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Abstract – This paper gives an account of how the 

frequency estimation problem can be reformulated and 

solved as a linear regression problem. The resulting solution 

is shown to be prone to noise due to differentiation-based 

signal noise-amplification inherent in the linear regression 

model formulation. This drawback is mitigated by using the 

signal’s autocorrelation function rather than the signal 

itself. 
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1. INTRODUCTION 
The frequency estimation problem is one of the actively 

researched problems in various fields which make use of 

signal and data processing. The techniques used for 

frequency estimation can largely be classified as 

time/spatial domain-based methods [1], [2], [3], [4], [5], 

[6] and frequency domain-based methods [3], [4], [7]. In 

many time-domain formulations, the problem is posed as a 

nonlinear problem [8], [9]. Frequency estimation can be 

considered as a special case of a more general problem of 

parameter and state estimation often encountered in 

control systems design and signal processing. This 

problem is relevant in many fields of Science including 

Physics [10], [11], Engineering [11], [12],  Finance and 

Economics  [13], and many others.  

In this paper, we present one way to model the frequency 

estimation problem as a linear regression problem with a 

closed-form solution. The approach is based on shifting 

the problem from how the signal output is related to time 

or frequency to how the signal output is related to itself 

either sequentially (i.e. autoregressively) or differentially 

(i.e. satisfying a particular time-invariant differential 

equation). In both cases, there are time-invariant 

coefficients that can be estimated in a linear regression 

problem formulation.   

The rest of this paper is organized as follows. Section 2 

presents a general damped second-order oscillatory 

system model from which a free/unforced oscillation 

response model is adopted as a baseline model for 

frequency estimation. Section 3 gives a detailed account of 

formulating the frequency estimation problem as a linear 

regression problem. It is shown here that either the raw 

data or the autocorrelation function of the data can be 

used for frequency estimation, with the drawbacks of each 

option mentioned. Section 4 presents simulation results 

for the models in Section 3 and gives a brief discussion on 

these results. Section 5 concludes this work with a 

summary of major findings and some remarks.   

2. A DAMPED OSCILLATOR MODEL 
2.1 General Second-order System 
A general causal second-order system can be with input  
     and output      can be modeled as shown below [12],  

    
  

 
      

                
      (1) 

with    is the natural frequency,   is the quality factor (  - 

factor), a measure of how damped the system is or the 

selectivity in the frequency of the system. The low-frequency 

gain   controls the low pass filtering behaviour independent of 

resonance while   and   are the gains associated with high 

pass filtering and bandpass filtering respectively. The 

resulting transfer function takes the following form [12], 
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with   as the Laplace parameter in the frequency domain. 

The transfer function model is very useful for frequency 

domain analysis and design such as pole placement is 

done in control theory and filter design.  

2.2 Free/Unforced Damped Response 
An unforced/undriven harmonic oscillation can be 

modeled by the homogeneous part of equation (1) as 

shown below, 

    
  

 
      

        (3) 

 with its solution taking the following form, 

               (   √      )       (4) 
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where   is the amplitude,   is the signal offset,   is the 

phase offset and the parameter          is the damping 

ratio. 

3. REGRESSION-BASED FREQUENCY ESTIMATION 
3.1 Signal Data-based Linear Regression Model 
Given a data        of size   (i.e.            ) from an 

oscillatory process, we can formulate the problem of 

frequency estimation as a linear regression problem by 

adopting equation (3) as part of the regression cost 

function shown below, 

       ∑    
      

       
  

       (5) 

with      
   and     

 . The resulting optimal 

solution to this regression problem is given by, 
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 From which the frequency and quality factor are 

estimated as, 

   √      (8) 

     
       (9) 

In this data-based formulation, this model does not 

perform well in noisy data as explained in the next section. 

