

Er. Supriya Patil<sup>1</sup>, Dr.M.N.Bajad<sup>2</sup>

<sup>1</sup>P.G.Student, Sinhgad College of Engineering Pune, Maharashtra State, India <sup>2</sup>Professor, Dept. of civil Engineering, Sinhgad College of Engineering, Pune, Maharashtra State, India \*\*\*

Abstract-Now RC Structural wall construction in metropolitan cities is widely used. Due to the growing population in India, the new construction technique should be adopted for the faster construction process. Aluform technology in this technique beam and column are replaced by reinforced concrete wall system and whole building is design with RC structural wall i.e. shear wall. It is specially design to allow rapid design of high rise building G+ 24 storey with RC structural wall and its advantages as a structural point of view. For this thesis design software ETABS is used for design and analysis. Analysis is carried out considering the various static and dynamic seismic and wind loads are used. For validation of work we will go for part manual calculation to check correctness of analysis. Then design of system is carried out. Concluding remark will be given with respective high structural performance.

#### *Keywords* – High rise building, Aluform Technique, Analysis and Design, ETABS V18.0, Wind load and Seismic load.

# **1. INTRODUCTION**

Population of India is growing fast in urban area or in metro cities. This is the basic reason for increasing land cost in cities. With increasing land cost, it is not surprising that the number of stories in building in urban area across the country is increasing rapidly. Therefore the construction of tall structures such as high rise building, sky scrapers or sky towers is an important indicator of country or city economic and technological strength with the continued development and progress of the economy, technology and material in recent years. In beam column system of buildings reinforced concrete frames are provided in both principal directions to resist vertical loads and the vertical loads are transmitted to vertical framing system i.e. columns and foundations. This type of systems is effective in resisting both vertical & horizontal loads. The lateral load resisting system provided in multi storey building is moment resisting frame, with beams being eliminated in years in majority of the building to simplify and accommodate the use of more economical framework. In recent years R.C. tube structure and R.C. structural wall have been introduced to provide the required stiffness.

## **1.1NEED OF RESEARCH**

The variation between the supply and the demand mass housing is tremendous. Rapid Urbanization has resulted in a geometric increase in the housing demand, which cannot be fulfilled by conventional column beam method of construction. The traditional or conventional method of construction for affordable housing is comparatively a slow process and limited quality control, particularly when a large size project is involved It is therefore obligatory to work out

A method or scheme where the speed and quality of construction are controlled but a systematic approach. Structures with Structural walls are more earthquake resistant .Therefore aluminum formwork system identified to be suitable for Indian conditions for mass housing. To achieve the value added construction projects without compromising the quality at any cost as the concept of value engineering represented.

Therefore, structural performance of high rise building with structural walls needs to be investigated.

# **1.2 AIM AND OBJECTIVE OF STUDY**

Within the scope of this study, the main objectives of study is to investigate the possibility.

To find parameters like storey displacements, base shear, and relative storey drifts and irregularities of structure under static and dynamic wind and seismic loads. The aim of this study is achieved through the following objectives:

To analyze the structure under dynamic wind and seismic loading and to understand the behavior of structure subjected to lateral loading with the help of time period, frequency, modal mass participating ratio.

# **1.3. LIMITATION.**

Wind and earthquake forces are the most predominant loads that demand lateral design of structures. Large Therefore, buildings should be designed with the earthquake-resistance, comfort and convenience in mind.

# 2. LITERATURE REVIEW

Rahul b. Mojidral, et.al [12] [2017]: Focused on the Seismic design of buildings, reinforced concrete structural walls, or shear walls, act as major earthquake resisting members. Concerts walls are provided for the Concerts walls are provided for the additional force resistant. The properties of additional gravity these seismic shear walls here fore, it is important to evaluate the seismic response of the walls appropriately. In these papers conventional, monolithic with external walls structural systems and monolithic with internal wall system for G+ 20, G+ 25, G+ 30 stories was studied with the help of ETABS V 15 analysis and design. Additional parameters like Lateral displacement, story drift are calculated for both the structures. We concluded that there is drastic improvement in the monolithic structure as compared to conventional structure in term of strength as well as cost.

