
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1156

Comparison of YOLOv3, YOLOv5s and MobileNet-SSD V2 for Real-Time

Mask Detection

Rakkshab Varadharajan Iyer1, Priyansh Shashikant Ringe2, Kevin Prabhulal Bhensdadiya3

1-3Dept. of Electronics & Communication Engineering, Institute of technology, Nirma University, Gujarat, India
---***--

Abstract - Today, deep learning evinces its true potential
with a multitude of use-cases and is seminal in different
technological domains. One of the more trending application
of deep learning is object recognition and tracking. Recent
developments have showed promising results concerning the
same. This paper discusses and compares various systematic
approaches that analyses images and determines if the person
captured is wearing a face mask correctly, incorrectly and not
wearing one at all. Mask detection is carried out on images,
videos and real time surveillance using three widely used
machine learning algorithms: YOLOv3, YOLOv5 and
MobileNet-SSD V2. Each model detects the presence of mask
on a person’s face, which will be judged on the basis of their
accuracy and how smoothly the video is processed.
Performance of the three algorithms is determined for
detecting the presence of face mask on a person in real time in
terms of FPS of the results.

Key Words: YOLOv3; YOLOv5; MobileNet-SSD; mAP; FPS

1. INTRODUCTION

In the final months of 2019, a new deadly virus was
discovered in Wuhan, China which gripped the world by its
throat and ruined countless lives and the economy.
Governments worldwide started working on various
strategies like social distancing, application of sanitizers and
PPE kits to prevent spread. The Coronavirus disease 2019
(Covid-19) is a serious public health and economic issue
because of its detrimental effects like, mortality, acute
respiratory infections and financial crisis. The virus spreads
rapidly in crowded environments and being in close contact
with the host. Wearing masks was declared the first line of
personal defense against this unseen evil and has been made
mandatory by all governments across the globe. However,
there is also a significant percentage of people in the world
that refuse to comply. To enforce wearing masks, authorities
have begun to impose fines on those who do not wear masks
in public. This is effective when the number of people under
observation are less, but if the crowds are huge, it becomes a
bigger problem.

Mask detection ensures the rate of transmission is controlled
in predicaments like a highly crowded public space and
other areas with high risk of explosive transmission. The
primary objective of this paper is to detect and track the
presence of a masked face along with other conditions like, if
the mask is worn improperly or not worn at all. Given an

input, be it an image or a real-time video, a bounding box of
the masked face is illustrated in the output based on
YOLOv3, v5s and MobileNet-SSD V2.

Object detection due to its wide variety of possible use-cases
is a deeper aspect of computer vision. Most mask detection
techniques focus on face recognition and construction,
paradigmatic of traditional machine learning algorithms. The
focus of this paper is to solely detect and track people
wearing/not wearing/wearing incorrectly face masks and
compare the results on the basis of their accuracy and how
smoothly it is able to process video (FPS), with the latter
being considered a more deciding parameter for real-time
detection.

2. EXISTING ALGORITHMS

The object detection consists of two parts: localization and
classification. The detection pipeline starts by extracting the
selective features (Haar, HOG, Convolutional layer) and then a
localizer or classifier is used to classify the object. Generally,
these localizer and classifier run over an image based on
region proposal approach or in-sliding window technique
over the image. Methods like Deformable Parts Models (DPM)
are paradigmatic of sliding window approach and methods
like R-CNN take advantage of region proposal approach to
generate bounding boxes and thereafter, run a classifier over
the expounded bounding boxes. Then post-processing is
carried out to filter out duplicate bounding boxes.

The nature of the pipeline used in these methods is hard to
optimize and very complex because in such systems each
component is trained separately. But systems like YOLO have
reformed object detection as a one-step, single-regression
problem, by unifying in single network. Therefore, in such
systems like YOLO, the algorithm performs calculations on an
image to predict where they are, and classify those objects.
Also, MobileNetV2 has shown good accuracy with low latency
and low power models.

In this paper YOLOv3, YOLOv5s and MobileNet-SSD V2
systems have been compared to identify the best suitable
algorithm for mask detection system.

