High Step-Up Interleaved Boost Converter for Distributed Generation Using Renewable and Alternative Power Sources

Mr.K.Dinesh¹, S.Balaji², K.N.Hariprasad³, S.Deepan⁴, R.Amartysen⁵

¹ Assistant Professor, Department of EEE, ^{2, 3, 4,5}UG Students, Department of EEE,

Panimalar Institute of Technology, Chennai, India ***

Abstract - This paper proposes a novel high step-up inter- leaved boost converter suitable for distributed generation using renewable and alternative power sources. The proposed inter- leaved boost converter not only lengthens the lifetime of the renewable power source by reducing the input-current ripple but also achieves high step-up conversion. In addition, the voltage stress of the main switches is lowered due to the lossless passive-clamp circuit. Hence, large voltage spikes across themain switches are alleviated and the efficiency is improved. Finally, a prototype circuit with an input voltage of 48 V,an output voltage of 380 V,and an output rated power of 3.5 kW are implemented and tested to demonstrate the functionality of the proposed converter. Moreover, satisfying experimental results are obtained and discussed in this paper; the measured full-load efficiency is 94.7%, and the highest measured efficiency of the proposed converter is97.3%.

Key Words— High step-up conversion, interleaved boost converter, renewable and alternative power sources.

1. INTRODUCTION

For overcoming energy-shortage and environmental-contamination issues, renewable and alternative power sources that feature cleanliness and sustainability play an important role in the world, and have begun to be employed worldwide for environment protection [1]–[10]. The voltage levels of renewable and alternative power sources, such as photovoltaic cells and fuel cells, are generally low. Thus, high-step-up dc-dc converters have been widely utilized in such renewable energy systems in order to boost their voltage levels[11]-[15].Fig.1showsablockdiagramofatypical distributed generation using renewable and alternative power sources. The high step-up dc-dc converter can convert low levels of input voltage (typically 40~50V)from renewable sources into high levels of outputvoltages(typically380~400V),whicharethenfedi ntoadcloadoradc-ac inverter for supplying ac

sources with an ac load. Hence, the high-step-up dc–dc converter with high efficiency is essential in such power-conversion systems.

The conventional step-up converters, such as the boost converter and flyback converter, obtain high voltage gain by adopting an extremely high duty cycle or high turns ratio of the coupled inductor. The circuit efficiency of these converters is limited due to the equivalent resistances or from the leakage inductance of windings, and high voltage spikes and stresses occur on the semiconductor devices. Adopting an extremely high duty cycle results in large conduction losses, serious diode reverserecovery problems, and [25] electromagnetic interference issues. Because of the high voltage stresses that occur on the power devices, power switches with low $R_{DS(ON)}$ and power diodes with low reverse-recovery time cannot be employed in this type of high-step-up converter.

Some existing converters that utilize coupled inductors to achieve high-voltage conversion ratio, which recycle the leakage-inductance energy and lower the voltage stresses, have been proposed [16]–[20]. Interleaved converter with built-in transformer [21], [22] and interleaved converter with voltage multiplier module [23] or with coupled inductor [24] are another superior solution to obtain high step-up voltage gain and lower input current ripple. The coupled-inductor deals with large dc magnetizing current, so the volume of core is larger and an air gap is required to avoid saturation of core; thus, the cost is higher and the efficiency is lower. On the other hand, the built-in transformer does not deal with large dc magnetizing current, and the voltage gain can be extended by increasing the turns ratio of the build-in transformer without an air gap; thus, the volume of core is smaller and the coupling coefficient as well as the circuit efficiency is higher. This paper proposes a nove[26]I high-step-up interleaved boost converter that not only utilizes the clamp capacitors but also integrates the secondary winding of the built-in transformer; thus, high step-up voltage gain of the presented converter and lower voltage stresses of the power devices are achieved.