**Ashish Sadh,** et.al [2018][1]this study the behavior of high rise building against the wind force in wind zone 2nd, L shape is studied and analyzed for specific heights. Also direction of wind plays very vital role in behavior of structure.

# M. A. Hube et.al [8][2014] have done analysis of seismic

Behavior of RC slender structural wall. Researcher had Mentioned effect of Chile Earthquake on RC structural walls and its damage analysis in year 2010. The objectives of this research is to understand observed damaged in slender walls i.e. crushing of concrete ,buckling and fracture of reinforcement . Recommendations had provided to avoid the lateral displacement and effective stiffness to slender walls.

**P. P. Chandurkar [11][2013]** had presented study of G + 9 building having three meters height foe each storey. The whole building design had carried out according to IS code for seismic resistant design and the building had considered fixed at base. Structural element for design had assumed as square or rectangular in section .they had done modeling of building using ETAB software in that four different models were different positioning of shear walls.

**M.G Rajendran[2][2013]** presents the study of comparison of the difference between the wind behavior of building with and without shear wall using Staad Pro. In this paper the Staad model of 15 storey building considered to carry out study with and without shear wall using and also 20 storeys building will model same as it. Displacement of 15 storey building and 20 storey building ith shear wall is 20.18% and 14.60% less than the building without

shear wall. They concluded that building with shear wall will resist wind load effectively.

## 3. METHODOLOGY AND INVESTIGATION

### **3.1 Introduction**

Study of this work is based on analysis of high rise residential building G+24 storey with RC structural wall by using Etab18.1.0.located in Pune Modeling is done in ETAB18.1.0. Run analysis, results are concluded. Manual Calculation are done to verify the software result.

#### 3.2. Description of the Building

| Table 1.1- | Description | of the | Building |
|------------|-------------|--------|----------|
|------------|-------------|--------|----------|

| Number of storey      | G+24 Storey                                                                                 |
|-----------------------|---------------------------------------------------------------------------------------------|
| Floor Height          | 2.9m                                                                                        |
| Floor to Floor height | 71 .6m                                                                                      |
| Soil bearing capacity | As per soil report,<br>SBC at a depth of<br>2m to 7.5m is 40<br>t/m <sup>2</sup> considered |
| Depth of foundation   | 2m                                                                                          |
| Slab thickness        | 0.125m                                                                                      |
| Sunk slab thickness   | 0.1m                                                                                        |
| Wall thickness        | 0.2m                                                                                        |
| Concrete Grade        | M40                                                                                         |
| Steel Grade           | FE500                                                                                       |

Table 1.2 Seismic, Wind, Dead, Live Loading Parameters

| Sr.No. | Parameter                                   | Value |
|--------|---------------------------------------------|-------|
| 1      | Seismic coefficient as per IS:1893-<br>2016 |       |
|        | Type of Structure                           | SMRF  |
|        | Seismic Zone                                | III   |
|        | Response Reduction Factor                   | 4     |
|        | Importance Factor                           | 1     |



e-ISSN: 2395-0056 p-ISSN: 2395-0072

|                      | Wind Coefficient as per IS:875 | 2 |
|----------------------|--------------------------------|---|
| 39.0 m/s             | Design wind speed              |   |
| 3                    | Terrain category               |   |
|                      | Dead Load                      | 3 |
| 1.2KN/m <sup>2</sup> | Floor Finish (Floors)          |   |
| 3KN/ m <sup>2</sup>  | Floor Finish (Staircase)       |   |
| 9KN/m <sup>2</sup>   | Sunk Slab                      |   |
| 2KN/ m <sup>2</sup>  | Live Load                      | 4 |
| 2KN/m <sup>2</sup>   | Floors                         |   |
| 3KN/m <sup>2</sup>   | Staircase                      |   |







Figure 1.2 Structural Layout with RC Structural wall



Figure 1.3 – ETAB model with Structural Wall

#### 3.3 Seismic Load

#### 3.3.1. Time Period

Time period will be calculated based on following equation as per IS 1893- 2016 clause no- 7.6.2 i).Time period T is given by following equation, as per IS1893:2016 Clause No.

$$T_{\rm a} = \frac{0.09h}{\sqrt{d}}$$
 Where,

H = height of building and D base dimension of building in meter

ii) Time period for shear wall is calculated by

following formula,

$$T = \frac{0.075h^{0.75}}{\sqrt{Aw}}$$

### 3.3.2 Seismic Weight

W is the seismic weight of the building.



