
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3974

VERIFICATION OF FIRMWARE CONTROLLED NVME HOST

Bishwapa Sanyal1, Namita Palecha2

1UG Student, Department of Electronics and Communication, RV College of Engineering, Bengaluru, India.
2Assistant Professor, Department of Electronics and Communication, RV College of Engineering, Bengaluru, India.
---***---

Abstract - NVMe™ (Non Volatile Memory Express®) is a
new storage access and transport protocol for flash and next-
generation solid-state drives (SSDs) that delivers the highest
throughput and fastest response times. The NVMe protocol
accesses flash storage via a PCIe bus, which is much faster
than hard disks and traditional flash architectures and
delivers high bandwidth. Functional Verification is a task that
ensures the implemented design conforms to the specification.
The Universal Verification Methodology (UVM) is a
standardized methodology for verifying integrated circuit
designs and assembling test environments utilizing
constrained random stimulus generation and functional
coverage methodologies of SystemVerilog. The primary
objective of this paper is to achieve a complete functional
verification of the NVMe Soft host and ensuring that the
subsystem meets all the requirements and features as
described in the specification document. In this paper, the
NVMe soft host implements an internal PCIe Device that is
intended to be able to receive TLPs routed from other switch
ports, and to generate TLPs destined for PCIe targets.
Universal Verification Methodology (UVM) is used for
verification and simulations are carried out using Cadence
NCsim tool.

Key Words: Non-Volatile Memory Express (NVME),
Peripheral Component Interconnect Express (PCIE),
Functional Verification, Universal Verification
Methodology (UVM), Layered Testbench Architecture.

1. INTRODUCTION

Functional verification is defined as a process in which the
functional correctness of a design is determined with respect
to the specifications of the design. It verifies that the RTL
design meets the specifications from a functional
perspective. It assumes that the design specification is
correct and cannot confirm the correctness of the design
specifications. The fundamental purpose of functional
verification is that it ensures the implemented design
conforms to the specification and the failures are detected.
The identified bugs need to be corrected before the design
gets shipped to costumer.

The UVM is an open source standardized method developed
and maintained by Accellera which is used for the
verification of IC designs. It is mainly used for the purpose of
universal Verification IP interoperability. UVM is closely
related OVM from which it is mainly derived to a large extent
which is further related to the eRM Language. The UVM class

library has many modifications as compared to the standard
SystemVerilog language like in packages, formation of
sequences etc. UVM is developed based on an Accellera
standard and supports several company vendors like Xilinx
Simulator(XSIM), Aldec, Mentor Graphics, Cadence, Synopsys
unlike the previous methodologies. The UVM Class Library
also provides configuration database, component hierarchy,
transaction library model (TLM), etc. This enables the user
to virtually create any structure required for the testbench.
The main objective of the Universal Verification
Methodology (UVM) is to improve productivity of the design
by providing a platform that facilitates easier verification of
the design components with a standardized representation
which can be used with different verification tools as
required.

NVM Express (Non-volatile Memory Express) commonly
known as NVMe is a logical-device interface specification
and transport protocol which can access solid-state drives
(SSDs) and flash devices. Hence it is used for accessing a
computer's non-volatile storage media. The advantages of
NVMe are it delivers highest throughput and fastest
response times. PCI Express (PCIe) bus can be used for the
access of flash storage in NVMe protocol via a which helps it
to deliver a high-bandwidth and low-latency. NVMe can be
used for SSDs, multicore CPUs and gigabytes of memory.
NVMe is used in any fields for various applications like AI,
big data, advanced analytics apps and ML and in real-time
interaction platforms of e-commerce, finance, sales and
DevOps as it can complete more number of iterations in
lesser time. NVMe devices are generally available in the form
of standard-sized PCIe expansion cards which uses a U.2
connector and provides a four-lane PCIe interface. The Fig - 1
shows an Intel P3608 NVMe flash SSD, PCI-E add-in card.

