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Abstract - Today, deep learning evinces its true potential 
with a multitude of use-cases and is seminal in different 
technological domains. One of the more trending application 
of deep learning is object recognition and tracking. Recent 
developments have showed promising results concerning the 
same. This paper discusses and compares various systematic 
approaches that analyses images and determines if the person 
captured is wearing a face mask correctly, incorrectly and not 
wearing one at all. Mask detection is carried out on images, 
videos and real time surveillance using three widely used 
machine learning algorithms: YOLOv3, YOLOv5 and 
MobileNet-SSD V2. Each model detects the presence of mask 
on a person’s face, which will be judged on the basis of their 
accuracy and how smoothly the video is processed. 
Performance of the three algorithms is determined for 
detecting the presence of face mask on a person in real time in 
terms of FPS of the results. 
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1. INTRODUCTION 
 
In the final months of 2019, a new deadly virus was 
discovered in Wuhan, China which gripped the world by its 
throat and ruined countless lives and the economy. 
Governments worldwide started working on various 
strategies like social distancing, application of sanitizers and 
PPE kits to prevent spread. The Coronavirus disease 2019 
(Covid-19) is a serious public health and economic issue 
because of its detrimental effects like, mortality, acute 
respiratory infections and financial crisis. The virus spreads 
rapidly in crowded environments and being in close contact 
with the host. Wearing masks was declared the first line of 
personal defense against this unseen evil and has been made 
mandatory by all governments across the globe. However, 
there is also a significant percentage of people in the world 
that refuse to comply. To enforce wearing masks, authorities 
have begun to impose fines on those who do not wear masks 
in public. This is effective when the number of people under 
observation are less, but if the crowds are huge, it becomes a 
bigger problem.  
 
Mask detection ensures the rate of transmission is controlled 
in predicaments like a highly crowded public space and 
other areas with high risk of explosive transmission. The 
primary objective of this paper is to detect and track the 
presence of a masked face along with other conditions like, if 
the mask is worn improperly or not worn at all. Given an 

input, be it an image or a real-time video, a bounding box of 
the masked face is illustrated in the output based on 
YOLOv3, v5s and MobileNet-SSD V2. 
 
Object detection due to its wide variety of possible use-cases 
is a deeper aspect of computer vision. Most mask detection 
techniques focus on face recognition and construction, 
paradigmatic of traditional machine learning algorithms. The 
focus of this paper is to solely detect and track people 
wearing/not wearing/wearing incorrectly face masks and 
compare the results on the basis of their accuracy and how 
smoothly it is able to process video (FPS), with the latter 
being considered a more deciding parameter for real-time 
detection. 
 

2. EXISTING ALGORITHMS 
 
The object detection consists of two parts: localization and 
classification. The detection pipeline starts by extracting the 
selective features (Haar, HOG, Convolutional layer) and then a 
localizer or classifier is used to classify the object. Generally, 
these localizer and classifier run over an image based on 
region proposal approach or in-sliding window technique 
over the image. Methods like Deformable Parts Models (DPM) 
are paradigmatic of sliding window approach and methods 
like R-CNN take advantage of region proposal approach to 
generate bounding boxes and thereafter, run a classifier over 
the expounded bounding boxes. Then post-processing is 
carried out to filter out duplicate bounding boxes. 
 
The nature of the pipeline used in these methods is hard to 
optimize and very complex because in such systems each 
component is trained separately. But systems like YOLO have 
reformed object detection as a one-step, single-regression 
problem, by unifying in single network. Therefore, in such 
systems like YOLO, the algorithm performs calculations on an 
image to predict where they are, and classify those objects. 
Also, MobileNetV2 has shown good accuracy with low latency 
and low power models. 
 
In this paper YOLOv3, YOLOv5s and MobileNet-SSD V2 
systems have been compared to identify the best suitable 
algorithm for mask detection system. 
 

