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Abstract - Rapid progress in machine learning and artificial 
intelligence (AI) has brought increasing attention to the 
potential impacts of AI technologies on society. This paper 
discusses hazards in machine learning systems, defined as 
unintended and harmful behavior that may emerge from poor 
design of real-world AI systems with a particular focus on 
ANN. The paper provides a review of previous work in these 
areas as well as suggesting research directions with a focus on 
relevance to cutting-edge AI systems with a focus on neural 
networks. Finally, the paper considers the high-level question 
of how to think most productively about the safety of forward-
looking applications of AI. 
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1. INTRODUCTION 

There is now a broad consensus that AI research is 
progressing steadily, and that its impact on society is likely 
to increase. The last few years have seen rapid progress on 
long-standing, difficult problems in machine learning (ML) 
and artificial intelligence (AI), in diverse areas which 
brought excitement about the positive potential for AI to 
transform medicine [12], science [9], and transportation [6], 
along with concerns about the privacy [7], security [1], 
fairness [3], economic [32], and military [16] implications of 
autonomous systems, as well as concerns about the longer-
term implications of powerful AI [27, 17].  

The aim of this paper is to catalogue some of the various 
possible ways in which AI, especially within the context of 
ANN (artificial neural networks) can cause harm. The aim is 
not to determine how common and serious these harms are 
or how they stack up against the many benefits of 
information—questions that would need to be engaged 
before one could reach a considered position about potential 
policy implications, yet rather to enlighten the reader on 
potential threats caused by this technology. 

 

 

 

 

 

2. EXISTING WORK 

Artificial Intelligence (AI) refers to the art of creating 
machines that are able to think and act like humans; or think 
and act reasonably [4, 7]. In order to build an agent that can 
think and act as so, the agent must be able to learn new 
things. To learn means that the agent should improve its 
performance on future tasks taking its past experience into 
account [20, 7]. Making an agent able to learn is an area of 
study called Machine Learning (ML).  

Artificial Neural Network or ANN is a software structure 
developed and based on concepts inspired by biological 
functions of brain; it aims at creating machines able to learn 
like a human-being [2, 7]. Thus, ANN is part of ML. 
Interestingly, ANN has many other names in AI field 
including parallel distributed processing, neural 
computation and connectionism [12, 11]. Most ANN types 
are supervised learning network. That is, both an input and 
the correct output should be given to a network where the 
network should learn a function that maps inputs to outputs.  

Artificial Neuron  

Since a structure of ANN has been inspired by biological 
brain, ANN should consist of a collection of neurons. AI 
researchers designed artificial neurons called perceptron 
and sigmoid which are believed to have similar function to a 
biological neuron [27, 17]. Artificial neuron is hereafter 
referred to as neuron for short. A neuron is a node that 
receives input from preceding neurons and makes a decision 
to 'fire' to the next neurons. To make that decision, it should 
first evaluate each input according to its own perspective 
and then sum all inputs up to get a single and holistic view. 
Finally, a neuron presents the holistic view to its internal 
judgment system to make a decision to fire or not. 

 

Fig 1. Perceptron neuron 
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This system seems trivial but it turns out to be a complicated 
decision-making model. For example, suppose that you are a 
neuron and you want to make a decision to buy car. You 
probably make that decision based on many variables which 
may include gas price ($200), car insurance ($150), and 
parking cost ($100). In your perspective, car insurance and 
gas price are more important and more likely to increase in 
near future than parking cost. In this case, you weigh up car 
insurance (1.5) and gas price (1.5) while downplay parking 
cost (0.5). Then you sum that up to get the holistic 
perspective (100*0.5 + 1.5*150 + 1.5*200). Therefore, 
according to your own perspective, a car would cost you 
$575 per month. Then you present this holistic perspective 
to your internal judgment system which may have been 
previously set on a specific threshold ($480). Therefore, you 
make a decision not to buy a car because it exceeds the 
threshold ($575 > $480). Your own perspectives of inputs, 
the internal judgment system, and the threshold are called 
weights, activation function and bias respectively. By 
changing weights and bias you reach a completely different 
decision. For example, set gas weight to 1 instead of 1.5 and 
notice the difference. Searching for weights and bias that 
generate the desired output is the job of learning algorithm. 

