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Abstract – An autocorrelation-based linear regression 

model is used for parameter (i.e. Rabi frequency) estimation 

in a simulated oscillating pure qubit state dynamics. In a 

comparison with the Bayesian approach for Rabi frequency 

estimation, it is shown that both approaches have good 

convergence but the autocorrelation-based approach 

converges slower.  
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1. INTRODUCTION 
Quantum state monitoring and control are crucial for the 

development of quantum-based technologies [1], [2], thus 

state and parameter estimation are essential. State and 

parameter estimation also form a vital component of 

robust control systems design. In [3] it is shown that as 

long as the qubit Hamiltonian parameters are accurately 

modeled, the state estimation always converges to the true 

qubit state. In the case of modeling errors in the 

Hamiltonian, the qubit state estimation will not 

necessarily converge to the true state [4] hence it is 

necessary to augment the parameter estimation problem 

to the state estimation problem. Qubit state tracking and 

control problem has been addressed in many articles 

including but not limited to [3], [5], [6], [7]. 

In this paper, we simulate a real qubit evolution and use 

unsharp measurement to periodically measure the state of 

the qubit. The aim then is to develop a qubit state 

estimator to estimate the state of the real qubit in real-

time. We assume our estimator starts its evolution not 

only with the wrong qubit state but also with the wrong 

Rabi frequency in its Hamiltonian. The goal is now to 

estimate both the correct Rabi frequency and the evolving 

real qubit state. In [4] the Bayesian estimator is used to 

tackle this very same problem and shown to be successful. 

In this paper, we use an autocorrelation-based linear 

regression model to tackle this estimation problem and 

compare its performance to that of the Bayesian approach 

used in [4]. 

In [8], [9] we presented a frequency estimation problem 

formulated as a linear regression problem based on the 

differential [8] and autoregressive [9] relationship in the 

periodic data. In this paper, we adopt the autoregressive 

[9] approach in formulating the Rabi frequency estimation 

problem as a linear regression problem.  

The rest of this paper is organized as follows. Section 2 

gives some background on qubit dynamics. Section 3 

presents the dynamics of an undriven underdamped 

second-order system and its autocorrelation function 

which is adopted as the baseline model for frequency 

estimation. The autocorrelation-based autoregressive 

model is used to assemble a linear regression cost 

function. A brief description of the Bayesian estimation 

approach is given in this section. Section 4 presents 

simulation results for the models presented in Section 3 

and gives a discussion on these results. Section 5 

concludes this work with a summary of major findings and 

some remarks. 

2. SIMULATED QUBIT DYNAMICS 
 A two-level system (i.e. qubit) undergoing Rabi 

oscillations will evolve under the following Hamiltonian in 

a rotating frame [3], 

 ̂   .
  

 
/  ̂       (1) 

With    as the Rabi frequency and  ̂  as the Pauli matrix 
responsible for rotations about the x-axis on the Bloch 
sphere. The positive operator-valued measure (POVM) 
measurements are done periodically on the qubit and the 
measurement outcomes are used to update the estimators. 
The     POVM measurement on a qubit with state      will 
result in a post-measurement state        given by, 
 

       
 ̂      

√ (     )
      (2) 

where a conditional probability  (     ) is given by, 
 

 (     )        ̂  
  ̂          (3) 
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with  ̂   as the Krauss operator corresponding to unsharp 
measurement [3]. In the absence of measurement, the 
qubit state evolves under the unitary operator    given by, 
 

 ̂    
  ̂ 
 

 
     (4) 

If the measurement is carried out regularly after every 
time interval  , the unnormalized post-measurement state 
after   measurement will be given by, 
 

  ̃ (    )   ̂   ̂   ̂   ̂  ̂   ̂    (   )   (5) 

The outcome of each     measurement can be considered 
as either an up or down Bloch vector deflection (i.e, 
     ) in the  -basis. The probability of a qubit 
following this trajectory is given by the inner product of 
the post-measurement state equation (5) above as, 
 

 (     (    )    ̃ (    )| ̃ (    )   (6) 

This probability will be useful in Bayesian  estimation to 
determine which Rabi frequency (among many) is likely to 
have produced the sequence of measurement outcomes 
*  +   

 . 

