested that a detector for
detecting the position of joints in solder [9].

A barrier algorithm combines YOLO and light field camera,
which would categorize objects into various categories and
mark them in the input image [10].

A deep fusion practical method for detecting objects in
remote sensing images with high resolution. This method
consisted of three main steps: the generation of candidate
regions, the fine-tuning extraction of in-depth features, and
the deep feature classification of SVM [11].

They proposed Tiny SSD, a single shot detection deep
convolutional neural network. TINY SSD aimed to ease real-
time embedded object detection. It comprises of greatly
enhanced layers comprising of non-uniform Fire subnetwork
and a stack of non-uniform subnetwork of SSD based
auxiliary convolutional feature layers. The best feature of
Tiny SSD is its size of 2.3 MB which is even smaller than Tiny
YOLO.[12]

They suggested a single layer multilayer perceptron network
YOLO for object detection. YOLO can predict boundaries,
thanks to its ability to detect object boundaries [13].

They proposed YOLO v1 neural object detection network by
modified loss function and added spatial pyramid pooling
layer and initial module with coevolutionary kernels [14].

They discussed YOLOv3. YOLOv3 was one of the best
modifications that had been done to an object detection
system since the introduction of Darknet 53. This modified
update was received very well among the critics and other
industrial professionals[15]

3.PROPOSED SYSTEM

The problem statement we are working on is the detection of
Speed traffic signs and accordingly control the speed of our
vehicle, which will be an advancement for the automation of
the cars we are expecting this decade. As told, we have two
main Modules which are Detection of Speed Signs as we
drive our vehicle in streets and the environment which we
need to set up for running our car, as this is the first working
prototype, we designed a virtual environment using CARLA
as deploying the model physically is quite expensive and
risky.

For setting up an Object detection Environment for detecting
Speed Signs on the road we need few Prerequisites to
complete before moving forward.

3.1 Configuring OpenCV with CUDA

CUDA is a parallel computing platform and programming
model that makes using a GPU for general-purpose

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1463

computing simple and elegant. For detecting Speed signs on
the road we need quite a good and powerful GPU to detect
high speed and for that reason, we are going to use the YOLO
object detection module for which CUDA is a requirement.
We need to first of all configure Cuda for its extensive GPU
computation with OpenCV. First, we downloaded the latest
version for OpenCV. Then we need to download the
contribute files for extra modules of OpenCV. Now to
configure CUDA and OpenCV we need to download CMAKE
and Visual Studio for building OpenCV. To download CUDA
we need to download a specific version according to the
graphics Card we are having in our System. After you get to
know what graphics card(NVIDIA) we have installed. Go to
the Wikipedia page and find the corresponding architecture
and version of CUDA most appropriate according to our
requirements. After a successful installation of CUDA and
cudnn we need to make OpenCV with cmake and we have
successfully configured OpenCV with CUDA.

3.2 Configuring YOLO

Now after having installed OpenCV with CUDA support in
place, we need to configure the state-of-the-art object
detection YOLO module with darknet. Darknet is mainly for
Object Detection and has a different architecture, features
than other deep learning frameworks. It is faster than many
other NN architectures and approaches like FasterRCNN etc.
Darknet architecture & YOLO is a specialized framework, and
they are on top of their game in speed and accuracy. YOLO
can run on CPU but you get 500 times more speed on GPU as
it leverages CUDA and cuDNN. Now after building up darknet
we need a weights file to train our speed sign detection
module which will complete our object detection process.