For the purpose of estimating the seismic weight of the building, full dead load and part live load are to be included.

The proportion of live load to be considered is given by IS: 1893 (Part 1) as per Table 10; live load need not be considered on the roofs of buildings in the calculation of design earthquake force.

Since the live load is 2Kn/sqm only 50% of the live load is lumped at the floors.

Hence, the total seismic weight on the floors and the roof is:

Floors: *W*1=*W*2 =*W*3

| 2.3. | Force | Distribution | with Building | g Height: |
|------|-------|--------------|---------------|-----------|
|------|-------|--------------|---------------|-----------|

|      |      |      |      | 0 0    |          |
|------|------|------|------|--------|----------|
| Stor | Wi   | hi(m | Wi*  | Wihi2/ | Lateral  |
| ey   | [Kn] | )    | hi*1 | Wihi2  | Force a  |
| leve |      |      | 000  |        | ith      |
| 1    |      |      |      |        | Level fo |
|      |      |      |      |        | EL in    |
|      |      |      |      |        | Directio |
|      |      |      |      |        | n (KN)   |

#### 3.3.3 Design Base Shear (Vb)

(Vb) =Ah x W.....IS1893:2016 Clause No.7.6.1 Where,

Ah = Design horizontal acceleration

W = Seismic Weight

#### 3.3.4.Design horizontal acceleration (Ah)

Design horizontal acceleration (Ah) or design horizontal base shear coefficient (Ah) of a building is a function of its translational natural periods in the considered direction of design lateral force.

The design horizontal acceleration will be calculated based on following equation as per IS1893-2016 clause no.6.4.2

$$A_{\rm h} = \frac{\begin{pmatrix} Z \\ 2 \end{pmatrix} \begin{pmatrix} S_{\rm a} \\ g \end{pmatrix}}{\begin{pmatrix} R \\ I \end{pmatrix}}$$

Where,

- Z = Seismic Zone factor
- I = Importance factor I R = Response reduction factor R

Sa/g = design acceleration coefficient

For different soil type

#### 3.4. Wind Load

High-rise buildings are strongly sensitive to wind loads and wind forces are applied to exposed surfaces of the building

#### 3.4.1. Design wind pressure (Pz)

Wind speed in the atmospheric boundary layer increases with height from at ground level to maximum at a height called the gradient height. The basic wind speed (Vb) shall be modified to include risk level, terrain roughness, height of the structure and local topography to get the design wind velocity Vz .Design wind pressure ( $Pz_1$  shall be calculated as per the clauses of IS: 875 (Part 3):2015

$$Pz = 0.6 \times Vz^2$$

Where, Vz = Basic wind Velocity

 $V_b$  = 39 m/s Basic wind speed for Pune.

 $V_z = K_1 X K_2 X K_3 X K_4 X V_b$ 

Coefficients considered for computing pz

 $k_1$  = probability factor = 1

k<sub>2</sub>=terrain, height and structure size

Factor >calculated as per the provisions of Clause 6.3.2.2 and Table 2.

k<sub>3</sub> =Topography factor = 1.0

 $k_4$  = Importance factor = 1.0

 Table 1.3- The 'k<sub>2</sub>' Values for terrain category

 "3"

| Height<br>(m) | K2 Factor |
|---------------|-----------|
| 10            | 0.91      |
| 15            | 0.97      |
| 20            | 1.01      |
| 30            | 1.06      |
| 50            | 1.12      |
| 100           | 1.20      |
| 150           | 1.24      |
| 200           | 1.27      |

#### 3.4.2. Dynamic Wind Load

Static wind effect primarily causes elastic bending and twisting of structure. For tall, long span and slender structures dynamic analysis of the structure is essential, Wind gusts causes fluctuating forces on the structure which induce large dynamic motions, including oscillations, several failures of structures have occurred in India due to wind. As high –rise being flexible and when subjected to randomly varying wind will it experience wind forces which acts in the direction of wind known as along wind component which results buffeting effects caused by turbulence. As per IS875:2015 clause no. 7.1 Dynamic analysis need to be done, if the aspect ratio i.e. height



to minimum lateral dimension ratio is more than 5 or the natural frequency in the first mode is less than 1.0.Hz. For Calculation of Time Period

### 3.4.3. Along wind load -

As per IS875:2015 clause no.8.3 and figure 8, figure 9, figure 10, figure 11 We can calculate Gust Factor and dynamic wind. Along wind load on a structure on a strip area (a) at any height (2) is given by,

#### Fz = Cf \* Ae \* Pz \* G

Where.