3.2 Autocorrelation-based Linear Regression Model 

Looking at the cost function in equation (5), one sees that 
it involves derivatives of the data and this differentiation 
can amplify the high-frequency noise content in the data 
and lead to inaccurate frequency estimation. One way to 
counter this drawback is by replacing the data        with 
its autocorrelation function        in the cost function 
above.  The resulting optimal solution takes the same form 
as the one derived above except for    being replaced by    
everywhere as shown below, 
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Introducing the autocorrelation function has a summing 
and an averaging effect which can be inferred as 
integration and filtering. This integrating effect counters 
and compensates for the derivative operations in the cost 
function thus improving the noise-rejection feature of the 

linear regression model. The autocorrelation operation 
can be performed on the autocorrelation function itself to 
further improve the noise-rejection feature. Since the 
frequency of the data is invariant to autocorrelation 
operation, the frequency estimation will not be affected by 
using the autocorrelation function over the data itself. 
However, the quality factor is not invariant under 
autocorrelation operation, hence it is subject to change 
thus not necessarily giving a good estimate of the quality 
factor inherent in the data itself.  

4. SIMULATION RESULTS & DISCUSSION 
This section presents the simulation of the proposed linear 

regression model for a case of noiseless data and a case of 

noisy data. Below we begin with a case of noiseless data. 

4.1 Frequency Estimation With Noiseless Data 
4.1.1 Signal Data-based Frequency Estimation 
Fig. 1 below shows the plot of data from which the 

frequency should be estimated with the regression model 

described in the previous section. The data was generated 

with the following parameters corresponding to 

equation(4);      ,      ,             , 

                        ,                  . 

Fig. 1 Noiseless data. 

Fig. 2 below shows the same data shown in Fig. 1 but with 

a constant offset estimate      ∑   
 
             

removed, resulting in zero-mean data.  

Fig. 2 Zero-mean noiseless data. 
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The estimated offset           is      lower than the 

exact value of      0. Fig. 3 below shows the first 

derivatives of the zero-mean data. The effect of noise-

amplification is not evident since the underlying is noise-

free. 

Fig. 3 The first derivatives of zero-mean data. 

Fig. 4 below shows the second derivatives of the zero-

mean data which also looks clean due to the underlying 

data being noise-free. 

Fig. 4 The second derivatives of zero-mean data. 

Based on the zero-mean data and its first two orders of 

differentiation, the linear regression model explained in 

the previous section was used to estimate the frequency 

and quality factor. 

Fig. 5 Frequency and Q-factor estimates simulated. 

Fig. 5 above shows the plot of linear regression model-

based estimate superimposed on the zero-mean data. The 

recovered frequency and damping ratio estimates are, 

   √                (12) 

  
 

   
 

      

      
           (13) 

with the estimated frequency being off by        from 

the exact value and the estimated damping ratio being off 

by      from the exact value. The amplitude and phase 

offset are not estimated in this work since the main focus 

is on estimating the frequency.  

4.1.2 Autocorrelation-based Frequency Estimation 
Fig. 6 below shows the plot of the autocorrelation function 

of the zero-mean data superimposed on the zero-mean 

data plot. The same frequency estimation will be carried 

out using the autocorrelation function and its derivatives 

here. The idea is to compare these two ways of estimating 

frequency under both noise-free and noise-infested data 

cases. 

Fig. 6 Zero-mean data and its autocorrelation function. 
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Fig. 7 below shows the first-order derivatives of the 

autocorrelation function shown in Fig. 6 above. 

Fig. 7 Autocorrelation function’s first derivatives. 

Fig. 8 below shows the second derivatives of the 

autocorrelation function shown in Fig. 6 above. 

Fig. 8 Autocorrelation function’s second derivatives. 

Based on the autocorrelation function and its first two 

orders of differentiation, the linear regression model 

explained in the previous section was used to estimate the 

frequency of the zero-mean data and the quality factor of 

the autocorrelation function itself. 

Fig. 9 Frequency and Q-factor estimates simulated. 

Fig. 9 above shows the plot of the resulting linear 

regression model-based estimate superimposed on the 

autocorrelation function. The recovered frequency and 

damping ratio estimates are, 

   √                 (14) 

  
 

   
 

      

      
          (15) 

with the estimated frequency being off by       from the 

exact value. The estimation error here is about 18 times 

higher than in the previous case of the signal data-based 

estimation approach. The damping factor here is not 

related to our data of interest but rather related to its 

autocorrelation function. It can be observed qualitatively 

from the plot in Fig. 9 that the estimated damping ratio is 

smaller than that of the autocorrelation function based on 

the slower damping effect on the estimate compared to 

that seen on the autocorrelation function. The amplitude 

and phase offset are not estimated in this work since the 

main focus is on estimating the frequency.  