3.3 Acquiring Speed Limit Sign Dataset

Getting Speed traffic signs for the real world is quite easy
as there is a lot of traffic dataset available in public to train
on, but acquiring a dataset of speed signs for specific Carla
was quite a hectic job as it wasn’t available in public.
Therefore for the same we first screen recorded the screen
by continuously driving around the Carla environment and
recording each and every speed sign driving past the traffic
signs 3-4 times. Having this 30min recording we used
cap.get(cv2.CAP_PROP_FRAME_COUNT) to know how many
frames have been recorded and can be converted to an
image, if we have taken all the frames it was quite an entire
video with duplicate images therefore we ran an python
script to convert each(every 30th) video frame to image
using Opencv (cv2.imwrite) to extract image to a specified
folder having quite a huge dataset for our training model.
These were all unlabelled images and were to be labeled
according to their class , in here Carla city had maily 3
classes i.e 3 speed signs which were 30km/h, 60km/h, and
90km/h. For labeling these images we used labellmg tool,
this tool is quite simple and provide a simple interface where
we needed to draw a box around our target, which we need
to detect and train our model around this resulted in getting

the labeled image itself with a text file having information in
the format: <object_class> <x_center> <y_center> <width>
<height> Now having our labeled images in Place we are
ready to train our Model.

3.4 Network Modification

The next step here was to modify our network accordingly
to detect our custom speed signs from Carla accurately. For
the training purpose, we have used tiny v3i.e., the latest and
fastest upgrade. While using a convolutional network it
simultaneously predicts the part of the image and class
probabilities while in the case of YOLO it taoptimizestire
simple image and trains on the full image instead of making
multiple bounding and parting the image and thus optimises
the performance for detection. This entire Yolo model takes
up smaller 16 layers instead of traditional 22 deep
Convolutional Neural Networks. This tiny v3 yolo
architecture is been inspired by GoogleNet architecture.
Understanding the network modification of Yolo
architecture for our discussed project is illustrated below as:
We have taken a batch of 64 having 16 subdivisions and the
height and width of the training image dataset is 608 X 608,
with 3 channels and 0.9 momentum having 0.0005 decay
rate , learning rate for training is set to 0.001 with
max_batches of 6000 having 4800 , 5400 steps giving
exposure of 1.5 and saturation to 1.

3.5 Training Process

For faster training and efficient results instead of training
on the local system’s CPU, we have used Google’s advanced
Google Colab which allows us to use their cloud services
which allows us to access their high-end resources such as
we can use their Tesla K80 GPU absolutely free. Now here we
just executed the darknet training command for Yolo tiny v3
which started the training and gave us a Loss graph along
with the number of iteration to see how our model is doing
i.e whether it is underfitting or overfitting and thus creating
a backup weights file after every 1000 iterations. Below
given is the table to summarize how our 6 weights file
created, performed and saved after every 1000 iterations.

Table 1: Table comparing all the weights files created

after every 1000 iterations

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1464

After seeing the results from the Table 1, we can conclude
that the weight file created after 5000 iterations has the
highest Average Precision and Intersection over union and
low Average Loss. We will test all these weights files and
calculate the precision-recall matrices and F1 score and
accordingly use the most suitable one.

3.6 CARLA

CARLA is an open-source simulator developed for
autonomous driving research. CARLA has been developed
from the ground up to support the development, training,
and validation of autonomous driving systems. In addition to
open-source code and protocols, CARLA provides open
digital assets (urban layouts, buildings, vehicles) that were
created for this purpose and can be used freely. The
simulation platform supports flexible specification of sensor
suites and environmental conditions.

For the current project, we have used CARLA’s 0.8.2

version which has been considered as the most stable
version for windows. The best thing for choosing the Carla
simulator was it can be configured by connecting an external
python script and thus can be entirely customized and
modified according to our requirement, in our case to
implement Yolo’s object detection module. Also for the
research purpose, we have been supported by python’s most
efficient GUI i.e pygame module where the user can control
his vehicle manually which can give the user a feeling of a
perfect real environment where he/she is driving a car in the
streets. Along with the manual feature CARLA also equipped
us with a lot of sensors like a camera sensor, impact sensor,
and so on. We will be using a Camera sensor to read the
images captured by the camera sensor to our training model
sending after every 5fps and replacing the previously saved
image.