Fz = along wind load on the structure at any height z corresponding to strip area

Cf = force coefficient for the building

Ae = effective frontal area considered for the structure at height c,

Pz = Design pressure at height z due to hourly mean wind obtained as 0.6Vz 2 (N/m2)

G= Gust factor given by,

$$G = 1 + g_t r \sqrt{\left[B (1+\phi)^2 + \frac{SE}{\beta}\right]}$$

## 3.4.4. Gust Factor

It is the ratio between the peak wind gust of a specific duration to the mean wind speed for a period of time.

| Table.1.4-Gust | Wind | Load | Coefficient |
|----------------|------|------|-------------|
|----------------|------|------|-------------|

| Н  | = | Total height of main           |
|----|---|--------------------------------|
|    |   | structure of the building in   |
|    |   | meters above Ground level      |
| В  | = | Breadth of a structure in the  |
|    |   | horizontal plane normal to     |
|    |   | wind direction                 |
| D  | = | Maximum base dimension of      |
|    |   | building in meters             |
|    |   | In a direction parallel to the |
|    |   | applied wind force.            |
| Tx | = | Time period of building        |
|    |   | /structure in along wind       |
|    |   | direction                      |
|    |   | (corresponding displaced       |
|    |   | Mode)                          |
| fx | = | l/T                            |
| gR | = | Peak factor for resonant       |

|     | 1 | 1                                                                                                        |
|-----|---|----------------------------------------------------------------------------------------------------------|
|     |   | response                                                                                                 |
|     |   | √[2ln(3600Xfa)]                                                                                          |
| β   | = | Damping Coefficient                                                                                      |
| k1  | = | Probability factor(risk                                                                                  |
|     |   | coefficient)                                                                                             |
| K2  | = | Terrain roughness and                                                                                    |
|     |   | height factor                                                                                            |
| К3  |   | Topography factor                                                                                        |
| k4  | = | Importance factor for                                                                                    |
|     |   | cyclonic region                                                                                          |
| Vb  | = | Regional wind basic speed.                                                                               |
| Vhd | = | Design Hourly mean wind                                                                                  |
|     |   | speed at height z                                                                                        |
|     | = | Vhd = Vb k1 k2 k3 k4                                                                                     |
| Pz  | = | Wind pressure at height z                                                                                |
|     | = | 0.60 Vhd2                                                                                                |
| Pd  | = | Design Wind Pressure                                                                                     |
|     | = | Kd Ka Kc pz                                                                                              |
| Lh  | = | Measure of effective                                                                                     |
|     |   | turbulence length scale at                                                                               |
|     |   | height h                                                                                                 |
| N   | = | Effective reduced frequency                                                                              |
| Е   | = | Spectrum of turbulence in                                                                                |
|     |   | the approaching wind                                                                                     |
|     |   | stream                                                                                                   |
| b0h | = | Average breadth of building                                                                              |
|     |   | between 0 to h                                                                                           |
| S   | = | Size reduction factor                                                                                    |
|     |   | $S = \frac{1}{\left[1 + \frac{3.5f_a \ h}{V_{h,d}}\right] \left[1 + \frac{4f_a b_{0h}}{V_{h,d}}\right]}$ |
| Hs  | = | Height Factor for resonance                                                                              |
|     |   | response                                                                                                 |
|     |   | $H_s = 1 + \left(\frac{s}{h}\right)^2$                                                                   |
| gv  | = | Peak factor for upwind velocity                                                                          |
|     |   | fluctuation                                                                                              |

