
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 587

An Overview of Compiler Construction

 Bashir S. Abubakar1, Abdulkadir Ahmad2, Muktar M. Aliyu3, Muhammad M. Ahmad4,

Hafizu U. Uba5

Department of Computer Science

Kano University of Science and Technology, Wudil, Kano, Nigeria

---***---

Abstract – Research in compiler construction has been one
of the core research areas in computing. Researchers in this
domain try to understand how a computer system and
computer languages associate. A compiler translates code
written in human-readable form (source code) to target code
(machine code) that is efficient and optimized in terms of time
and space without altering the meaning of the source
program. This paper aims to explain what a compiler is and
give an overview of the stages involved in translating
computer programming languages.

Key Words: - compiler, phases of a compiler, analysis,
synthesis, features of a compiler

1. INTRODUCTION

Assembly or high-level languages are the languages used to
write a computer system program. However, a computer
system understands none of these languages. Therefore, a
compiler is needed to translate the high-level language. A
high-level language is a language written in a human-
readable form with an easy-to-read syntax [6]. Examples of
such languages are Java, C#, Delphi, Ruby and many others.
Any computer program written in a high-level language is
known as source code. A compiler uses a source code as
input, processes it and produces an object code without
changing the meaning of the source code [6]. The object code
is sometimes called machine code or target code [7].

A compiler is a computer system software that transfigures
source code into an intermediate code which afterwards
transformed into target code without altering the meaning of
the source code [5, 3]. The result of this transformation
(machine code) must be efficient and optimized in terms of
time and space (memory size). The interface between a
computer programmer and a computer system is the
compiler and the operating system [3]. A compiler detects an
error(s) in the source code during compilation processes and
handle. There are three types of error in computer
programming. They are syntax, runtime and logic error [7,
6]. The only detected error during compilation processes is
the syntax error. The other two types of errors occur during
program execution [4].

The back-end and the front-end [7] are the two parts of a
compiler. The task of the back-end is to synthesis the target
language. Then, the front-end analyses the source code [6].
In a perfect compiler design, the back-end will lack any
knowledge of the source code, and the front-end will also
lack knowledge about the target code. A compiler operates in
stages. Each stage performance a specific task. These stages
are a scanner, parser, semantic analysis, intermediate code,
code optimization and code generator [1, 6, and 7].

Fig 1: Abstract view of a compiler

1.1 Features of a compiler

a. Correctness
b. Speed of compilation
c. Preserve the correct meaning of the code
d. Compile-time proportion to program size
e. Good diagnostics for syntax errors
f. Good error reporting and handling
g. Work well with the debugging

1.2 Types of compiler

 A compiler is divided into 3, namely:
a. Single-pass compiler
b. Two-pass compiler
c. Multi-pass compiler

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 588

2. THE COMPONENTS OF A COMPILER

Before a compiler translates source code to object code,
the source code undergoes a series of steps, and these
steps are called phases of a compiler [6]. Each stage
performs a single and unique duty. A data structure
called a symbol table is needed to store the output of
each stage, and an error handler needs to be present to
keep tracks of errors encounter [7].

The phases of a compiler consist of six (6) phases. These
phases can be regrouped into two (2) categories as
follow below [6].

2.1 Analysis:

The source code is divided into meaning characters
and creates an intermediate representation. This
part is further subdivided into three (3) as follows:

a. Lexical analysis
b. syntax analysis
c. Semantic analysis

2.2 Synthesis

The output of the analysis is used here to produce
the desired machine-oriented code. This section is
subdivided into three (3).

a. Intermediate code generation
b. code optimization
c. code generator

Fig 2: Block Diagram of Compiler

LEXICAL ANALYSIS

Lexical analysis is the first stage in compiler construction.
This stage is also called scanning [6]. In this stage, the source
code is scan to remove any whitespace or comments. Then,
the source code is categories into meaningful sequences of
lexical item called tokens.

A token may be composed of a single character or sequence
of character. A token is classified as being either: Identifiers,
Keywords Operators, Separators, Liberals, and Comments.
For each lexeme the scanner produces a token as output in
the form [7]: <Token- name, attribute-value>

A lexical analyser may be implement using Regular
expression from automata theory and deterministic finite
automata [6]. A Regular expression is used to specify the
token while deterministic finite automata are used to
recognise the token. Now let analyse the following:
Count = frequency + 1

Lexeme(collection
of characters)

Tokens(category
of lexeme)