4.2 Frequency Estimation With Noisy Data 
4.2.1 Signal Data-based Frequency Estimation 
In this second case or experiment, we look at the two 

frequency estimation approaches under the noise-infested 

signal data. The signal data has the same parameter setup 

as in the previous case except that here the is also an 

additive zero-mean white noise with an amplitude of     .  

Fig. 10 The plot of noisy data. 

Fig. 10 above shows the plot of this noise signal data based 

on the model in equation (4). As before Fig. 11 below 

shows the zero-mean version of the noise data. 
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Fig. 11 Zero-mean noisy data. 

The offset   was estimated as before and found to be 

         which is    off from the exact value. Fig. 12 

below shows the first-order derivatives of the noisy data. 

It becomes clear here that the noise inherent in the data 

gets amplified by taking the derivatives as one looks at the 

magnitude. 

Fig. 12 The first derivatives of zero-mean data. 

Fig. 13 below shows the second-order derivatives of the 

signal data. This shows even further noise amplification. 

Fig. 13 The second derivatives of zero-mean data. 

Fig. 14 below shows the data-based frequency estimation 

model plot superimposed on the zero-mean signal data 

plot.   

Fig. 14 Frequency and Q-factor estimate simulated. 

It is unclear what to make of this estimate plot other than 

saying it has failed to reasonably estimate both the 

frequency and damping ratio. This is because the resulting 

frequency and damping ratio estimates are given as, 

  

   √                   (16) 

  
 

   
 

        

        
        (17) 

which are both out by more than     . It was expected 

that the data-based estimation model will fail in the 

presence of noise due to the inherent noise-amplification 

in the model formulation. Next, we look at how the 

autocorrelation based estimation model handle the same 

problem under the same noise conditions, 

4.2.2 Autocorrelation-based Frequency Estimation 
 
Fig. 15 below shows the plot of the autocorrelation of the 

noisy data superimposed o the plot of the noisy data itself. 

Fig. 15 Data and its autocorrelation function. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 07 | July 2021                www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 6 
 

Fig. 16 shows the first derivatives of the autocorrelation 

function of the noisy data. It can be seen that both Fig 15 

and Fig 16 plots show a significant noise-rejection or 

noise-attenuation due to the integrating and/or averaging 

effect inherent in the autocorrelation function operation. 

Fig. 16  Autocorrelation function’s first derivatives. 

Fig. 17 shows the second-order derivatives of the 

autocorrelation function of the noisy data, which also look 

fairly clean. 

Fig. 17 Autocorrelation function’s second derivatives. 

Based on the autocorrelation function and its first two 

orders of differentiation, the linear regression model 

explained in the previous section was used to estimate the 

frequency of the zero-mean data and the quality factor of 

the autocorrelation function itself. 

Fig. 18 Frequency and Q-factor estimate simulated. 

Fig. 18 above shows the plot of the resulting linear 

regression model-based estimate superimposed on the 

autocorrelation function. The recovered frequency and 

damping ratio estimates are, 

   √                (18) 

  
 

   
 

      

      
          (19) 

with the estimated frequency being off by       from the 
exact value. The frequency estimation error here is still 
very good even under the condition of noise-infested 
signal data. This is indicative of the high robustness of the 
autocorrelation-based linear regression model for 
estimating frequency. The estimated damping factor can 
still be observed qualitatively from the plot in Fig. 9 to be 
smaller than that of the autocorrelation function based on 
the slower damping effect on the estimate compared to 
that seen on the autocorrelation function. The amplitude 
and phase offset are not estimated in this work since the 
main focus is on estimating the frequency. 

5. CONCLUSIONS 
In this work, we have successfully shown how the 

frequency estimation problem can be posed as a linear 

regression problem based on the differential relationship 

of the oscillatory data. It was shown that this model 

suffers from noise amplification due to the differential 

operations inherent in the linear regression formulation. 

This drawback was successfully mitigated by using the 

autocorrelation function of the data instead of the data 

itself. This noise mitigation also brought a problem of not 

being able to obtain a good estimate of the quality factor in 

case one wishes to estimate both the frequency and 

quality factor from the data. It would be interesting to 

investigate the autoregressive relationship of the 

oscillatory data as the basis for the linear regression 

model since it is likely to not suffer from noise 

amplification brought about by the differential operations. 
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