Fig 1: Images captured by Camera Sensor installed on

hood of Camera on CARLA Simulator

Fig 1 shows the image captured by our camera sensor
placed on the hood of the car to the training model. To run
our trained Yolo model this image is paced to the training
function and is checked if the received scene contains any of
our trained classes. If yes then the class to which the image is

detected is embedded on the screen and it is set to that
speed and stays on the top of the screen. This set speed acts
as a flag to perform two main tasks which can be performed
which is discussed in the next section.

Fig 2: Sign Board Detected by passing each frame

through Yolo module to Detect Speed Sign

3.7 Applications

The main objective of the project as discussed was to
detect the speed sign on the road and accordingly our system
should take decisions accordingly. After detecting the
maximum speed limit allowed signboards there are mainly
two main applications been deployed: One being the
Warning System and the other is Vehicle Speed
Controlling System. We have discussed both of the
applications briefly below.

3.7.1 Warning System

If the user sets the flag as “warning” during executing the
manual control file the warning system will get triggered.
The simple function of warning system that can be stated is
that when a speed sign on a road is detected, it is checked
with the current speed of the vehicle if the current speed of
the vehicle exceeds the speed limit detected by the system, it
gives a warning message suggesting “Reduce your Speed” in
a red indication warning the driver to reduce his speed.

Fig 3: Warning Message displayed when Speed of

Vehicle exceeds the threshold Speed Detected by the

vehicle

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1465

 Once the driver reduces his speed and the speed of the
vehicle becomes less than the speed detected before no
message is displayed and the vehicle moves with no
interruption with a green color stating the current speed of
the vehicle.

3.7.2 Vehicle Speed Control System

As the name suggests the function of the application when
the user selects control application(-app Control) while
executing the manual_control.py, the task of this application
is to simply reduce the speed of the vehicle if it exceeds the
speed beyond the detected sign. This is done by simply, the
vehicle current speed is constantly compared to detecting
speed if it exceeds the threshold already detected by Yolo
then it triggers a keyboard function which throttles the
acceleration and disables the key which is set to acceleration
until the speed is reduced till the threshold speed and a
message in red is displayed stating that the “Speed is
Reduced”.

Fig 4: Vehicle Control System Reducing the Speed

Automatically when Speed exceeds the Threshold Speed

4. RESULTS

A test set of 1,180 photos retrieved from CARLA in a single
session was constructed to test the trained network. The test
set included the same number of photos with and without
tagged objects as the training set. Apart from the mAP and the
IoU, three more metrics were analyzed.

In order to select the weights file that would be used within
the system. Precision, recall, and the F1-Score were the three
metrics. The ratio of successfully predicted positive
observations to total expected positive observations is the
precision measure. The recall statistic represents the
percentage of positive observations that have already been
properly forecasted as positive. Finally, the F1-Score is a
metric that is used to find a balance between precision and
recall, or the weighted average of these two metrics.

Weights Files 30 km/h 60 km/h 90 km/h

1000 Iterations 41% 34% 38%

2000 Iterations 73% 81% 88%

3000 Iterations 83% 85% 92%

4000 Iterations 85% 86% 96%

5000 Iterations 86% 88% 100%

6000 Iterations 84% 87% 98%

Table 2: Performance values on the test phase

When we compare these findings to the ones acquired during
the validation test, we can observe that the weights file values
on the 5000th iteration are the highest. This explains why
they were chosen to be included in the object-detection
system. The fact that the files with the greatest weights are
not the ones acquired in the previous iterations suggests that
between iterations 5000 and 6000, an overfitting
phenomenon occurs.

5. CONCLUSIONS

In this study, a usable framework for training Speed Sign
Detection vehicle using YOLO algorithm for detection
purposes implemented on CARLA environment has been
constructed. Although an effective policy was not achieved
after the first round of training, many insights about how to
improve these results in the future have been obtained. The
learning framework created provides the opportunity to
easily apply these insights in the future.

The next thing to work on would be to test more values for
the hyperparameters and compare the results of each, which
again could be much better done using larger hardware than
the gaming laptop used in this study since training time could
be drastically reduced by having more workers in parallel.
Smaller values for learning rate should be explored since we
saw decreasing average rewards in the early period of this
training session, which could be an indication that the
learning rate was too large.