Based on this foundational understanding, researchers 
arrange group of neurons to form a learnable network.  

ANN may refer to two levels of abstraction:  

(1) ANN as a person’s brain and  

(2) ANN as a group of learners.  

Thus, network architecture refers first to a learner's inner 
abilities and mental capacities and; second, refers to a way in 
which designers of learning-environment arrange a network 
of learners. It is worth noting that ANN is a universal 
modeling system. Universality means that ANN can learn any 
given function no matter what neuron type is used. It has 
been proved that with few neurons and by changing biases 
and weights only, ANN can compute any zigzag-shaped 
function [2]. The question now is how we arrange neurons in 
ANN to make it easier for a learning algorithm to find those 
biases and weights.  

For clarity and simplicity, the paper divides the most 
common ANN architectures based on three criteria: (1) 
number of layers, (2) flow of information and (3) neuron 
connectivity.  

Number of layers:  

By looking on how many layers a network has, ANN can be 
divided into (1) shallow and (2) deep networks. 

 

Fig. 2 Shallow neural network 

A shallow neural network consists of three layers ordered 
from left to right: (1) input, (2) hidden and (3) output layer. 
The input layer does not really consist of neurons. Actually, it 
carries the input values to the network.  

The second layer is named 'hidden' because it resides in the 
middle and does not appear in either the input or the output 
of the network. Other than that, it is a normal neural layer 
which contains normal neurons (Nielsen, 2015).  

The output layer also contains normal neurons and its 
output represents the output of the network. 

 

Fig. 3 Deep neural network 

Flow of information:  

By looking on how information flows through a network, 
ANN can be divided into (1) feedforward and (2) recurrent 
networks. 
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Fig. 4 Feedforward neural network 

In feedforward networks, the output of a layer is used as an 
input for the next layer. There are no loops in feedforward 
networks; information flows in one direction where the 
output of a neuron can never return to its input. 
Feedforward network is one of the most used network 
structures. The value of this structure is self-explanatory 
since it significantly reduces the network complexity. 

 

Fig. 5 Recurrent neural network 

Recurrent network is a family of neural networks that 
processes the input sequentially and allows feedback 
connections [23]. Feedforward network structure assumes 
that all inputs are independent of each other [24]. It assumes 
that inputs order has no meaning. This, however, turns out 
to be false assumption for some tasks. For example, in 
natural language processing, the order of words makes a 
significant difference in meaning. Recurrent network tries to 
recover this issue by allowing feedback in a network. The 
feedback is allowed but with a delay constraint. That is, if the 
inputs are a sequence of A, B and C; then the output of 
hidden layer in step A can only be passed to the input of the 
hidden layer in step B, not the hidden layer in step A itself. 
To make a network simple, ANN researchers usually unfold 
the loop to see what it looks like on each step of the inputs. 
In Fig. 8, one can see that a loop allows information to flow 
from one step to another, and, therefore, acts as a memory 
[17, 10]. 

 

Learning Algorithm  

Designing network architectures is a difficult task but 
training and teaching these networks are surely more 
difficult. To understand how ANN has been trained, it is 
better to start with a very simple one neuron example [26]. 
The principles which are used to teach a single neuron are 
also used to teach a whole network. However, a network 
level adds extra complexity which requires an additional 
step. Suppose you have a very simple neuron with one input 
and one output. You want to teach this neuron to do a certain 
task (for example to memorize a multiplication table for 
number 5). To teach this neuron, ANN researchers usually 
give it a so-called training set. A training set contains a 
number of different input values (1, 2, 3, 4, 5, 6 ...) paired 
with the correct output (5, 10, 15, 20, 25, 30 ...).  

 

Fig. 6 Labeled training data 

In the beginning, the neuron receives input and generates 
output according to its own weight and bias which were 
randomly selected. This means, the output of the neuron (as) 
would most probably differ from the correct output (ys). 