The proposed interleaved boost converter with the features of high step-up conversion, high circuit efficiency, and low input-current ripple, which can lengthen the life time of the input source, is suitable for distributed generation using renew- able and alternative power sources. In addition, windings of the built-in transformer[27] can be designed to extend the step-up gain, and two diodes and two capacitors in the proposed converter act as an active clamp circuit in order to lower voltage stress on the main switches; thus, low-voltage-rated semiconductor devices (such as power MOSFETs and diodes) can be adopted in the presented converter are listed as follows:

- lowering the input-current ripple and reducing the conduction losses result in an increased lifetime of the power sources and make the presented converter suitable for renewable and alternative energy applications;
- 2) the converter is capable of achieving high stepup gain easily;
- by recycling the leakage energy, the voltage stresses of clamp diodes are alleviated and the circuit efficiency is improved;
- 4) the voltage stresses on the semiconductor components are substantially lower than the output volt- age. Compared with the existing converter introduced in [21] and [22], the proposed high step-up converter decreases the power switch count and achieves similarly high circuit efficiency without soft-switching function and active clamp circuit. Moreover, the proposed converter has the features of cost-

effectiveness and relatively low input current ripple in comparison with that one presented in [23] and [24].

This paper is organized as follows. Section II describes and analyzes the proposed high step-up interleaved boost converter with built-in transformer. Section III analyzes the voltage gain, voltage stresses, and conduction losses in the presented converter. Section IV demonstrates the experimental results[28] of a prototype circuit for supplying a 3.5-kW rated load. Finally, some conclusions are provided in Section V.

2. DESCRIPTION AND ANALYSIS OF THE PROPOSED HIGH-STEP-UP INTERLEAVED BOOST CONVERTER

The proposed high-step-up interleaved boost converter is shown in Fig. 2, where L_1 and L_2 are the energy storage inductors, S_1 and S_2 denote the power switches, C_1 and C_2 are the clamp capacitors, C_o is the output capacitor, D_1 and D_2 are the clamp diodes, and D_3 and D_4 are the rectified diodes. The built-in transformer consists of a primary winding N_p , a secondary winding N_{s1} , a third winding N_{s2} , and a leakage inductor L_k .

Fig. 2. Proposed high-step-up interleaved boost converter.

The gate-driving signals of the two power switches are interleaved with a 180° phase shift, and the theoretical waveform of the proposed converter operating in continuous-conduction mode (CCM) is shown in Fig.3.

Fig. 4 shows the corresponding operational modes of the equivalent circuit. There are ten main operational modes in one switching period.Due to the completely symmetrical interleaved topology, operating modes 1–5 and 6–10 are similar.

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 08 Issue: 04 | Apr 2021www.irjet.netp-ISSN: 2395-0072

Fig. 3. Theoretical waveforms of the proposed converter operating in CCM.

In order to simplify the analysis of the proposed converter's operating principle, only modes 1–5 are analyzed and dis- cussed. A detailed analysis of each operational mode in the proposed converter is shown in the following.

A. Mode 1 [t₀, t₁]

At $t t_0$, both power switches (S_1 and S_2) turn ON. All the diodes (D_1 , D_2 , D_2 , and D_4) are reverse-biased. The path of current flow is shown in Fig. 4(a). Inductors L_1 and L_2 are charged[29] by input voltage V_{in} , and currents though inductors L_1 and L_2 linearly increase. The inductor currents i_{L1} and i_{L2} are, respectively, given by

$$i_{L1}(t) = I_{L1}(t_0) + I_{L1}t$$
 (1)

and

$$i_{L2}(t) = I_{L2}(t_0) + \frac{V_{\text{in}}}{t}$$
 (2)

where $I_{L1}(t_0)$ and $I_{L2}(t_0)$ are the initial values of the inductor currents.

B. Mode 2 [t₁, t₂]

Att t_1 , power switch S_2 turns OFF, and its parasitic capacitor is charged by inductor current i_{L2} . The path of current flow is shown in Fig. 4(b). The voltage of the parasitic capacitor is given by

$$V_{\rm DS2}(t) = \frac{I_{\rm L2}(t_1)}{C_{\rm dS2}} t.$$
 (3)

C. Mode 3 [t₂, t₃]

At t t₂, power switch S₂ remains OFF. The voltages of clamp diode D₂ and rectified diode D₄ decrease; then, D₂ and D₄ begin to turn ON at t t₂. The path of current flow is shown in Fig. 4(c). The input voltage V_{in} and the inductor L₂provide energy to leakage inductor L_kand primary winding N_pthrough switch S₁, and to clamp capacitor [30] C₁ through S₁ and D₂. The drain–source voltage of power switch S₂is Clamped by capacitor C₁. The input voltage V_{in} inductor L₂ capacitor C₂ and secondary winding N_{s2} provide Energy to output capacitor C₀ and to load R₀ through D₄ The currents through L₂ L_k, and S₁ are, respectively, given by

$$i_{L2}(t)=i_{D2}(t)+(n+1)\cdot i_{D4}(t) (4)$$

$$i_{LK}(t)=n\cdot i_{D4}(t) (5)$$
and
$$i_{DS1}(t)=i_{L1}+i_{D2}(t)+n\cdot i_{D4}(t) (6)$$