 
3. RABI FRENQUECY ESTIMATION MODELS 
3.1 Differential Dynamics 
The autocorrelation function  ( ) of some periodic data 

*     +   
  from measurement can be modeled by the 

following damped oscillation response [10],  

 ( )            (   √      )       (7) 

which satisfies the following second-order homogeneous 

ODE [11], 

    
  

 
      

         (8) 

with   as the amplitude,   as the signal offset,    as the 

angular frequency,   as the phase offset, the parameter 

  (  )   as the damping ratio and   as the time lag. 

3.2 Autoregressive Dynamics 
Using centered differencing with a discretization time 

parameter  , equation (8) is approximated discretely as 

[9], 

                      (9) 

with   and    as the coefficients to be determined in a 

linear regression problem. The next section presents the 

linear regression problem based on this autoregressive 

model in equation (9) above. 

 

3.3 Autoregressive Linear Regression Model 
In [9] it is shown that given the function points or data 

  (  ) of size   (i.e.            ) from an oscillatory 

process, the frequency estimation problem can be posed 

as a linear regression problem shown below, 

 (   )  ∑ (               )
    

        (10) 

whose solution is given by, 

  
∑       

   
   ∑         

   
    ∑     

    
   ∑       

   
   

∑     
    

   ∑   
    

    (∑       
   
   )

    (11) 

  
∑       

   
   ∑       
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   ∑         
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   ∑   
    

    (∑       
   
   )

    (12) 

 which gives the estimated frequency and damping ratio 

as, 

   
 

 
√

 (     )

   
     (13) 

  
   

√ (   )(     )
     (14) 

3.4 Bayesian Estimation Model 
In [4], a population of equally-spaced possible frequencies 
   (           ) is kept in a set and each frequency is 
used to evolve an associated qubit state estimator. This 
means there are as many qubit state estimators as there 
are frequencies. On each measurement, the probability 
  (   ) of each estimator is computed, evolved 
independently according to the Bayesian update rule, and 
the posterior probabilities are shown in a plot against 
frequencies. As more measurements are made, the 
estimator whose frequency is closest to the true Rabi 
frequency will have the highest posterior probability and 
is taken as the estimated Rabi frequency. This is closely 
related to how a particle filter works. 
 
This Bayesian estimator converges to the correct Rabi 
frequency provided the exact Rabi frequency is present in 
the list/population of discrete frequency estimators. In the 
case whereby the exact Rabi frequency is not present in 
the population set (i.e. the exact Rabi frequency lies 
between two adjacent estimators), the Bayesian estimator 
can keep oscillating between these two closest 
frequencies. It is, therefore necessary that the frequency 
spectrum be finely discretized (or interpolation methods 
adopted) to reduce the quantization error in frequency 
estimation. This however calls for a large set of frequency 
estimators hence there is an inherent trade-off between 
estimation accuracy and computational intensity. More 
details on this can be found in [4]. 
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4. QUBIT SIMULATION RESULTS & DISCUSSION 
We set up our simulation experiment to run for       

time-steps with a true qubit evolving from an initial qubit 

state       ,   -  under the evolution operator  ̂  

described in equation (4) with the normalized Rabi 

frequency         . All estimators described in  the 

sections below were initialized with the state       

,   -  which is orthogonal to the true state     . This is 

essential for testing qubit state estimation on top of Rabi 

frequency estimation. The Krauss operators used for the 

    unsharp measurements are, 

 ̂       ([√  √    ])  (15) 

 ̂       ([√    √  ])  (16) 

with           indicating the measurement strength 
and ten measurements were made per Rabi cycle. We 
simulate the     unsharp measurement using a random 
number        and the conditional probability 

    (     )       ̂  
  ̂      . If        we record the 

measurement outcome as       and use  ̂   to obtain 
the post-measurement state as described in equation (2). 
Otherwise if        we record the measurement outcome 
as       and use  ̂   to get the post-measurement state. 
 