Count Identified (id)
= Assignment

operator
frequency Identified
+ Addition operator
1 Integer constant

Fig 3: Lexical Analyzer Interface

SYNTAX ANALYSIS

The next stage immediately after the scanner is the syntax
stage. This stage is also known as parsing [6]. The parsing
stage takes a token produced in the first phase and
constructs a syntax tree (parse tree). The goal of parsing is
to determine the syntactical validity of a source string.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 589

Parsing is implemented using context-free grammar (CFG)
[6, 7]. A context free grammar CFG notations are used to the
syntactic specification of any program.
Now let analyse the following:
Count = frequency + 1

Parse tree as an output of Parser

Fig 4: parse information flow

SEMANTIC ANALYSIS

This is the third stage in a compiler construction. Semantic
analysis check for semantic errors in the parse tree
produced by the syntax analyzer [6]. Examples of semantic
errors are data compatibility (data type), undeclared
variable use and many more.

INTERMEDIATE CODE GENERATOR

In this phase, an intermediate code of the machine-oriented
is generated. It represents a program for some abstract
machine [6]. The intermediate code is between a program
written in human-oriented and machine-oriented.

CODE OPTIMIZER

The intermediate code generated in the previous stage is
been optimized in this stage. The structure of the tree that is
generated by the parser can be rearranged to suit the needs
of the machine architecture to produce an object code that
runs faster [2]. The optimization is achieved by removing
unnecessary lines of codes.

CODE GENERATOR

Code generator is the last phase of a compiler construction
process. The code generator uses the optimized
representation of the intermediate code to generate a naïve
machine code. This stage depend on the machine
architecture.

3. CONCLUSIONS

This paper explains what a compiler is and gives an
overview of the steps involved in translating a programing
language into object code. A compiler translate source code
into object without tempering with the meaning of the
source code. The steps involved in translating a language are
six namely; lexical, syntax, semantic, intermediate
representation, code optimizer and code generator. Each of
this phases perform a single task.

REFERENCES

[1]. De Oliveira Guimarães, J. (2007). Learning compiler

construction by examples. ACM SIGCSE Bulletin, 39(4),
70. doi:10.1145/1345375.1345418

[2]. Guilan, D., Suqing, Z., Jinlan, T., & Weidu, J. (2002). A
study of compiler techniques for multiple targets in
compiler infrastructures. ACM SIGPLAN Notices, 37(6),
45. doi:10.1145/571727.571735

[3]. Jatin Chhabra, Hiteshi Chopra, Abhimanyu Vats (2014).

Research paper on Compiler Design. International Journal
of Innovative Research in Technology (IJIRT), Volume 1,
Issue 5

[4]. Zelkowitz, M. V. (1975). Third generation compiler
design. Proceedings of the 1975 Annual Conference on -
ACM 75. doi:10.1145/800181.810332

[5]. Rudmik, A., & Lee, E. S. (1979). Compiler design for

efficient code generation and program optimization.
Proceedings of the 1979 SIGPLAN Symposium on Compiler
Construction - SIGPLAN
’79. doi:10.1145/800229.806962

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 590

[6]. Grune, D., van Reeuwijk, K., Bal, H. E., Jacobs, C. J. H.,
& Langendoen, K. (2012). Modern Compiler
Design. doi:10.1007/978-1-4614-4699-6

[7]. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman, Compilers: Principles, Techniques, and
Tools, 2nd edition, Addison Wesley, August 31, 2006,
ISBN‐13: 978‐0321486813

[8]. Koskimies, K., Räihä, K.-J., & Sarjakoski, M.
(1982). Compiler construction using attribute
grammars. Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction - SIGPLAN
’82. doi:10.1145/800230.806991

[9]. Noonan, R. E. (1986). Compiler construction using
modern tools. Proceedings of the Seventeenth SIGCSE
Technical Symposium on Computer Science
Education - SIGCSE ’86. doi:10.1145/5600.5697

[10]. Demaille, A., Levillain, R., & Perrot, B. (2008). A
set of tools to teach compiler construction.
Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science
Education - ITiCSE
’08. doi:10.1145/1384271.1384291

[11]. Li, H., Hu, C., Zhang, P., & Xie, L. (2016). Modular
SDN Compiler Design with Intermediate
Representation. Proceedings of the 2016 Conference
on ACM SIGCOMM 2016 Conference - SIGCOMM
’16. doi:10.1145/2934872.2959061

[12]. Chen, H., Ching, W.-M., & Hendren, L. (2017). An
ELI-to-C compiler: design, implementation, and
performance. Proceedings of the 4th ACM SIGPLAN
International Workshop on Libraries, Languages,
and Compilers for Array Programming - ARRAY
2017. doi:10.1145/3091966.3091969