 

Fig. 7 Single neuron training 

One note in ANN model of learning is how AI researchers are 
setting the value of learning rate. Actually, learning rate is 
one of many other parameters which are left free for human 
and outside of ANN’s control. For example, (1) the number of 
layers, (2) the number of neurons in each layer, (3) the size 
of training set, (4) the activation function type, and (5) 
regularization parameter as well as (6) the learning rate are 
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some of those free parameters which are called 
hyperparameters [24, 18] Choosing the right values of 
hyper-parameters is left for a person who manages the ANN.  

Bandura [18] criticizes those views of human learning which 
concentrate merely on neural patterns to interpret learning 
and argues that such views strip humans of agentic 
capabilities and a self-identity. In contrary, Bandura [18] 
conceives consciousness as an emergent property of brain 
activities which is not reducible solely to the property of 
neurons activity. In other words, the consciousness is 
higher-level force which is a result of lower-level neural 
activities but its properties are not limited to them. As 
clarified in this study, ANN design shows the need for 
consciousness force to manage and regulate ANN learning 
but this force does not occur as an emergent property of 
neural activity as Bandura proposes. Rather, it is a 
completely distinct entity which uses, guides and manages 
the neural activity and does not result from it. Therefore, 
overcoming hazards in the field AI becomes crucial to 
maximize societal benefit of AI given its significant 
expansion. 

3. RESEARCH METHOD 

 The study provides a framework for conducting research to 
overcome AI hazards with a focus on ANN. 

Research has been developed and constructed based on a 
review of various books focusing on Russell and Norvig 
(2016), Tinholt, et al. (2017), Tito (2017), and Zhang and 
Dafoe (2019). This research identifies various concepts that 
are very helpful in formulating final questions. These simple 
but effective methods are useful to achieve the purpose of 
exploratory research. 

The focus of any type of research should be on delivering AI 
that is beneficial to society and robust in the sense that the 
benefits are guaranteed: our AI systems must do what we 
want them to do.  

Different ways in which an AI system may fail to perform as 
desired correspond to different areas of robustness 
research:  

1. Verification: How can it be proven that a system satisfies 
certain desired formal properties? (“Did I build the system 
right?”)  

2. Validity: How can it be ensured that a system that meets 
its formal requirements does not have unwanted behaviors 
and consequences? (“Did I build the right system?”)  

3. Security: How can one prevent intentional manipulation 
by unauthorized parties? 

4. Control: How can one enable meaningful human control 
over an AI system after it begins to operate? (“Ok, I built the 
system wrong, can I fix it?”)  

Verification 

Verification refers to methods that yield high confidence that 
a system will satisfy a set of formal constraints. When 
possible, it is desirable for systems in safety-critical 
situations, e.g. self-driving cars, to be verifiable.  

A lack of design-time knowledge also motivates the use of 
learning algorithms within the agent software, and 
verification becomes more difficult: statistical learning 
theory gives so-called ε-δ (probably approximately correct) 
bounds, mostly for the somewhat unrealistic settings of 
supervised learning from data and single-agent 
reinforcement learning with simple architectures and full 
observability, but even then requiring prohibitively large 
sample sizes to obtain meaningful guarantees.  

Not only should it be possible to build AI systems on top of 
verified substrates; it should also be possible to verify the 
designs of the AI systems themselves, particularly if they 
follow a “componentized architecture”, in which guarantees 
about individual components can be combined according to 
their connections to yield properties of the overall system. 
Agent architectures used in Russell and Norvig [12, 19] 
separate an agent into distinct modules (predictive models, 
state estimates, utility functions, policies, learning elements, 
etc. Research on richer kinds of agents—for example, agents 
with layered architectures, anytime components, 
overlapping deliberative and reactive elements, metalevel 
control, etc.—could contribute to the creation of verifiable 
agents, yet, there is a lack of the formal “algebra” to properly 
define, explore, and rank the space of designs.  

Existing body of research would be most valuable to 
reducing the risk of adverse outcomes arising from bugs in 
implementation. This work would most likely be less 
theoretical and more practical and implementation-specific 
than most of the other research explored in this document. 
Some of the questions to investigate here are:  

1. What categories of bugs are most hazardous? Some 
particularly undesirable sorts of bugs are:  

(a) bugs that lie dormant during ordinary 
testing but can be encountered in larger 
settings given enough time. (For example, 
integer overflows or accumulation of 
numerical error.)  