D. Mode 4 [t₃, t₄]

At t t_3 , power switch S_2 is still OFF. The diode current i $_{D2}$ decreases to zero, and the clamp capacitor voltage V_{C1} is equal to the drain–source voltage of power switch S_2 . The path of current flow is shown in Fig. 4(d). [31]The rectified diode current i $_{D4}$ is proportional to leakage-inductor current i $_{Lk}$. The currents through L_2 , L_k , and S_1 are, respectively, given by

$$i_{L2}(t) = (n + 1) \cdot i_{D4}(t)$$
(7)

$$i_{LK}(t) = n \cdot i_{D4}(t)$$
(8)
and

$$i_{DS1}(t) = i_{L1} + n \cdot i_{D4}(t).$$
(9)

3. ANALYSIS OF VOLTAGE GAIN, VOLTAGE STRESS, AND CONDUCTIONLOSSES

To simplify the analysis of the presented converter operating in CCM, the transient characteristics of circuitry are disregarded, and small-ripple approximation issued for calculation; thus, all currents passing through the components are approximately represented their bv [32]dc components. In addition, some formulated assumptions are as follows:

1) all components in the proposed interleaved boost con-

Fig.5. Voltage gain versus duty cycle in the proposed converter under different levels of turns ratio*n*

Fig. 6. Estimated voltage stresses on power switches and diodes.

Fig. 7. Equivalent circuit for analyzing conduction losses in the proposed converter.

2) the coupling coefficient of the built-in transformer is unity; hence, there is no leakage inductor in either the primary or secondary side of the transformer; 3) Voltages on capacitors and currents through the inductors are considered to be constant due to infinitely large capacitances and inductances; 4) due to the symmetrically interleaving structure and operation, the symmetrical circuit components with the same characteristics and effects are defined by identical symbols, for example, D_1 and D_2 are defined as D_c ; D_3 and D_4 are defined as D_f

A. Voltage Gain

The voltage on clamp capacitors C_1 and C_2 can be expressed as

$$V_{C1} = V_{C1} = \frac{1}{1 - D}$$
 V_{in}

The voltages on output capacitor C_o can be derived from

$$\frac{V_{co}}{1 - D} = \frac{2 + n}{1 - D} V_{ij}$$
(12)

The output voltage Vois givenby

$$V_{a} = V_{Ca} = \frac{2+n}{V_{\Xi}} V_{\Xi}$$
(13)

In addition, the voltage gain of the proposed converter is described as

<u>V</u>	<u>2+n</u>	(14)
V_{in}	1-D	(14)

Equation (14) confirms that the proposed converter has a high step-up voltage gain without an extremely high duty cycle or large turns ratios for the transformer. The curve of the voltage gain related to duty cycle in the proposed converter, under different turns ratio levels for the built-in transformer, is shown in Fig. 5, where *n* represents N_s/N_p

B. Voltage Stress

The voltage stresses on power switches S_1 and S_2 are clamped, and are derived from

$$V_{DS1} = V_{DS2} = \frac{1}{1 - D} V_{is}$$
 (15)

The voltage stresses on diodes D_1 , D_2 , D_3 , and D_4 are, respectively, given by

$$V_{D1} = V_{D2} = \frac{2}{1 - D} V_{is}$$
 (16)

and

$$V_{D3} = V_{D4} = \frac{V_{A}}{V_{A}} = \frac{2+n}{V_{T}} V_{T} + D$$
 (17)

Equations (15)–(17) confirm that the proposed converter has low voltage stresses on its semiconductor compo- nents, and hence, low-voltage-rated power devices, such as MOSFETs with low $R_{DS(ON)}$ and Schottky diodes without reverse-recovery time, can be employed for improving circuit efficiency. With a duty cycle of 0.5, the estimated voltage stresses on power switches and diodes in relation to turns ratio *n* are shown in Fig. 6. As

[|] Page 623

illustrated, low voltage stress occurring on the power switches is one of the principal advantages in the proposed converter.