L



www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

| Су   | = | Lateral correlation constant             |
|------|---|------------------------------------------|
|      |   | which may be taken as 10 in the          |
|      |   | absence of more precise load             |
|      |   | data.                                    |
| Cz   | = | Longitudinal correlation                 |
|      |   | constant which may be taken as           |
|      |   | 12 in the absence of more                |
|      |   | precise load data.                       |
| Ih,i | = | Turbulence intensity at height h         |
|      |   | in terrain category i                    |
| r    | = | roughness factor which is twice          |
|      |   | the longitudinal turbulence              |
|      |   | intensity (lh) = 2ln                     |
| Bs   | = | Background Factor indicates the          |
|      |   | measure of slowly s varying              |
|      |   | component of fluctuating wind            |
|      |   | load caused by lower frequency           |
|      |   | wind speed variations.                   |
| ф    | = | factor to account for second order       |
|      |   | turbulence intensity                     |
|      |   | $\phi = \frac{g_v I_{hi} \sqrt{B_s}}{2}$ |
| Gx   | = | Gust Factor                              |
|      |   |                                          |

Volume: 08 Issue: 07 | July 2021

 Table .1.5 - Hourly mean wind speed factor

 different heights

| Height(m) | K2     |
|-----------|--------|
|           | factor |
|           |        |
| Up to 10  | 0.5    |
|           |        |
| 15        | 0.55   |
|           |        |
| 20        | 0.59   |
|           |        |
| 30        | 0.64   |
|           |        |
| 50        | 0.7    |
|           |        |

| 100 | 0.79 |
|-----|------|
| 150 | 0.84 |
| 200 | 0.88 |
| 250 | 0.91 |
| 300 | 0.93 |
| 350 | 0.95 |
| 400 | 0.97 |
| 450 | 0.98 |
| 500 | 0.99 |



Figure..1.4: Value of gfr and L(h)



Figure.1.5: Value of background factor



International Research Journal of Engineering and Technology (IRJET)Volume: 08 Issue: 07 | July 2021www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072



Fig. 10 Size Reduction Factor, S

Figure.1.6: Size reduction factor



Figure. 1.7: Gust Energy Factor

Table .1.6 Gust Factor – X direction

|      | Total height of main      |       | m   |
|------|---------------------------|-------|-----|
|      | structure of the          |       |     |
|      | building in meters        |       |     |
| Н    | above Ground level        | 71.60 |     |
|      | Breadth of a structure    | 3     | m   |
|      | in the horizontal plane   | 9     |     |
|      | normal to wind            |       |     |
|      | direction                 | 4     |     |
| В    |                           | 8     |     |
|      | Maximum base              |       | m   |
|      | dimension of building     |       |     |
|      | in meters in a direction  |       |     |
|      | parallel to the applied   |       |     |
| D    | wind force.               | 12.75 |     |
| Tx   | 0.09 h/sq39.48            | 1.03  | Sec |
| f0x  | l/T                       | 0.97  | Sec |
|      | For H =                   | 1300. |     |
| L(h) |                           | 00    |     |
| gfr  | For H =                   | 1.30  |     |
|      | Lateral correlation const |       |     |
|      | which may be taken as     |       |     |
|      | in the absence of m       |       |     |
| Су   | precise load data         | 10.00 |     |
| Cz   | Longitudinal correlation  | 12.00 |     |