2.1 YOLOv3

YOLOv3 performs both localization and classification with the
help of one neural network only, which makes it one of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1157

best for real time applications, thus making YOLOv3 faster as
compared to other algorithms. This feature allows YOLOv3 to
train on real time inputs and perform detections near
accurately. YOLOv3 can reach speeds from 45 frames per
seconds (fps) up to 155 fps [4]. It uses a hybrid approach
from YOLOv2 and Darknet-19, wherein the image is passed
once during the detection and output is generated in the
upcoming stage, making YOLOv3 quicker than the R-CNN
algorithm, which performs detection on different sections of
the input image and subsequently multiple predictions are
made on the input for the various regions. Because YOLOv3 is
trained on full images without hard negative mining and
using multi-scale training method, optimizing the
performance of the algorithm. [7]

In this method, the input image is initially split-up into grids
and these grids are further divided into several bounded
boxes. The grid predicts the bounding boxes, along with their
width and height. Sometimes the grids may not contain any
object which results in an objectness score of zero. Situations
like these may create instability and add error to model, but it
can be countered by increasing the number of coordinates of
the bounding boxes and thereby reducing the void space in
an image. This alternative, improves the efficiency of object
identification in the image. In a specific grid cell, YOLOv3 is
capable of predicting and analyzing multiple bounding boxes.
In this case, the objects in an image are predicted using
multiple object predictors. [7]

Figure -1: Multi-scale detector was appended aside

network to make detection 3 times in 3 different scales

A seminal property of YOLOv3, is that it detects objects on
three scales as portrayed in Fig 1. More specifically, YOLOv3
makes predictions at 82nd, 94th, and 106th layer, which are
precisely provided by the stride of the model network, which
are 32, 16, and 8 respectively. [4]

YOLOv2 uses a custom deep 30-convolutional layers for
Darknet architecture, more than YOLOv1, which used 11
layers [4]. For deep neural networks, increased number of
layers imply increased accuracy. However, the input image is
downsampled when forwarded to deeper layers, entailing in

loss of fine-grained features. This is why YOLOv2 often
struggled with small object detections.

2.2 YOLOv5

YOLO has been dominating its field for a long time and there
has been a major breakthrough in May 2020. Two updated
and better versions of YOLO were introduced one after the
other. One was the YOLOv4 developed by the conventional
authors Joseph Redmon and Alexey Bochkovskiy [4], the
other being the freshly released YOLOv5 by Glenn Jocher [3].
Not being the conventional author of the YOLO series, this
new release was received with some controversy, but
skipping past it, the v5 model has shown a substantial
performance increase from its predecessors.
However, YOLOv5 possessed loads of advantages in
engineering. The highly appreciated change being the usage
of Python language instead of C as in its previous versions.
That makes installation and integration with IoT devices a lot
easier. In addition, the PyTorch community is also larger than
the Darknet community, which means that PyTorch will
receive more contributions and has a great growth potential
in the future.

Along with the development of YOLO in 2016, many object
detection algorithms with different approaches have
achieved remarkable achievements as well. These
advancements have formulated two concepts of architectural
object detection: One-stage detector and Two-stage detector.

Figure 2. Two concepts of architectural object detection

[6].

The YOLOv5 network consists of three main parts-
a. Backbone - A CNN layer aggregate image features at

different scales.
b. Neck – Set of layers to combine image features and pass

them forward to prediction.
c. Head - Takes features from the neck and performs

localization and classification.

The common point of all object detection architectures is that
the input image features will be compressed through a
feature extractor (Backbone) and then forwarded to the
object detector (including Detection Neck and Detection
Head) as in Fig 2. Detection Neck (or Neck) works as a feature
aggregator, tasked to combine and mix the features formed in
the Backbone to prepare for the forthcoming step in the
Detection Head (or Head) [3]. The difference here is that the

https://blog.roboflow.com/glossary/#:~:text=backbone
https://blog.roboflow.com/glossary/#:~:text=neck%20-
https://blog.roboflow.com/glossary/#:~:text=head%20-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1158

Head is responsible for detections along with classification
and localization for each bounding box. The two-stage
detector implements these 2 tasks separately and combines
their results later (Sparse Detection), whereas the one-stage
detector implements it at the same time (Dense Detection)
also displayed in Fig 2. YOLO is a single-stage detector,
therefore, You Only Look Once.