2.1 YOLOv3 
 
YOLOv3 performs both localization and classification with the 
help of one neural network only, which makes it one of the 
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best for real time applications, thus making YOLOv3 faster as 
compared to other algorithms. This feature allows YOLOv3 to 
train on real time inputs and perform detections near 
accurately. YOLOv3 can reach speeds from 45 frames per 
seconds (fps) up to 155 fps [4]. It uses a hybrid approach 
from YOLOv2 and Darknet-19, wherein the image is passed 
once during the detection and output is generated in the 
upcoming stage, making YOLOv3 quicker than the R-CNN 
algorithm, which performs detection on different sections of 
the input image and subsequently multiple predictions are 
made on the input for the various regions. Because YOLOv3 is 
trained on full images without hard negative mining and 
using multi-scale training method, optimizing the 
performance of the algorithm. [7] 
 
In this method, the input image is initially split-up into grids 
and these grids are further divided into several bounded 
boxes. The grid predicts the bounding boxes, along with their 
width and height. Sometimes the grids may not contain any 
object which results in an objectness score of zero. Situations 
like these may create instability and add error to model, but it 
can be countered by increasing the number of coordinates of 
the bounding boxes and thereby reducing the void space in 
an image. This alternative, improves the efficiency of object 
identification in the image. In a specific grid cell, YOLOv3 is 
capable of predicting and analyzing multiple bounding boxes. 
In this case, the objects in an image are predicted using 
multiple object predictors. [7] 
 

 
Figure -1: Multi-scale detector was appended aside 

network to make detection 3 times in 3 different scales 
 
A seminal property of YOLOv3, is that it detects objects on 
three scales as portrayed in Fig 1. More specifically, YOLOv3 
makes predictions at 82nd, 94th, and 106th layer, which are 
precisely provided by the stride of the model network, which 
are 32, 16, and 8 respectively. [4] 
 
YOLOv2 uses a custom deep 30-convolutional layers for 
Darknet architecture, more than YOLOv1, which used 11 
layers [4]. For deep neural networks, increased number of 
layers imply increased accuracy. However, the input image is 
downsampled when forwarded to deeper layers, entailing in 

loss of fine-grained features. This is why YOLOv2 often 
struggled with small object detections. 
 

2.2 YOLOv5 
 
YOLO has been dominating its field for a long time and there 
has been a major breakthrough in May 2020. Two updated 
and better versions of YOLO were introduced one after the 
other. One was the YOLOv4 developed by the conventional 
authors Joseph Redmon and Alexey Bochkovskiy [4], the 
other being the freshly released YOLOv5 by Glenn Jocher [3]. 
Not being the conventional author of the YOLO series, this 
new release was received with some controversy, but 
skipping past it, the v5 model has shown a substantial 
performance increase from its predecessors. 
However, YOLOv5 possessed loads of advantages in 
engineering. The highly appreciated change being the usage 
of Python language instead of C as in its previous versions. 
That makes installation and integration with IoT devices a lot 
easier. In addition, the PyTorch community is also larger than 
the Darknet community, which means that PyTorch will 
receive more contributions and has a great growth potential 
in the future. 
 
Along with the development of YOLO in 2016, many object 
detection algorithms with different approaches have 
achieved remarkable achievements as well. These 
advancements have formulated two concepts of architectural 
object detection: One-stage detector and Two-stage detector. 

 
Figure 2. Two concepts of architectural object detection 

[6]. 
 
The YOLOv5 network consists of three main parts- 
a. Backbone - A CNN layer aggregate image features at 

different scales.  
b. Neck – Set of layers to combine image features and pass 

them forward to prediction. 
c. Head - Takes features from the neck and performs 

localization and classification. 
 