|       | constant which may be                         |       |     |
|-------|-----------------------------------------------|-------|-----|
|       | taken as 12 in the                            |       |     |
|       | absence of more precise                       |       |     |
|       | load data                                     |       |     |
| LAM   | $\int \frac{d}{dt} \frac{d}{dt} \frac{d}{dt}$ |       |     |
|       |                                               |       |     |
| DALX  |                                               |       |     |
| )     |                                               | 0.46  |     |
| Czh/  |                                               |       |     |
| L(h)  |                                               | 0.66  |     |
|       | Background factor                             |       |     |
|       | indicating a measure                          |       |     |
|       |                                               |       |     |
|       | of slow varying                               |       |     |
|       | compound of                                   |       |     |
|       | fluctuating wind load                         |       |     |
|       | & is obtained from                            |       |     |
| BX    | fig.9                                         | 0.70  |     |
| Categ | For H =                                       |       |     |
| oru   | 10111                                         |       |     |
| Ory   | Degional water de la l                        | L     |     |
|       | Regional wind basic                           | 00.00 | m/s |
| Vb    | speed, for Pune                               | 39.00 |     |
|       | Probability factor, for                       |       |     |
| k1    | 50 year return period                         | 1.00  |     |
|       | Hourly mean wind                              |       |     |
|       | speed factor                                  |       |     |
| 1-2   | (and table 22)                                | 0.74  |     |
| KZ    |                                               | 0.74  |     |
|       | Topography factor, for                        |       |     |
| k3    | flat terrain                                  | 1.20  |     |
|       | Hourly mean wind                              |       |     |
| V1h   | speed at height z                             |       |     |
|       | $V_{1z} = V_{b} k_{1} k_{2} k_{3}$            | 34.63 | m/s |
|       | Design pressure at                            |       | , . |
|       | hoight a due to                               |       |     |
| 1     |                                               |       |     |
| pzı   | hourly mean wind                              |       |     |
|       | 0.60 Vz2                                      | 719.6 | N/m |
|       |                                               | 3     | 2   |
| F0    | Czf0h/V1h                                     | 24.09 |     |
|       | Size reduction factor                         |       |     |
| SY    | fig 10                                        | 0.12  |     |
|       | 116 10                                        | 0.12  |     |
| TUL(h |                                               |       |     |
| )/V1  |                                               |       |     |
| h     |                                               | 36.44 |     |
|       | Measure of available                          |       |     |
|       | energy in the wind                            |       |     |
|       | stream at the natural                         |       |     |
|       | froquoncy of                                  |       |     |
| Б     | the atmuster (C 11)                           | 0.01  |     |
| E     | the structure (fig 11)                        | 0.01  |     |
| Beta  | Damping coefficient –                         |       |     |
| Bd    | for RC structures                             | 0.016 |     |
| f     | (g f r B0.5)/4                                |       |     |
|       | 0.00 for building                             |       |     |
|       | higher than 25m in                            |       |     |
|       | anglici tilali 2011 III                       | 0.00  |     |
|       | category – 3                                  | 0.00  |     |
| GX    | guest factor                                  |       |     |
|       | 1 + g f r [B(1+f)2 +                          |       |     |
|       | SE/b]0.5                                      | 2.14  |     |
|       |                                               |       |     |

ISO 9001:2008 Certified Journal



International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 08 Issue: 07 | July 2021www.irjet.netp-ISSN: 2395-0072

Table.1.7. Gust Factor – Y direction

|      | Total height                                                                                                |         |     |
|------|-------------------------------------------------------------------------------------------------------------|---------|-----|
|      | of main                                                                                                     |         |     |
|      | structure of                                                                                                |         |     |
|      | the building                                                                                                |         |     |
|      | in meters                                                                                                   |         |     |
|      | above                                                                                                       |         |     |
| Н    | Ground level                                                                                                | 71.60   | m   |
| -    | Breadth of a                                                                                                |         |     |
|      | structure in                                                                                                |         |     |
|      | the                                                                                                         |         |     |
|      | horizontal                                                                                                  |         |     |
|      | nlana                                                                                                       |         |     |
|      |                                                                                                             |         |     |
|      | normal to                                                                                                   |         |     |
| D    | wind                                                                                                        | 10 75   |     |
| В    | airection                                                                                                   | 12.75   | m   |
|      | Maximum                                                                                                     |         |     |
|      | base                                                                                                        |         |     |
|      | dimension of                                                                                                |         |     |
|      | building in                                                                                                 |         |     |
|      | meters in a                                                                                                 |         |     |
|      | direction                                                                                                   |         |     |
|      | parallel to                                                                                                 |         |     |
|      | the applied                                                                                                 |         |     |
| D    | wind force.                                                                                                 | 39.45   | m   |
|      | 0.09                                                                                                        |         |     |
| Ту   | h/sq12.75                                                                                                   | 1.80    | Sec |
| f0y  | l/T                                                                                                         | 0.55    | Sec |
| -    | For H                                                                                                       |         |     |
|      | =71.6m                                                                                                      |         |     |
|      | value is                                                                                                    |         |     |
|      | obtained                                                                                                    |         |     |
| L(h) | from fig. 8                                                                                                 | 1300.00 |     |
|      | For H                                                                                                       |         |     |
|      | =71.6m                                                                                                      |         |     |
|      | value is                                                                                                    |         |     |
|      | obtained                                                                                                    |         |     |
| gfr  | from fig 8                                                                                                  | 1.30    |     |
| 0    | Lateral                                                                                                     | 1.00    |     |
|      | correlation                                                                                                 |         |     |
|      | constant                                                                                                    |         |     |
|      | which may                                                                                                   |         |     |
|      | bo takan as                                                                                                 |         |     |
|      | De taken as                                                                                                 |         |     |
|      | 10 in the                                                                                                   |         |     |
|      | absence of                                                                                                  |         |     |
|      | more precise                                                                                                | 10.0-   |     |
| Су   | load data                                                                                                   | 10.00   |     |
|      | Longitudinal                                                                                                |         |     |
|      |                                                                                                             |         |     |
|      | correlation                                                                                                 |         |     |
|      | correlation<br>constant                                                                                     |         |     |
|      | correlation<br>constant<br>which may                                                                        |         |     |
|      | correlation<br>constant<br>which may<br>be taken as                                                         |         |     |
|      | correlation<br>constant<br>which may<br>be taken as<br>12 in the                                            |         |     |
|      | correlation<br>constant<br>which may<br>be taken as<br>12 in the<br>absence of                              |         |     |
|      | correlation<br>constant<br>which may<br>be taken as<br>12 in the<br>absence of<br>more precise              |         |     |
| Çz   | correlation<br>constant<br>which may<br>be taken as<br>12 in the<br>absence of<br>more precise<br>load data | 12.00   |     |