In the case of a one-stage detector, the function of the head is
to perform dense predictions. The dense prediction is the
final prediction composed of the prediction confidence score,
the probability classes and a vector containing the predicted
bounding box coordinates (center, height, width). YOLOv5
has an identical head to YOLOv3 for detection with the
anchor-based detection steps, and 3-levels of detection
granularity.

YOLOv5 comes with various versions, each having its own
unique characteristic. These versions being:

1. yolov5-s - The small version
2. yolov5-m - The medium version
3. yolov5-l – The large version
4. yolov5-x - The extra-large version

The performance analysis of all these models as per Glenn
Jocher is provided below in Fig 3.

Figure -3: A comparative plot of performance of the

YOLOv5 family [3]

Since this paper is focused on real-time detection, speed is a
factor of utmost importance, hence the smallest version has
been chosen as the representative of the YOLOv5 family for
its performance analysis.

2.3 MobileNet-SSD V2

The general trend observed is that computer vision models
are getting more deeper and complex in order to achieve
greater accuracy. However, these advances are increasing the
size and latency, and cannot be used on computationally
handicapped systems.

In such cases, MobileNet comes handy. This is a model
designed specifically for mobile and embedded applications
requiring high speed. Its first version (MobileNetV1) had a
depthwise separable convolution, which lowered the model

size and complexity cost of the network to a decent level, to
make it usable for low processing applications.

Thereafter in the second edition of the MobileNet family, an
inverted residual structure is provided for much better
modularity and this version has been named MobileNetV2.
This has helped in removal of non-linearities in narrow layers
resulting in cutting-edge performance for the above-
mentioned applications. [5]

Around the time the first version of MobileNet was
introduced, Google released Single Shot Detector (SSD) for
applications heavily dependent on both speed and accuracy
equally. As the name itself suggests, SSD essentially detected
multiple objects in an image using a single shot.

MobileNet is a model catering to decent speed with its only
drawback being its accuracy. SSD proved really helpful to the
model since it got the means to improve its accuracy while
maintaining the models’ speed. SSD algorithm was designed
in such a way that it could be integrated with various
networks such as YOLO, MobileNet and VGG architecture.
Thus, MobileNet was integrated with SSD for superior
performances and it was termed MobileNet-SSD. This
integrated architecture is shown in Fig 4.

Figure -4: Block Diagram of the MobileNet-SSD

Architecture [8]

For the performance analysis of the application presented in
this paper, MobileNetV2 integrated with SSD has been used.

3. METHODOLOGY

3.1 Dataset

The data has been manually collected by mass downloading
google images of specific classes. A repertoire of
images possessing multiple angles of humans with masks
were used to ensure the models are being fed all kinds of
variations for frictionless operation upon deployment. After
gathering all suitable images, they were cropped to provide
an aspect ratio of 1:1 to avoid lossy training due to
dimensional variations. In the present case, the images have
been cropped to a resolution of 416x416 for a fairly quick
training process. As one increases this resolution, the training
time required for the models also increases.

After pre-processing, the images were labelled and these
annotations (containing the locations of the bounding

https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1159

boxes) were saved in encoded formats depending on the
requirements of the models. Such uniformity has been
maintained in order to guarantee equivalent training of all
the models.

Once the images were well annotated, they were split apart as
shown in Fig 5. into training, validation and test sets.
Applying such a split isn’t necessary, but the validation set
helps in keeping a check on the erroneous detections.

Figure - 5: Training splits of the used Dataset

3.2 Training

The models were trained using a Google Cloud platform
instance on Nvidia Tesla T4 GPU having 16GB of
RAM. Carrying this out on the platform helped in reducing the
training period by quite a bit. Learning rates for all the
models was initialized at 0.001, and it was set to depreciate
every 1,000 steps. All three models were trained for 900
epochs and since the dataset consisted of almost 1,000
images and the batch size was set to 10, each epoch meant
the model underwent 100 steps. Thus, the training continued
for almost 90,000 steps. The loss plot for all three stabilized
before the end mark, with the YOLO models dipping at about
40,000 steps and SSD stabilizing at 50,000 steps. As
mentioned earlier, out of the total dataset, 1,000 images were
used for testing and 450 images were set apart for validation
and testing.