The common point of all object detection architectures is that 
the input image features will be compressed through a 
feature extractor (Backbone) and then forwarded to the 
object detector (including Detection Neck and Detection 
Head) as in Fig 2. Detection Neck (or Neck) works as a feature 
aggregator, tasked to combine and mix the features formed in 
the Backbone to prepare for the forthcoming step in the 
Detection Head (or Head) [3]. The difference here is that the 

https://blog.roboflow.com/glossary/#:~:text=backbone
https://blog.roboflow.com/glossary/#:~:text=neck%20-
https://blog.roboflow.com/glossary/#:~:text=head%20-


          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 07 | July 2021                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 1158 
 

Head is responsible for detections along with classification 
and localization for each bounding box. The two-stage 
detector implements these 2 tasks separately and combines 
their results later (Sparse Detection), whereas the one-stage 
detector implements it at the same time (Dense Detection) 
also displayed in Fig 2. YOLO is a single-stage detector, 
therefore, You Only Look Once. 
 
In the case of a one-stage detector, the function of the head is 
to perform dense predictions. The dense prediction is the 
final prediction composed of the prediction confidence score, 
the probability classes and a vector containing the predicted 
bounding box coordinates (center, height, width). YOLOv5 
has an identical head to YOLOv3 for detection with the 
anchor-based detection steps, and 3-levels of detection 
granularity. 
 
YOLOv5 comes with various versions, each having its own 
unique characteristic. These versions being: 

1. yolov5-s - The small version 
2. yolov5-m - The medium version 
3. yolov5-l – The large version 
4. yolov5-x - The extra-large version 

The performance analysis of all these models as per Glenn 
Jocher is provided below in Fig 3.  
 

 
Figure -3: A comparative plot of performance of the 

YOLOv5 family [3] 
 

Since this paper is focused on real-time detection, speed is a 
factor of utmost importance, hence the smallest version has 
been chosen as the representative of the YOLOv5 family for 
its performance analysis. 
 

2.3 MobileNet-SSD V2 
 
The general trend observed is that computer vision models 
are getting more deeper and complex in order to achieve 
greater accuracy. However, these advances are increasing the 
size and latency, and cannot be used on computationally 
handicapped systems. 
 
In such cases, MobileNet comes handy. This is a model 
designed specifically for mobile and embedded applications 
requiring high speed. Its first version (MobileNetV1) had a 
depthwise separable convolution, which lowered the model 

size and complexity cost of the network to a decent level, to 
make it usable for low processing applications.  
 
Thereafter in the second edition of the MobileNet family, an 
inverted residual structure is provided for much better 
modularity and this version has been named MobileNetV2. 
This has helped in removal of non-linearities in narrow layers 
resulting in cutting-edge performance for the above-
mentioned applications. [5] 
 
Around the time the first version of MobileNet was 
introduced, Google released Single Shot Detector (SSD) for 
applications heavily dependent on both speed and accuracy 
equally. As the name itself suggests, SSD essentially detected 
multiple objects in an image using a single shot.  
 
MobileNet is a model catering to decent speed with its only 
drawback being its accuracy. SSD proved really helpful to the 
model since it got the means to improve its accuracy while 
maintaining the models’ speed. SSD algorithm was designed 
in such a way that it could be integrated with various 
networks such as YOLO, MobileNet and VGG architecture. 
Thus, MobileNet was integrated with SSD for superior 
performances and it was termed MobileNet-SSD.  This 
integrated architecture is shown in  Fig 4. 
 

 
Figure -4: Block Diagram of the MobileNet-SSD 

Architecture [8] 
 

For the performance analysis of the application presented in 
this paper, MobileNetV2 integrated with SSD has been used. 
 

3. METHODOLOGY 
 
3.1 Dataset 
 
The data has been manually collected by mass downloading 
google images of specific classes. A repertoire of 
images possessing multiple angles of humans with masks 
were used to ensure the models are being fed all kinds of 
variations for frictionless operation upon deployment. After 
gathering all suitable images, they were cropped to provide 
an aspect ratio of 1:1 to avoid lossy training due to 
dimensional variations. In the present case, the images have 
been cropped to a resolution of 416x416 for a fairly quick 
training process. As one increases this resolution, the training 
time required for the models also increases.  

After pre-processing, the images were labelled and these 
annotations (containing the locations of the bounding 

https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69
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boxes) were saved in encoded formats depending on the 
requirements of the models. Such uniformity has been 
maintained in order to guarantee equivalent training of all 
the models.   