Fig. 8. Calculated voltage gain and circuit efficiency versus dutycycle at different r_L values under a full-load condition $(R_0 \ 41 \ \Delta)$,inclut \Im 0.018devices

C) Conduction Losses

The equivalent circuit for analyzing conduction losses of inductors and semiconductor components in the proposed Fig. 9. Relationship between boundary condition for the normalized inductor time constant τLB and duty cycle. converter is shown in Fig. 7, in which r_{L1} and r_{L1} are the copper resistances of the inductors, r_{DS1} and r_{DS2} denote the resistors $R_{DS(ON)}$ of power MOSFETs, V_{D1} , V_{D2} , V_{D3} , and V_{D4} denote the forward-biased voltages of the diodes, and r_{D1} , r_{D2} , r_{D3} , and r_{D4} are the resistances of the diodes. Due to the symmetrically interleaving structure and operation, symmetrical components with the same characteristic are defined by identical symbols in (18) and (19); for instance, r_{L1} and r_{L2} are defined as r_L ; r_{Dc} is the equivalent resistor of diodes D_1 and D_2 ; V_{Dc} denotes the voltage of V_{D1} and V_{D2} ; r_{Df} is the equivalent resistor of diodes D_3 and D_4 ; V_{Df} denotes the voltage of V_{D3} and V_{D4} . Small-ripple approximation is used to calculate conduction losses. Thus, all currents passing through the components are approximately represented by their dc components. The mag- netizing currents and capacitor voltages are assumed to be constant because of the infinite values of the magnetizing inductors and capacitors. Finally, by using voltage-second balance and capacitor-charge balance theorems, the voltage conversion ratio, including the conduction losses of power devices, can be derived from The calculated voltage gain and circuit efficiency versus duty cycle at different r_L values under a full-load condition

$$\frac{+n}{1-D^{-}} \frac{VD_{c}+VD_{f}}{Vin}$$
 ent Stress

$$\frac{+n}{2} \frac{VD_{c}+VD_{f}}{Vin}$$

$$r_{a} = (2 + n)^{2} \cdot r_{L}$$

$$r_{b} = [(2D - 1)(2 + n)^{2} + (1 - D) \cdot (2n + 3)^{2}] \cdot r_{ds}$$

And

 $r_{\mathcal{L}} = r_{\mathcal{D}f} + r_{\mathcal{D}c} \, .$

In addition, the circuit efficiency is expressed by

$$\eta = \frac{\sum_{\substack{k,in, \\ lin^*}} \frac{\sum_{\substack{k,in, \\ 2+r_0}} \frac{1}{2+n} \sum_{\substack{k=1\\ 2+r_0}} \frac{1}{2$$

$$(R_{2}=41 \blacktriangle \text{ with } V_{D_{c}}=V_{D_{f}}=0.7 \text{ V}; r_{D_{c}}=r_{D_{f}}=20 \text{ m} \blacktriangle;$$

power devices, is shown in Fig. 8. As illustrated, it is easy for the proposed converter to achieve high step-up voltage conversion, and the converter is suitable for renewable energy applications.

D. Design Consideration

In the proposed high step-up interleaved boost converter, the input current I_{in} and the ripple current Oi_{L} of the inductor are represented by

$$I_{\rm in} = \frac{2+n}{1-D} \cdot I_o = \frac{\sum \Sigma_2 V_{\rm in}}{1-D}$$
(20)
$$1 - D \qquad R_o$$

TABLE I

VOLTAGE/CURRENT STRESSES OF MAIN POWER DEVICES IN THE PROPOSED CONVERTER

Main Power Devices	Voltage Stress	Current Stress
Power Switches <i>S</i> ₁ and <i>S</i> ₂	$\frac{1}{2+n} \cdot V_o$	$\frac{(1+n+D)\cdot I_o}{2\cdot D\cdot (1-D)}$
Power Diodes D_1 and D_2	$\frac{2}{2+n} \cdot V_o$	$\frac{I_o}{2 \cdot (2 - D)}$
Power Diodes D_3 and D_4	V_o	$\frac{I_o}{2 \cdot (2 - D)}$