ACKNOWLEDGEMENT

First of all, we would like to thank our project guide Prof.
Mohandas V. Pawar for giving us the courage, guidance and
suggestions for doing this major project. We also express our
gratitude towards Dr. Rajneesh Kaur Sachdeo, HOD CSE and
Dr. Kishore Ravande, Principal MITSOE sir for their support
and guidance. We are thankful to MIT School of Engineering-
MIT ADT University, Pune for providing all resources and
valuable information required about data mining techniques
for our project the process of analyzing and doing research
on the valuable inputs helped us to explore knowledge, was a
continuous source of inspiration and a unique experience.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1466

REFERENCES

[1] Keshav Bimbraw "Autonomous Cars: Past, Present and
Future"

[2] J.R.R. Uijling, K.E.A. van de Sande, T. Gever, and A.W.M.
Smeulders2 "Selective Search for Object Recognition"
in International Journal of Computer Vision · September
2013

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun
"Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks" arXiv:1506.01497v3
[cs.CV] 6 Jan 2016

[4] Joseph Redmon,Santosh Divvala,Ross Girshick,Ali
Farhadi." You Only Look Once: Unified, Real-Time Object
Detection" [J].2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR),2016:779788.

[5] Kumar S. Ray and Soma Chakraborty "An Efficient
Approach for Object Detection and Tracking of Objects
in a Video with Variable Background" 2017
arXiv:1706.02672

[6] Xinyi Zhou, Wei Gong, WenLong Fu, Fengtong Du
"Application of Deep Learning in Object Detection" 2017
IEEE/ACIS 16th International Conference on Computer
and Information Science (ICIS)

[7] Chengji Liu ,Yufan Tao ,Jiawei Liang ,Kai Li1 ,Yihang
Chen," Object Detection Based on YOLO Network" 2018
IEEE 4th Information Technology and Mechatronics
Engineering Conference (ITOEC 2018)

[8] Wenbo Lan, Jianwu Dang, Yangping Wang and Song
Wang," Pedestrian Detection Based on YOLO Network
Model" 978-1-5386-60751/18/$31.00 ©2018 IEEE

[9] Zhimin Mo1, Liding Chen1, Wenjing You1" Identification
and Detection of Automotive Door Panel Solder Joints
based on YOLO" 978-1-72810106-4/19$31.00 ©2019
IEEE

[10] Rumin Zhang, Yifeng Yang," An Algorithm for Obstacle
Detection based on YOLO and Light Filed Camera", 2018
Twelfth International Conference on Sensing
Technology (ICST)

[11] Eric Ke Wang, Yueping Li, Zhe Nie, Juntao Yu, Zuodong
Liang, Xun Zhang, Siu Ming Yiu "Deep Fusion Feature
Based Object Detection Method for High Resolution
Optical Remote Sensing Images"

[12] Womg A, Shafiee MJ, Li F, Chwyl B. Tiny SSD: a tiny
singleshot detection deep convolutional neural network
for real-time embedded object detection. In: 2018 15th
conference on computer and robot vision (CRV). IEEE;
2018, p. 95101

[13] Geethapriya. S, N. Duraimurugan, S.P. Chokkalingam
"Real-Time Object Detection with Yolo" International
Journal of Engineering and Advanced Technology
(IJEAT) ISSN: 2249 – 8958, Volume-8, Issue-3S,
February 2019

[14] Tanvir Ahmad, Yinglong Ma, Muhammad Yahya, Belal
Ahmad, Shah Nazir, and Amin ul Haq "Object Detection
using Modified YOLO Neural Network" Scientific
Programming, vol. 2020

[15] Huang YQ, Zheng JC, Sun SD, Yang CF, Liu J. Optimized
YOLOv3 algorithm and its application in traffic flow
detections. Appl Sci. 2020;10(9):3079.

https://ieeexplore.ieee.org/xpl/conhome/7951674/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7951674/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7951674/proceeding