Once the images were well annotated, they were split apart as 
shown in Fig 5. into training, validation and test sets. 
Applying such a split isn’t necessary, but the validation set 
helps in keeping a check on the erroneous detections. 

 

Figure - 5: Training splits of the used Dataset 

 

3.2 Training  

The models were trained using a Google Cloud platform 
instance on Nvidia Tesla T4 GPU having 16GB of 
RAM. Carrying this out on the platform helped in reducing the 
training period by quite a bit. Learning rates for all the 
models was initialized at 0.001, and it was set to depreciate 
every 1,000 steps. All three models were trained for 900 
epochs and since the dataset consisted of almost 1,000 
images and the batch size was set to 10, each epoch meant 
the model underwent 100 steps. Thus, the training continued 
for almost 90,000 steps. The loss plot for all three stabilized 
before the end mark, with the YOLO models dipping at about 
40,000 steps and SSD stabilizing at 50,000 steps. As 
mentioned earlier, out of the total dataset, 1,000 images were 
used for testing and 450 images were set apart for validation 
and testing. 
 

4. RESULTS & DISCUSSION 
 
A comparison of all three models was carried out after the 
completion of the training process. The models have been 
deployed using three devices, namely, Jetson Nano, Nvidia 
GTX 1660 Ti and Nvidia Tesla T4. This has been done to 
determine their performance in a high-tier, mid-tier and low-
tier processing unit. Now coming over to the factors that are 
to be taken into consideration for distinguishing the three 
models, there are two such influential parameters which 
would determine the model that would be fit for specific use 
cases. These being the mean Average Precision (mAP) and 
the processing capability of the model measured via Frames 
per Second (fps) of the resultant processed video. The output 
of the trained models is depicted in Fig 6.  
 

 

                 (a)                                                              (b)            (c) 
Figure -6: Outputs of the YOLOv5s Architecture. (a) 

Incorrectly worn mask detected. (b) Mask worn correctly 
detected. (c) No mask detected 

 
Often while validating a model’s performance, the accuracy 
is prioritised over the speed and it is assumed that high-
calibre GPUs are available in plenty and hence the speed 
factor will be tolerable. Whereas for real-time deployment, 
speed is an equally crucial factor and such models are 
commonly used in gadgets possessing relatively low 
processing capabilities for routine applications like the 
present one. For a detection to be considered real-time, the 
generally acceptable value of fps is 15. 
 

Table -1: Performance analysis of the three models 
 

Model mAP 
(%) 

FPS 

TeslaT4 1660 
Ti 

Jetson 
Nano 

YOLOv3 54.3 80 21 8 

YOLOv5s 37.6 100 28 15 

MobileNet-
SSD V2 

33.7 94 26 15 

 
The performance of each of the trained models is provided in 
Table 1. Keeping the above-mentioned points in mind, it can 
be inferred that YOLOv5s is the best fit model for real-time 
situations with optimal values of both accuracy and fps. It 
can be debated that MobileNet-SSD V2 provides somewhat 
similar speed to that of YOLOv5s, but it just lacks in the 
accuracy department. For real-time purposes, speed is a 
determining factor but accuracy of the model is also 
essential for fluent functioning. Coming over to YOLOv3, the 
model caters to excellent accuracy, but it requires 
computation-intensive hardware. If such a device is 
available, then this model would suffice the speed 
requirement. So, it can be said that depending on the 
requirement of various applications, either of the models can 
be chosen. 
 

5. CONCLUSIONS 
 
Thus, three models have been compared and each of them 
demonstrates their own unique characteristics. Each of the 
models were successful in the required application of mask 
detection, with the YOLOv5s being the most optimal model 
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for real-time deployment due to its speed and accuracy 
combination. The other two are also pretty decent models 
having different use case scenarios. It can be concluded that 
it is very much possible for computer vision applications to 
be used in real-time and all these models are suitable to be 
converted into marketable products.   
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