(b) portability bugs, ie bugs that arise from 
differences in libraries, environment, or 
hardware.  

(c) “Heisenbugs”, ie bugs that manifest in 
practice but not in a debugging 
environment.  
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(d) bugs that are difficult to reproduce for 
some reason, such as bugs affected by non-
deterministic scheduling of concurrent 
threads of execution, or by the interaction 
of this with some other sort of state, such 
as a random number generator.  

2. How likely would these sorts of bugs be to arise in a 
hazardous way if an otherwise-promising super- 
intelligence project was undertaken in the medium-
term?  

3. What kinds of tools or software changes would 
make the most difference in mitigating the risk of an 
adverse outcome? Some ideas:  

(a) influence current and upcoming 
programming language interpreters, 
compilers, application virtual machines, 
etc. to adopt a default behavior (or at least 
an option) of throwing exceptions on 
encountering numerical 
overflow/underflow.  

(b) ensure software quality of particularly 
popular state-of-the-art machine learning 
libraries, and other core components.  

(c) assess the prevalence of portability 
bugs and promote adherence of standards 
that could resolve them.  

Validity 

In order to build systems that robustly behave well, we of 
course need to decide what “good behavior” means in each 
application domain.[13] This ethical question is tied 
intimately to questions of what engineering techniques are 
available, how reliable these techniques are, and what trade-
offs can be made –– all areas where computer science, 
machine learning, and broader AI expertise is valuable.  

For example, Wallach and Allen [28] argue that a significant 
consideration is the computational expense of different 
behavioral standards (or ethical theories): if a standard 
cannot be applied efficiently enough to guide behavior in 
safety-critical situations, then cheaper approximations may 
be needed. Designing simplified rules – for example, to 
govern a self-driving car’s decisions in critical situations – 
will likely require expertise from both ethicists and 
computer scientists.  

Security 

Security research can help make AI more robust. At a higher 
level, research into specific AI and machine learning 
techniques may become increasingly useful in security. 
These techniques could be applied to the detection of 
intrusions [16], analyzing malware [17], or detecting 

potential exploits in other programs through code analysis 
[20]. It is not implausible that cyberattack between states 
and private actors will be a risk factor for harm from near-
future AI systems, motivating research on preventing 
harmful events. 

As AI systems are used in an increasing number of critical 
roles, they will take up an increasing proportion of cyber-
attack surface area. Robustness against exploitation at the 
low level is closely tied to verifiability and freedom from 
bugs. For example, the DARPA SAFE program aims to build 
an integrated hardware-software system with a flexible 
metadata rule engine, on which can be built memory safety, 
fault isolation, and other protocols that could improve 
security by preventing exploitable flaws [30]. Such programs 
cannot eliminate all security flaws (since verification is only 
as strong as the assumptions that underly the specification), 
but could significantly reduce vulnerabilities of the type 
exploited by the recent “Heartbleed bug” and “Bash Bug”. 
Such systems could be preferentially deployed in safety-
critical applications, where the cost of improved security is 
justified.  

As AI systems grow more complex and are networked 
together, they will have to intelligently manage their trust, 
motivating research on statistical-behavioral trust 
establishment [94] and computational reputation models 
[13].  

Control 

For certain types of safety-critical AI systems – especially 
vehicles and weapons platforms – it may be desirable to 
retain some form of meaningful human control, whether this 
means a human in the loop, on the loop[14, 18], or some 
other protocol. In any of these cases, there will be technical 
work needed in order to ensure that meaningful human 
control is maintained [13].  

Automated vehicles are a test-bed for effective control-
granting techniques. The design of systems and protocols for 
transition between automated navigation and human control 
is a promising area for further research. Such issues also 
motivate broader research on how to optimally allocate 
tasks within human- computer teams, both for identifying 
situations where control should be transferred, and for 
applying human judgment efficiently to the highest-value 
decisions.  