TABLE II ELECTRICAL SPECIFICATIONS

Components	Parameters	
Input Voltage Vin	48 V	
Output Voltage V_o	380 V	
Switching Frequency f_s	50kHz	
Maximum Power P_o	3.5kW	
Duty Ratio D	0.62	
Main Switches S_1 and S_2	IRFP4227(200V/130A)	
Diodes D_1 and D_2	MBR20200(200V/20A)	
Diodes D_3 and D_4	MUR1640(400V/16A)	
Capacitors C_1 and C_2	10µF	
Output Capacitor Co	120µF	
Filter Inductors L_1 and L_2	110µF	
Turn Ratio Ns/Np	1:1	

and

$$\underbrace{Oi}_{L} = \underbrace{V_{\text{in}} \cdot D}_{f_{\text{s}} \cdot L_{1}} = \frac{V_{\text{in}} \cdot D}{f_{\text{s}} \cdot L_{2}}$$
(21)

The relationship between input current I_{in} and the ripple current $Oi_{L}of$ the inductor in boundary-conduction mode are given by

$$\frac{I_{\rm in}}{2} = \frac{Q_{iL}}{2^{-1}}$$
(22)

Substituting (20) and (21) into (22), the boundary condition forthenormalized inductor time constant which is represented by T_{LB} , is expressed by

$$I_{\text{LB}} = \frac{L_1}{R_0} \cdot f_a = \frac{L_2}{R_0} \cdot f_a = \frac{D_1 (1 - D)^2}{(2 + n)^2}.$$
 (23)

The design considerations of the proposed converter include component selection and inductor design, both of which are based on the analysis presented in Section III. In the proposed converter, the secondary windings (N_{s1} and N_{s2}) of the built-in transformer are set as close as possible for obtaining current-sharing performance on output diodes D_3 and D_4 . Because the proposed converter possesses high step-up gain, the turns ratios can be set as 1 for the prototype circuit, thus reducing cost, volume, and conduction losses of the windings inside the built-in transformer.

Fig. 9 shows the relationship between the boundary condition for the normalized inductor time constant τ_{LB} and duty cycle *D* under a turns ratio *n* of 1 according to (23), and Fig. 9 is a design guideline for selecting appropriate inductors L_1 and L_2 of the presented converter.

Fig. 10 shows the experimental waveforms at a load of 2 kW. Fig. 10(a) shows the interleaved pulse width modula tion signals V_{GS1} and V_{GS2} , as well as the voltage stresses on the power switches. In addition, the typical value of repetitive avalanche voltage of the utilized power switch is 240 V. Although voltage spikes occur on main switches S_1 and S_2 (caused by the resonance of the leakage inductors in the primary side of the built-in transformer and C_{DS} of the MOSFETs), the utilized power MOSFETs are capable to sustain the voltage spikes across the switches in Fig. 10(a). Fig. 10(b) shows the ripple of input current i_{in} this means that current-sharing is achieved in the secondary windings of the built-in transformer in the presented converter. In addition, the input current i_{in} with dc part magnitude) is the sum of inductor currents i_{11} and i_{12} .

Fig. 10(c) shows the leakage-inductor current i_{Lk} as well as currents through power switches S_1 and S_2 . Fig. 10(d)shows

In addition, voltage stresses and current stresses of main power devices (including power switches and diodes) in the proposed converter are shown in Table I.

Fig.11. Measured waveforms *V*DS1, *V*DS2, *iL*1, and *Vo* at a full load of 3.5kW.

4. EXPERIMENTALRESULTS

A 3.5-kW prototype circuit of the proposed highstep-up converter has been built and tested. The electrical specifications for the presented converter are shown in Table II.

The measured voltage and current waveforms of diodes D_1 and D_2 . The voltage stresses on diodes D_1 and D_2 are equal to V_{DS2} plus V_{C2} and V_{DS1} plus V_{C1} , respectively. Fig. 10(e) shows the measured voltage and current on diodes D_3 and D_4 , and the voltage stresses on diodes D_3 and D_4 are both equal to V_{Co} . The currents *i* D₃and *i* D₄decrease to zero with very light reverse-recovery losses for the diodes. The ringing effect of diode voltages, shown in Fig. 10(c)-(e), is caused by the resonance of the parasitic inductors in the circuit, the leakage inductors of the transformer in the primary and secondary sides, and the junction capacitors of the diodes. Fig. 11 shows the measured waveforms of voltages V_{DS1} , V_{DS2} , V_o , and cur-rent *i*_{L1}at a full load of 3.5 kW. Fig. 12 shows the photo