PCI Express (Peripheral Component Interconnect Express) is
also known as PCIe or PCI-e. It is a serial point-to-point
protocol which has a very high speed capacity. It is better as
compared to the older bus standards like AGP, PCI and PCI-X
bus and has individual serial interfaces which connects every
device or the endpoint to the Root complex. It has many
widespread applications like in personal computers(PC),
hard adapters of disk drives, graphics cards, Ethernet, Wi-Fi,
etc. Some of the advantages of PCIe over the older standards
are lesser number of I/O pins, maximum bus capacity is
higher and scales better when connected to other bus
devices. It also has an AER mechanism for error detection
and an elaborate report generation. The specifications of the
format are made by the PCI-SIG.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3975

Fig -1: Intel P3608 NVMe flash SSD, PCI-E add-in card
(source: https://en.wikipedia.org/wiki/PCI_Express)

2. LITERATURE SURVEY

The document [1] describes the hardware independent
firmware interface for managing PCI, PCI-X, and PCI
Express™ systems in a host computer. The authors of [2]
describe all verification features of the SystemVerilog
language. The advantages and disadvantages of different
language features along with descriptions of UVM features
are also given. The authors of [3] have developed a scheme
to avoid the timing out of sync problem when PCI Bus
transmits data. This has the capability to solve the problem
of high-speed data transmission between Field
Programmable Gate Array (FPGA) and PC. In [4], a few
approaches to minimize channel impedance discontinuity
and near-end/far-end crosstalk (NEXT/FEXT) are discussed.
Two channels with optimal design practices and regular
design practices are also compared and contrasted. In [5],
the verification of the PCI Express Gen5.0 transactions
between MAC and PHY layer is proposed in the work. The
RTL of PCI Express Gen5.0 is designed in SystemVerilog
language and Universal Verification Methodology (UVM) is
used for verification. Design and implementation of the
interconnection network using PCI Express is proposed in
paper [6]. The accuracy of the initial model is also verified. In
paper [7], a universal verification methodology based
verification environment for PCIe data link layer is built. The
coverage goals are achieved by enhancing the performance
of verification using methods such as reusability, overriding
mechanisms. The authors of [8] have verified the
performance of SOC on a dedicated channel between
peripheral component interconnect express (PCI-e) end
point and memory. The authors of [9] have reviewed the
different types of bus architectures (AGP, PCI, PCI-X, PCIe).
Also the description of how data transfer takes place
between the CPU to the destination in PCIe architecture is
given in this paper. Design and verification of several blocks
of physical layer for PCI Express and USB is done in paper
[10].

3. OVERVIEW OF PCIe

3.1 PCIe Topology

In PCIe, a simple tree topology is present to facilitate
compatibility with older versions of PCI. The A simple PCIe
topology is shown in Fig- 2. CPU is at the top of the PCIe
topology hierarchy.

Root complex is present at the root if the tree of the PCIe
hierarchy is inverted. It communicates as the CPU with the
other components of the system. It behaves as an interface
that might be present between PCIe buses like processor
interface, DRAM interface and CPU.

Endpoints exist at the root of the branches of tree
hierarchy. They act as the initiators and completers on the
bus for various types of transactions. They implement only a
single upstream port and no downstream port. Legacy PCIe
Endpoint is a device that was made when the older bus like
PCI-X has to be operated on newer PCIe interface. These
devices should have an added PCIe interface.

Switch allows more devices to connect to attach to a
single PCIe port. They route the packets and decide the paths
in which the packets are directed based on the address.
Bridges are used provide an interface from PCIe to other
older buses like PCI-X, PCI, etc.

Fig -2: PCIe Topology Example (source:

https://www.mindshare.com/Books/Titles/PCI_Express_
Technology_3.0)

3.2 PCIe Device Layers

The architecture present in PCIe is layered architecture.
The layers operate independently and hence it is easier to
adopt to newer specifications. PCIe has three main layers as
shown in Fig- 3.

Transaction layer is responsible for Transaction Layer
Packet (TLP) creation on the transmit side and TLP decoding
on the receive side. It also manages flow control and
transaction reordering.

Data Link Layer is responsible for Data Link Layer
Packet (DLLP) creation on the transmit side and DLLP
decoding on the receive side. It is also responsible for link
error detection and correction. It processes the TLP received
from transaction layer and forwards it to the physical layer
after addition of CRC and some other bits.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3976

Fig -3: PCIe Device Layers (source:

https://www.mindshare.com/Books/Titles/PCI_Express_
Technology_3.0)

Physical Layer processes all the different types of
packets (TLP, DLLP) transmitted to or received from the link.
It differentially clocks out the packets at the link speed and
receives it on the other side. The link initialization happens
according to the Link Training and Status State Machine
(LTSSM).