| LAMDA(X)   | Cyb / (Cz H)        | 0.15   |       |
|------------|---------------------|--------|-------|
| Czh/L(h)   | , , , ,             | 0.66   |       |
|            | Background          |        |       |
|            | factor              |        |       |
|            | indicating a        |        |       |
|            | measure of          |        |       |
|            | slow varying        |        |       |
|            | compound of         |        |       |
|            | fluctuating         |        |       |
|            | wind load &         |        |       |
|            | is obtained         |        |       |
| BX         | from fig.9          | 0.01   |       |
|            | For H =             |        |       |
| Category   | 71.6m               | 3      |       |
|            | Regional            |        |       |
|            | wind basic          |        |       |
| _          | speed, for          |        |       |
| Vb         | pune                | 39.00  | m/s   |
|            | Probability         |        |       |
|            | factor, for 50      |        |       |
|            | year return         | 4.00   |       |
| k1         | period              | 1.00   |       |
|            | Hourly mean         |        |       |
|            | wind speed          |        |       |
| 1.2        | factor (see         | 0.74   |       |
| KZ         | table 33)           | 0.74   |       |
|            | Topography          |        |       |
| 1-2        | factor, for         | 1 20   |       |
| K3         | flat terrain        | 1.20   |       |
|            | Hourly mean         |        |       |
| V1h        | at hoight g         |        |       |
| VIII       | $V_{1,r} = V_{1,r}$ |        |       |
|            | V12 = VD K1<br>V2V2 | 2162   | mls   |
|            | R2 K3               | 34.03  | 111/5 |
|            | proceuro at         |        |       |
|            | height z due        |        |       |
|            | to hourly           |        |       |
| nz1        | mean wind           |        |       |
| P***       | 0.60 V72            |        | N/m   |
|            |                     | 719.63 | 2     |
| F0         | Czf0h/V1h           | 13.75  |       |
| -          | Size                |        |       |
|            | reduction           |        |       |
| SX         | factor fig 10       | 0.13   |       |
| f0L(h)/V1h |                     | 20.80  |       |
|            | Measure of          |        |       |
|            | available           |        |       |
|            | energy in the       |        |       |
|            | wind stream         |        |       |
|            | at the              |        |       |
|            | natural             |        |       |
|            | frequency of        |        |       |
|            | the structure       |        |       |
| E          | (fig 11)            | 0.12   |       |
| Beta Bd    | Damping             | 0.016  |       |

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 718



Volume: 08 Issue: 07 | July 2021

www.irjet.net

p-ISSN: 2395-0072

|    | coefficient – |      |  |
|----|---------------|------|--|
|    | for RC        |      |  |
|    | structures    |      |  |
| f  | (gfrB0.5)/4   |      |  |
|    | 0.00 for      |      |  |
|    | building      |      |  |
|    | higher than   |      |  |
|    | 25m in        |      |  |
|    | category – 3  | 0.00 |  |
| GY | guest factor  |      |  |
|    | 1 + g f r     |      |  |
|    | [B(1+f)2 +    |      |  |
|    | SE/b]0.5      | 2.29 |  |