Fig. 12. Photo of the presented converter

of the presented converter, and some key components are marked. Fig. 13 shows the temperature distribution in the proposed converter at a full load of 3.5 kW by using a true infrared thermal imager (Agilent U5855A); the measured maximumandminimumtemperaturesare65.4°Cand29.5 °C, respectively

Fig. 15. Calculated and tested curve of circuit efficiency versus output power in the proposed high-step-up converter

Fig. 16. Pie graph of loss breakdown in the presented converter.

analyzer (HIOKI 3390). The calculated (in CCM condi- tion with $\underline{V}_{Dc}V_{D\underline{f}}$ 0.7 V; $r_{\underline{D}c}r_{Df}2\underline{0} \text{ m}$; $r_{ds}20 \text{ m}$; $r_L30 \text{ m}$)and tested curve of circuit efficiency versus output power in the proposed high-step-up converter are shown in Fig. 15. The measured efficiency at a full-load condition (3.5 kW) is 94.65%, which is very close to the calculated one (95.3%) at a duty cycle of 0.62. In addition, the measured efficiency at a 1-kW load (approximately one- third full-load) is about 97.32%, which is close to calculated one (98.4%) at a duty cycle of 0.62. Moreover, the measured efficiency of the light-load (300 W) is 95.03%.

Fig. 16 shows the pie graph of loss breakdown in the presented converter. The percentages of conduction losses of power switches (S_1 and S_2), power diodes (D_1 , D_2 , D_3 , and D_4), and inductors (L_1 and L_2) are 31.62%, 10.3%, and 47.43%, respectively. It can be seen that the dominant losses in the presented converter are the conduction losses of the power devices (including power switches, power diodes, and inductors), whose percentages are 89.35% of total losses. In addition, the percentages of other losses (including switching loss of MOSFETs, reverse recovery loss of diode, magnetic core loss, and so on)are 10.65%.

In addition, Table III shows the comparisons between the existing high step-up converters [22]– [24] and the proposed one in this paper. As shown in Table III, the proposed high step-up converter without soft-switching function has the advantages of cost-effectiveness and similar performance of the measured full-load efficiency in comparison with the converter introduced in [22]. In addition, the proposed con- verter has theadvantages of costeffectiveness, relatively low

Topology	Converter in [22]	Converter in [23]	Converter in [24]	Proposed Converte
Voltage Gain	$\frac{2-2n}{1-D}$	$\frac{2 + 2n}{1 - D}$	$n_2 + 1 + \frac{2n_3D + 1}{1 - D}$	$\frac{2+n}{1-D}$
Quantities of Power Switches	4	2	2	2
Quantities of Diodes	4	6	6	4
Quantities of Magnetic Cores	3	2	2	3
Quantities of Capacitors	3	5	5	3
Soft Switching	ZVS	No	No	No
Input Current Ripple	Very Small	Small	Small	Very Small
Converter Specifications	40V to 380V	60~90V to 400V	48V to 380V	48V to 380V
Measured Full-Load Efficiency	95.8% at 1kW	91.32% at 2kW	92.6% at 2kW	94.65% at 3.5kV

TABLE III

Quantities of Capacitors 3 5 5 3 ZVS Soft Switching No No No Input Current Ripple Very Small Small Small Very Small International Research Journal Of Engineering and Technology (IRJET) 8V te 195N: 2395-0056 95.8% at 1kW www.iriet.net 32% at 2kW 92.6% at 2kW 94.65% at 35kW 2395-0072 Volume: 08 Issue: 04 Apr 2021 IRJET

input current, and high full-load efficiency in comparison with the converters presented in [23] and [24].

5.CONCLUSION

This paper has proposed a high-step-up interleaved boost converter for distributed generation using renewable and alter- native power sources. The analysis of operational modes, voltage gain, and stresses is provided, and a 3.5-kW prototype converter has been developed and tested. The interleaved structure inside the presented converter reduces the input- current ripple and distributes the current through each com- ponent. In addition, the lossless passive-clamp circuit recy- cles the leakage energy and constrains voltage spikes across power switches. Furthermore ,the measured full-load efficiency is 94.7% at a rated output power of 3.5 kW, and the highest efficiency is 97.3% at an output power of 1 kW. Consequently, satisfactory experimental results have demonstrated the functionality of the proposed converter with the advantages of high step-up voltage gain, high efficiency, and suitability for renewable and alternative energy applications.