3.3 PCIe Packet Types

All PCIe TLPs falls in either of the two categories, posted
or non-posted TLP type. Posted TLPs may contain data
request in the TLP but do not return any completion packet
to the requester after the transaction is complete. For Non-
posted TLPs, the requester waits for the completion TLP to
confirm the completion of the data or control information
transfer. The Memory write (MWr) and Message with and
without data (Msg/MsgD) TLPs in PCIe are posted. Other
TLPs like Configuration read/write (CfgRd/CfgWr), Memory
read (MRd) and completion TLPs are non-posted type.

4. BASIC METHODOLOGY

In order to design a complete testbench environment for
functional verification of NVMe, the primary task is to design
a flowchart for the verification methodology. The flow of
verification is shown in Fig- 4. The individual steps in the
verification flow shown in Fig- 4 are described below:

1. The first step in the verification flow is to understand
the specifications of Design under Test to be verified.

2. After understanding the specifications, the next step is
to prepare a test case document. This test case
document should contain all the test cases possible for
the design.

3. Once the test case document covers more than three-
fourth of the functionalities, the preparation of
testbench architecture document is started.

4. The main components of the testbench architecture
are designed. Some of the components are Transaction

Generator, Agent, Driver, Monitor, Scoreboard,
Checkers, etc.

5. After the documents are prepared, the coding for each
of the components in both the documents are done.

Fig -4: Basic Methodology Flowchart

6. Then simulation is carried out for the environment.
7. If any new tests are found to be added, then it is added

in the test cases document whereas if any new
functionality is found to be added, then it is added in
the testbench architecture document. After addition it
has to be coded again and simulated.

8. After the simulation is completed without any errors,
the coverage analysis is performed.

9. While the automatic tests are executed, the code
coverage calculates the number of lines or branch or
expressions evaluated and executed. Code coverage
includes Line Coverage, Branch Coverage, Expression
Coverage, Toggle Coverage and FSM Coverage.

10. If any holes are found in the coverage model, then the
required test cases are added in the test cases
document whereas if any missing testbench support is
found the coverage model, then the required
testbench is added in the testbench architecture
document. After addition it is coded, simulated and
coverage analysis is performed again.

11. If the coverage report is in the acceptable range, then
the verification flow is terminated otherwise
modifications are performed to bring the report to
acceptable range.

4.1 Testbench Architecture

The testbench architecture used for the verification of
NVMe soft host is shown in Fig -5 below.

For inbound path, the agent on the right side allocates
TLP space in slave memory and captures write transactions
and stores the TLPs into respective FIFOs based on address
ranges. For the outbound path, it writes TLPs into Slave
memory and captures read transactions to verify addresses.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3977

The slave memory has separate space for TLP and MFA.
MFA contains information about the TLP sent like address,
TLP type, TLP length, etc.

The driver on the left side will drive inbound data traffic
and outbound credit updates and the monitor captures
outbound data traffic and inbound credit updates.

The Scoreboards are used to monitor the TLPs and
credits. The reference models are used to check the inbound
and outbound traffic.

Fig -5: Testbench Architecture

4.2 Test Case Coding

For coding each of the test cases for verification, a
standard flow is followed. The Standard UVM phases are
considered while writing the flow. The general flow for
coding test cases is given below in Fig- 6.

Fig- 6: Flow of test case coding

5. RESULTS

The verification is done for most of the TLP types like
configuration read (CfgRd), memory read (MRd), memory
write (MWr), message with and without data (Msg/MsgD)
and Completion (CplD). The waveform for the simulated test
is shown below in Fig- 7. At the bottom of the waveform
window, the edge counts for both TX packtes and RX packets
are also shown. The LTSSM states are also visible. The
transactions start only after the LTSSM is in L0 and Data Link
Layer is up. This verifies that the test is functioning as
required. The test cases are simulated using Cadence NCsim

tool and Universal Verification Methodology (UVM) is used
for verification.

Fig- 7: Waveform obtained after simulation

6. CONCLUSIONS

The paper mainly focuses on the verification of NVME soft
host. The primary objective of the proposed work is to
develop a complete testbench environment for functional
verification of the NVMe Soft host (DUT) using
SystemVerilog and Universal Verification Methodology
(UVM). The secondary objective is to verify that the
subsystem meets all the requirements and features as
mentioned in the specification document.