# Table.1.8: Dynamic wind load calculation

| S  | Не  | Cum.H | K2    | Gx   | Gy   | Pz      | Fx     | Fy      |
|----|-----|-------|-------|------|------|---------|--------|---------|
| t  | ig  | t     |       |      |      |         |        |         |
| 0  | ht  |       |       |      |      |         |        |         |
| r  |     |       |       |      |      |         |        |         |
| e  |     |       |       |      |      |         |        |         |
| у  |     |       |       |      |      |         |        |         |
| 24 | 2.9 | 71.6  | 0.744 | 2.55 | 2.51 | 505.293 | 67.542 | 207.270 |
| 23 | 2.9 | 68.7  | 0.739 | 2.53 | 2.51 | 498.228 | 67.542 | 204.352 |
| 22 | 2.9 | 65.8  | 0.743 | 2.53 | 2.51 | 491.213 | 66.591 | 201.454 |
| 21 | 2.9 | 62.9  | 0.728 | 2.53 | 2.51 | 484.288 | 65.647 | 198.578 |
| 20 | 2.9 | 60.0  | 0.723 | 2.53 | 2.51 | 477.333 | 64.709 | 195.721 |
| 19 | 2.9 | 57.1  | 0.718 | 2.53 | 2.51 | 470.467 | 63.779 | 195.721 |
| 18 | 2.9 | 54.2  | 0.713 | 2.53 | 2.49 | 463.651 | 62.855 | 192.886 |
| 17 | 2.9 | 51.3  | 0.708 | 2.53 | 2.49 | 456.885 | 61.937 | 188.679 |
| 16 | 2.9 | 48.4  | 0.702 | 2.51 | 2.49 | 450.169 | 61.027 | 185.906 |
| 15 | 2.9 | 45.5  | 0.695 | 2.51 | 2.49 | 441.062 | 59.398 | 182.145 |
| 14 | 2.9 | 42.6  | 0.687 | 2.51 | 2.49 | 430.092 | 57.921 | 177.615 |
| 13 | 2.9 | 39.7  | 0.678 | 2.51 | 2.09 | 419.260 | 56.462 | 173.141 |
| 12 | 2.9 | 36.8  | 0.669 | 2.51 | 2.09 | 408.566 | 55.022 | 141.601 |
| 11 | 2.9 | 33.9  | 0.660 | 2.5  | 2.09 | 398.011 | 53.600 | 137.942 |
| 1  | 2.9 | 31    | 0.652 | 2.5  | 2.09 | 387.593 | 51.847 | 134.332 |
| 0  |     |       |       |      |      |         |        |         |
| 9  | 2.9 | 28.1  | 0.643 | 2.5  | 2.09 | 377.314 | 50.472 | 130.769 |
| 8  | 2.9 | 25.2  | 0.631 | 2.48 | 2.09 | 362.786 | 48.529 | 125.734 |
| 7  | 2.9 | 22.3  | 0.616 | 2.48 | 2.09 | 346.292 | 46.006 | 120.017 |
| 6  | 2.9 | 19.4  | 0.602 | 2.46 | 2.09 | 330.181 | 43.865 | 114.434 |
| 5  | 2.9 | 16.5  | 0.585 | 2.09 | 2.09 | 312.528 | 41.231 | 108.316 |
| 4  | 2.9 | 13.6  | 0.562 | 2.09 | 2.09 | 288.879 | 32.262 | 99.898  |
| 3  | 2.9 | 10.7  | 0.539 | 2.09 | 2.09 | 264.933 | 29.563 | 91.280  |
| 2  | 2.9 | 7.8   | 0.553 | 2.09 | 2.09 | 278.879 | 25.253 | 79.072  |
| 1  | 2.9 | 4.9   | 0.5   | 2.09 | 2.09 | 288.150 | 21.574 | 66.802  |
| G  | 2.0 | 2     | 0.5   | 2.09 | 2.09 | 288.150 | 8.806  | 27.266  |