4.1 Autocorreleration-based Rabi Frequency 
Estimator 
Fig. 1 below shows the graph of the autocorrelation 
function   ( ) computed from the unsharp measurement 
outcomes *  +   

 . An autoregressive linear regression 
model was used to estimate the Rabi frequency and the 
damping ratio which were then used to simulate an 
estimated autocorrelation function shown superimposed 
on the original   ( ) in Fig. 1. 
 

Fig. 1 Autocorrelations from measurement data and 

simulated data based on estimated Rabi frequency. 

4.2 Bayesian Rabi Frequency Estimator  
Fig. 2 below shows a plot of 101 frequency estimates along 

with their respective probabilities. Each probability 

indicates the likelihood of the respective frequency 

estimate to have been responsible for the qubit evolution 

that led to the sequence of measured outcomes *  +   
 . 

Fig. 2 Population of Bayesian-evolved Rabi frequency 

estimates and their likelihood to be responsible for the 

sequence of measurements obtained. 

4.3 Convergence of Rabi Frequency Estimators  
Fig. 3 below shows the convergence of the two Rabi 

frequency estimators. Despite its nonsmooth convergence 

profile, the Bayesian estimator is relatively quick to 

converge to the true Rabi frequency. The autocorrelation-

based estimator shows a rather smooth but slow 

asymptotic convergence towards the true Rabi frequency. 

Fig. 3 Convergence of Bayesian Rabi frequency estimator 

and autocorrelation-based Rabi frequency estimator. 

The true Rabi frequency (normalized) being a non-ending 

decimal like     makes it difficult for the Bayesian 

estimator (formulated as a fixed/static grid of frequency 

population) to converge to the exact Rabi frequency. This 

is because the true Rabi frequency falls between some two 

fixed consecutive frequency estimators thus there will 

always be a quantization/discretization error, in 

estimation, quantified by the discretization in the 

frequency spectrum.  

It is interesting to note that as the measurement 

unsharpness is increased towards half (i.e.       ) the 

performance of autocorrelation-based Rabi frequency 

estimation drops significantly faster than that of Bayesian 

Rabi frequency estimation. One advantage of the Bayesian 

estimation approach is that it is quick to respond to 

changes in the parameter being estimated while the 
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autocorrelation-based estimation is slow due to the 

averaging effect inherent in the autocorrelation 

computation. In the case of multiple parameter estimation, 

the Bayesian approach can be computationally intensive 

due to multidimensional discretizations.  

4.4 Convergence of Qubit State Estimators  
Fig. 4 below shows the convergences (in terms of the 
fidelities) of the two qubit state trajectories estimated by 
the Bayesian estimator and the autocorrelation-based 
estimator. On each     measurement, the fidelity    
between the true qubit state      and the estimator state 
      was computed as follows, 

   ‖        ‖
    (17) 

The fidelity    in equation (17) above quantifies an overlap 

between the two states and it takes values in the range of 

      , with      indicating no overlap (i.e.    

overlap) while      indicates      overlap between the 

two states. 

Fig. 4 Fidelities for Bayesian qubit state estimator and 

autocorrelation-based qubit state estimator. 

Overall, both estimators show good convergence towards 

the true qubit state trajectory. It can be observed here also 

that the autocorrelation-based qubit state estimator is 

relatively slower to converge to      fidelity.   

5. CONCLUSIONS 
We have successfully shown how the Rabi frequency 

estimation problem can be approached from the 

autocorrelation of unsharp measurements and solved as 

an autoregressive linear regression problem. This 

autocorrelation-based Rabi frequency estimation is 

compared with the Bayesian Rabi frequency estimation 

presented in the literature. It was found that both 

estimators have a good convergence for the unsharp 

measurement strength of            both estimators 

have good convergence with the Bayesian Rabi frequency 

estimator outperforming the autocorrelation-based Rabi 

frequency estimator by faster convergence to the true Rabi 

frequency.  
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