The testbench is designed keeping in mind all the crucial
components of a general UVM layered testbench and test
case coding is done with the SystemVerilog and UVM. The
simulations obtained using the Cadence NCsim reveal that
the TLPs are successfully transmitted and received and the
functionality is successfully acheived. The states achieved by
the LTSSM are also shown. Hence the design under test is
successfully verified in the given work.

REFERENCES

[1] PCI Firmware Specification Revision 3.3,

https://pcisig.com/specifications, 2021.

[2] Christian B. Spear, “SystemVerilog for Verification: A
guide to learning the Test Bench Language Features”,
3rd Edition, Springer Publications, 2012.

[3] M. Vasa, C. -L. Liao, S. Kumar, C. -H. Chen and B. Mutnury,
"PCIe Gen-5 Design Challenges of High-Speed Servers,"
IEEE 29th Conference on Electrical Performance of
Electronic Packaging and Systems (EPEPS), 2020, San
Jose, CA, USA, pp. 1-3,
doi:10.1109/EPEPS48591.2020.9231458

[4] Y. Tao et al., "Design and implementation of high speed
encryption and decryption system based on PCIE bus,“
IEEE 2nd International Conference on Civil Aviation
Safety and Information Technology (ICCASIT), Weihai,
China, 2020, pp. 369-372, doi:
10.1109/ICCASIT50869.2020.9368599.

[5] G. Rohilla, D. Mathur and U. Ghanekar, "Functional
Verification of MAC-PHY Layer of PCI Express Gen5.0
with PIPE Interface using UVM," International
Conference for Emerging Technology (INCET), Belgaum,
India, 2020, pp. 1-5, doi:
10.1109/INCET49848.2020.9154176.

[6] Shim, C., Cha, Kh. & Choi, M., “Design and
implementation of initial OpenSHMEM on PCIe NTB

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3978

based cloud computing”, Cluster Comput 22, Springer,
2019, https://doi.org/10.1007/s10586-018-1707-0.

[7] Dr. T. C. Thanuja , Akshata, “Universal verification
methodology based verification Environment for PCIe
data link layer” International Research Journal of
Engineering and Technology (IRJET), Vol: 04, 2017.

[8] S. R. Mantripragada and P. Mopuri, "Verifying
performance of PCI express in a system for multi giga
byte per second data transmission," International
Conference on Communication and Electronics Systems
(ICCES), 2017 Coimbatore, India, pp. 1-5, doi:
10.1109/CESYS.2016.7889889.

[9] Pamula, Vinay Kumar & Mantripragada, Sai.,
“Implementation and verification of PCI express
interface in a SoC”, IEICE Communications Express,
2017, 6. 10.1587/comex.2017XBL0056.

[10] Verma, Anuj & Dahiya, Pawan, “PCIe BUS: A State-of-the-
Art-Review”, IOSR Journal of VLSI and Signal Processing
(IOSR-JVSP), 2017. 7. 24-28. 10.9790/4200-
0704012428.

[11] Richard A Prasad, Madhusudan Kulkarni, "Design and
verification of phy interface for PCIe GEN 3.0 and USB
gen 3.1 using uvm methodology," International Research
Journal of Engineering and Technology (IRJET), 2017,
Volume: 04 Issue: 10

[12] M. AbdElSalam, "NVMe Solid State Drive verification
solution using HW Emulation and Virtual Device
Technologies," 11th International Design & Test
Symposium (IDT), Hammamet, Tunisia, 2016, pp. 47-52,
doi: 10.1109/IDT.2016.7843013.

[13] Y. T. Jin, S. Ahn, and S. Lee, \Performance analysis of
nvme ssd-based all-flash array systems," in 2018 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2018, pp. 12-21. doi:
10.1109/ISPASS.2018.00010.

[14] V. K. Pamula and S. Mantripragada, \Implementation
and verication of pci express interface in a soc," IEICE
Communications Express, vol. 6, Jun. 2017.
doi:10.1587/comex.2017XBL0056.

[15] W. Ni and J. Zhang, Research of reusability based on uvm
verication," in 2015 IEEE 11th International Conference
on ASIC (ASICON), 2015, pp. 1{4. doi:
10.1109/ASICON.2015.7517189.