RESULTS 

A frequently discussed long-term goal of some AI 
researchers is to develop systems that can learn from 
experience with human-like breadth and surpass human 
performance in most cognitive tasks, thereby having a major 
impact on society.  
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Assessments of this success probability vary widely between 
researchers, but few would argue with great confidence that 
the probability is negligible, given the track record of such 
predictions.  

The threat posed by a sufficiently advanced artificial 
intelligence may depend much more on its cognitive 
capabilities and its goal architecture than on the physical 
capabilities with which it is initially endowed. Not all risks 
related to robots or artificial intelligences are to be classified 
as information system hazards. A risk would count as such a 
hazard if, for example, it arose from the possibility of a 
computer virus infecting the operating system for a robot or 
an AI. But aside from such special cases, we shall not count 
robot hazards and artificial intelligence hazards as 
information system hazards. 

Validity 

Designing a powerful AI system without having a thorough 
understanding of these issues might increase the risk of 
unintended consequences, both by foregoing tools that could 
have been used to increase the system’s reliability, and by 
risking the collapse of shaky foundations. Example research 
topics in this area include reasoning and decision under 
bounded computational resources `a la Horvitz and Russell 
[59, 100], how to take into account correlations between AI 
systems’ behaviors and those of their environments or of 
other agents [14, 6, 8, 4, 15],how agents that are embedded 
in their environments should reason [10, 7], and how to 
reason about uncertainty over logical consequences of 
beliefs or other deterministic computations [14, 3].  

In the long term, it is plausible that we will want to make 
agents that act autonomously and powerfully across many 
domains. Explicitly specifying our preferences in broad 
domains in the style of near-future machine ethics may not 
be practical, making “aligning” the values of powerful AI 
systems with our own values and preferences difficult [11, 
13].  

Reinforcement learning raises its own problems: when 
systems become very capable and general, then an effect 
similar to Goodhart’s Law is likely to occur, in which 
sophisticated agents attempt to manipulate or directly 
control their reward signals [16]. This motivates research 
areas that could improve our ability to engineer systems that 
can learn or acquire values at run- time. For example, 
inverse reinforcement learning may offer a viable approach, 
in which a system infers the preferences of another actor, 
assumed to be a reinforcement learner itself [11, 8].  

As systems become more capable, more epistemically 
difficult methods could become viable, suggesting that 
research on such methods could be useful.  

 

Security 

It is unclear whether long-term progress in AI will make the 
overall problem of security easier or harder; on one hand, 
systems will become increasingly complex in construction 
and behavior and AI-based cyberattacks may be extremely 
effective, while on the other hand, the use of AI and machine 
learning techniques along with significant progress in low-
level system reliability may render hardened systems much 
less vulnerable than today’s.  

Some of the attributes that may be desirable or necessary 
are:  

 Containment: it should prevent a contained super-
intelligent AI from having arbitrary effects on the 
world. In particular, it should be verifiably free of 
vulnerabilities itself.  

 Robustness: it should be difficult to unintentionally 
render ineffective.  

 Uptake: It should be a system that AI builders want 
to use, and avoid being one that they want to not 
use.  

 Inspectability: It should allow detailed debugging 
and inspection of the contained AI. This could 
contribute to uptake if it provides better inspection 
capabilities than AI builders typically have (for 
instance, debugging distributed software is typically 
awkward in the current state of affairs). 

Control 

It has been argued [13] that the nature of the general AI 
control problem undergoes an essential shift, which can be 
referred to as the “context change”, when transitioning from 
subhuman to superhuman general AI. This suggests that 
rather than judging potential solutions to the control 
problem using only experimental results, it is essential to 
build compelling deductive arguments that generalize and 
are falsifiable, and only when these arguments are available 
does it make sense to try to test potential solutions via 
experiment.  

In general, an accident can be described as a situation where 
a human designer had in mind a certain (perhaps informally 
specified) objective or task, but the system that was 
designed and deployed for that task produced harmful and 
unexpected results. This issue arises in almost any 
engineering discipline, but may be particularly important to 
address when building AI systems [16].  