6.REFERENCES

- [1] J. T. Bialasiewicz, "Renewable energy systems with photovoltaic power generators: Operation and modeling," *IEEE Trans. Ind. Electron.*, vol. 55, no. 7, pp. 2752–2758, Jul.2008.
- [2] B. Yang, W. Li, Y. Zhao, and X. He, "Design and analysis of a grid-connected photovoltaic power system," *IEEE Trans. Power Electron.*, vol. 25, no. 4, pp. 992–1000, Apr.2010.
- [3] T. D. Kefalas and A. G. Kladas, "Analysis of transformers working under heavily saturated conditions in grid-connected renewable-energy systems," *IEEE Trans. Ind. Electron.*, vol. 59, no. 5, pp. 2342–2350, May2012.
- [4] YXiong,X.Cheng,Z.J.Shen,C.Mi,H.Wu,andV.K.Garg," Prognos- tic and warning system for powerelectronic modules in electric, hybrid electric, and fuel-cell vehicles," *IEEE Trans. Ind. Electron.*, vol. 55, no. 6, pp. 2268–2276, Jun.2008.
- ^[5] H.Tao,J.L.Duarte,andM.A.M.Hendrix,"LineinteractiveUPSusing a fuel cell as the primary source," *IEEE Trans. Ind. Electron.*, vol. 55, no. 8, pp. 3012–3021, Aug.2008.
- [6] K. Jin, X. Ruan, M. Yan, and M. Xu, "A hybrid fuel cell powersystem,"

IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1212–1222, Apr. 2009.

- [7] A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, "CascadedDC— DCconverterphotovoltaicsystems:Poweroptimiza tion issues," *IEEE Trans. Ind. Electron.*, vol. 58, no. 2, pp. 403–411, Feb.2011.
- [8] R.-J. Wai, W.-H. Wang, and C.-Y. Lin, "Highperformance stand-alone photovoltaic generation system," *IEEE Trans. Ind. Electron.*, vol. 55, no. 1, pp. 240–250, Jan.2008.
- [9] R.-J. Wai and W.-H. Wang, "Grid-connected photovoltaic generation system," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 55, no. 3, pp. 953–964, Apr.2008.
- [10] L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova, "Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions," *IEEE Trans. Ind. Electron.*, vol. 56, no. 5, pp. 1548–1556, May2009.
- [11] W. Li and X. He, "Review of nonisolated highstep-up DC/DC con-verters in photovoltaic gridconnected applications," *IEEE Trans. Ind. Electron.*, vol. 58, no. 4, pp.1239–1250, Apr. 2011.
- [12] A. K. Rathore, A. K. S. Bhat, and R. Oruganti, "Analysis, design and experimental results of wide range ZVS active-clamped L-L type currentfed DC/DC converter for fuel cells to utility interface," *IEEE Trans.Ind.Electron.*,vol.59,no.1,pp.473– 485,Jan.2012.
- [13] C.-T. Pan and C.-M. Lai, "A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications," *IEEE Trans. Ind. Electron.*, vol. 57, no. 6, pp. 1998–2006, Jun.2010.
- [14] T.-J. Liang, J.-H. Lee, S.-M. Chen, J.-F. Chen, and L.-S. Yang, "Novel isolated high-step-up DC—DC converter with voltage lift," *IEEE Trans. Ind. Electron.*, vol. 60, no. 4, pp. 1483–1491, Apr.2013.
- [15] Y. Zhao, X. Xiang, W. Li, X. He, and C. Xia, "Advanced symmetrical voltage quadrupler rectifiers for high step-up and high outputvoltage converters," *IEEE Trans. Power Electron.*, vol. 28, no. 4, pp. 1622–1631, Apr.2013.
- [16] S.-M. Chen, T.-J. Liang, L.-S. Yang, and J.-F. Chen, "A safety enhanced, high step-up DC–DC converter for ac photovoltaic module application,"

IEEETrans.PowerElectron.,vol.27,no.4,pp.1809–1817,Apr.2012.