4. RESULTS & DISCUSSION

A comparison of all three models was carried out after the
completion of the training process. The models have been
deployed using three devices, namely, Jetson Nano, Nvidia
GTX 1660 Ti and Nvidia Tesla T4. This has been done to
determine their performance in a high-tier, mid-tier and low-
tier processing unit. Now coming over to the factors that are
to be taken into consideration for distinguishing the three
models, there are two such influential parameters which
would determine the model that would be fit for specific use
cases. These being the mean Average Precision (mAP) and
the processing capability of the model measured via Frames
per Second (fps) of the resultant processed video. The output
of the trained models is depicted in Fig 6.

 (a) (b) (c)
Figure -6: Outputs of the YOLOv5s Architecture. (a)

Incorrectly worn mask detected. (b) Mask worn correctly
detected. (c) No mask detected

Often while validating a model’s performance, the accuracy
is prioritised over the speed and it is assumed that high-
calibre GPUs are available in plenty and hence the speed
factor will be tolerable. Whereas for real-time deployment,
speed is an equally crucial factor and such models are
commonly used in gadgets possessing relatively low
processing capabilities for routine applications like the
present one. For a detection to be considered real-time, the
generally acceptable value of fps is 15.

Table -1: Performance analysis of the three models

Model mAP
(%)

FPS

TeslaT4 1660
Ti

Jetson
Nano

YOLOv3 54.3 80 21 8

YOLOv5s 37.6 100 28 15

MobileNet-
SSD V2

33.7 94 26 15

The performance of each of the trained models is provided in
Table 1. Keeping the above-mentioned points in mind, it can
be inferred that YOLOv5s is the best fit model for real-time
situations with optimal values of both accuracy and fps. It
can be debated that MobileNet-SSD V2 provides somewhat
similar speed to that of YOLOv5s, but it just lacks in the
accuracy department. For real-time purposes, speed is a
determining factor but accuracy of the model is also
essential for fluent functioning. Coming over to YOLOv3, the
model caters to excellent accuracy, but it requires
computation-intensive hardware. If such a device is
available, then this model would suffice the speed
requirement. So, it can be said that depending on the
requirement of various applications, either of the models can
be chosen.

5. CONCLUSIONS

Thus, three models have been compared and each of them
demonstrates their own unique characteristics. Each of the
models were successful in the required application of mask
detection, with the YOLOv5s being the most optimal model

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1160

for real-time deployment due to its speed and accuracy
combination. The other two are also pretty decent models
having different use case scenarios. It can be concluded that
it is very much possible for computer vision applications to
be used in real-time and all these models are suitable to be
converted into marketable products.

REFERENCES

[1] Deepa, R., et al. "Comparison of Yolo, SSD, Faster RCNN

for Real Time Tennis Ball Tracking for Action Decision
Networks." 2019 International Conference on Advances
in Computing and Communication Engineering
(ICACCE). IEEE, 2019.

[2] Liu, Yifan, et al. "Research on the Use of YOLOv5 Object
Detection Algorithm in Mask Wearing
Recognition." World Scientific Research Journal 6.11
(2020): 276-284.

[3] Jocher, G., Stoken, A., Borovec, J., Changyu, L., & Hogan, A.
(2020). ultralytics/yolov5: v3. 0. Zenodo.

[4] Redmon, Joseph, and Ali Farhadi. "Yolov3: An
incremental improvement." arXiv preprint
arXiv:1804.02767 (2018).

[5] Chiu, Yu-Chen, et al. "Mobilenet-SSDv2: An improved
object detection model for embedded systems." 2020
International Conference on System Science and
Engineering (ICSSE). IEEE, 2020.

[6] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020).
Yolov4: Optimal speed and accuracy of object
detection. arXiv preprint arXiv:2004.10934.

[7] R. Deepa, E. Tamilselvan, E. S. Abrar and S. Sampath,
"Comparison of Yolo, SSD, Faster RCNN for Real Time
Tennis Ball Tracking for Action Decision
Networks," 2019 International Conference on Advances
in Computing and Communication Engineering
(ICACCE), 2019, pp. 1-4, doi:
10.1109/ICACCE46606.2019.9079965.

[8] Hollemans, Matthijs. (2018, April 22). “MobileNet
Version2.” https://machinethink.net/blog/mobilenet-
v2/

https://machinethink.net/blog/mobilenet-v2/
https://machinethink.net/blog/mobilenet-v2/