- The designer may have specified the wrong formal 
objective function, such that maximizing that 
objective function leads to harmful results, even in 
the limit of perfect learning and infinite data. 
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Negative side effects and reward hacking describe 
two broad mechanisms that make it easy to produce 
wrong objective functions. In “negative side effects”, 
the designer specifies an objective function that 
focuses on accomplishing some specific task in the 
environment, but ignores other aspects of the 
(potentially very large) environment, and thus 
implicitly expresses indifference over 
environmental variables that might actually be 
harmful to change. In “reward hacking”, the 
objective function that the designer writes down 
admits of some clever “easy” solution that formally 
maximizes it but perverts the spirit of the designer’s 
intent. 
 

- The designer may know the correct objective 
function, or at least have a method of evaluating it 
(for example explicitly consulting a human on a 
given situation), but it is too expensive to do so 
frequently, leading to possible harmful behavior 
caused by bad extrapolations from limited samples.  
 

- The designer may have specified the correct formal 
objective, such that we would get the correct 
behavior were the system to have perfect beliefs, 
but something bad occurs due to making decisions 
from insufficient or poorly curated training data or 
an insufficiently expressive model.  

Within this context, the following research questions can be 
developed:  

1. Can high Bayesian uncertainty and agent respect for the 
unknown act as an effective safety mechanism?  

2. How can one investigate steep temporal discounting as an 
incentives control method for an untrusted general AI?  

Safety 

As predicting the exact behavior of complex software is 
notoriously difficult the purpose of AI safety research is 
therefore more modest: to show that the behavior, although 
not exactly predictable, will have certain de- sired 
properties, for example keeping certain behavioral 
parameters within certain bounds.  

Rational agents are often composed of distinct modules (e.g. 
sensors, actuators, a performance element, a learning 
element, a problem generator, a critic, etc.), each with 
limited abilities, with some network of information flows 
between modules.[10] Within this framework, it would be 
valuable to provide guarantees that various modules would 
be safe or unsafe (individually or in combination).  

Many of the above-mentioned safety issues are related to the 
issue of goals that the rational agent may have. This question 
provides an important link between architectures and goals: 

how amenable are different AI architectures to having their 
goals and beliefs read from the outside in a fashion useful for 
safety determination and monitoring? 

DISCUSSION 

There are many ways of responding to information hazards. 
In many cases, the best response is no response, i.e., to 
proceed as though no such hazard existed. The benefits of 
information may so far outweigh its costs that even when 
information hazards are fully accounted for, we still under-
invest in the gathering and dissemination of information. 
Moreover, ignorance carries its own dangers which are 
oftentimes greater than those of knowledge. Information 
risks might simply be tolerated.  

When mitigation is called for, it need not take the form of an 
active attempt to suppress information through measures 
such as bans, censorship, disinformation campaigns, 
encryption, or secrecy. One response option is simply to 
invest less in discovering and disseminating certain kinds of 
information. Somebody who is worried about the spoiler 
hazard of learning about the ending of a movie can simply 
refrain from reading reviews and plot summaries.  

At the same time, however, we should recognize that 
knowledge and information frequently have downsides. 
Future scientific and technological advances, in particular, 
may create information which, misused, would cause 
tremendous harm—including, potentially, existential 
catastrophe.  

It can also be hoped that new information technologies will 
bring about a vastly more transparent society, in which 
everybody (the watchmen included) are under constant 
surveillance; and that this universal transparency will 
prevent the worst potential misuses of the new technological 
powers that humanity will develop. 

CONCLUSION  

Even if our best policy is to form an unyielding commitment 
to unlimited freedom of thought, virtually limitless freedom 
of speech, an extremely wide freedom of inquiry, we should 
realize not only that this policy has costs but that perhaps 
the strongest reason for adopting such an uncompromising 
stance would itself be based on an information hazard; 
namely, norm hazard: the risk that precious yet fragile 
norms of truth-seeking and truthful reporting would be 
jeopardized if we permitted convenient exceptions in our 
own adherence to them or if their violation were in general 
too readily excused.  

It is said that a little knowledge is a dangerous thing. It is an 
open question whether more knowledge is safer. Even if our 
best bet is that more knowledge is on average good, we 
should recognize that there are numerous cases in which 
more knowledge makes things worse. 
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