- [17] S.-K. Changchien, T.-J. Liang, J.-F. Chen, and L.-S. Yang, "Novel high step-up DC—DC converter for fuel cell energy conversion sys- tem," *IEEE Trans. Ind. Electron.*, vol. 57, no. 6, pp. 2007–2017, Jun.2010.
- [18] K.-C. Tseng, C.-C. Huang, and W.-Y. Shih, "A high stepup converter withavoltagemultipliermoduleforaphotovoltaicsyste m,"*IEEETrans. PowerElectron.*,vol.28,no.6,pp.3047– 3057,Jun.2013.
- [19] F. Evran and M. T. Aydemir, "Isolated high step-up DC—DC converter with low voltage stress," *IEEE Trans. Power Electron.*, vol. 29, no. 7, pp. 3591–3603, Jul.2014.
- [20] K.-C.TsengandC.-C.Huang, "Highstep-uphighefficiencyinterleaved converter with voltage multiplier module for renewable energy system," *IEEE Trans. Ind. Electron.*, vol. 61, no. 3, pp. 1311– 1319, Mar.2014.
- [21] W.Li,W.Li,X.He,D.Xu,andB.Wu, "Generalderivationlaw of nonisolated high-step-up interleaved converters with built-in trans- former," *IEEE Trans. Ind. Electron.*, vol. 59, no. 3, pp. 1650–1661, Mar.2012.
- [22] W. Li, X. Xiang, C. Li, W. Li, and X. He, "Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system," *IEEE Trans. Power Electron.*, vol. 28, no. 1, pp. 300–313, Jan.2013.
- [23] K.-C. Tseng, J.-T. Lin, and C.-C. Huang, "High step-up converter with three-winding coupled inductor for fuel cell energy source appli- cations," *IEEE Trans. Power Electron.*, vol. 30, no. 2, pp. 574–581, Feb.2015.
- [24] K.-C. Tseng, J.-Z. Chen, J.-T. Lin, C.-C. Huang, and T.-H. Yen, "High step-up interleaved forward-flyback boost converter with threewindingcoupledinductors," *IEEETrans.PowerElectron.*,vol .30,no.9, pp. 4696–4703, Sep.2015.
- [25] Dr.Lavanya Dhanesh(2018), "An Smart Load Management System For Homes Using Iot", In The International Journal Of Advance Research In Engineering, Science & Technology, E-Issn: 2393-9877, Volume: 5, Issue: 3, Mar-2018.
- [26] Lavanya Dhanesh, Dr.P.Murugesan (2018), "A Novel Approach In Scheduling Of The Real- Time Tasks In Heterogeneous Multicore Processor With Fuzzy Logic" In The International Journal Named "International Journal Of Power Electronics And Drive System (Ijpeds)" Issn: 2088-8694, Vol. 9, No. 1, Pp. 80-88.
- [27] Dr.S.Deepa, Dr.Lavanya Dhanesh (2019), "Optimal Fuzzy Controller For Power Quality Improvement Of Dynamic Voltage Restorer Using Bacterial Foraging Algorithm", "International Journal Of Advanced Science And Technology" Vol. 28, No. 19, (2019), Pp. 10-15 Dr.S.Deepa(2017) "A Fuzzy Ga Based Statcom For Power Quality Improvement" International Journal Of Power Electronics And Drives., Vol:8 No 1, Pp483-491

28 Dr. S. Deepa., (2016)"A New Control Method For Dynamic Voltage Restorer Using Matrix Converter" Indian Journal Of Applied Research., Vol:6 No:5 .,Pp:619-620

29 P S Ramapraba, M P Chitra, M Prem Kumar "Effective Lesion Detection Of Colposcopic Images Using Active Contour Method" 2017 Bio Medical Research Research Article - Biomedical Research (2017) Artificial Intelligent Techniques For Bio Medical Signal Processing: Edition-I Issn: 0970-938x (Print) | 0976-1683 (Electronic)

30 P.S.Ramapraba "Aadhar Card Based Voting System" International Journal For Research In Applied Science & Engineering Technology (Ijraset)Issn: 2321-9653; Ic Value: 45.98; Sj Impact Factor: 6.887,Volume 6 Issue Iii, March 2018

31 C.T.Manikandan,Vignesh Prasanth, "Wireless Arm-Based Automatic Meter Reading &Control System (Wamrcs)",Intrenational Journal Of Advanced Research In Electrical,Electronics And Instrumentation Engineering,Vol 5 ,No 3,Pp 1572-1574,Issn 2278-

32.D.Shobana,R.Subbulakshmy,C.T.Manikandan,M.Padmar asan, "Low Frequency Current Ripple Reduction Technique With Active Control In A Power System With Inverter Load",International Journal Of Engineering And Computer Science ,Vol 5, No 4,Pp 16084-16088,Issn :2319-7242,Apr 2016