
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 03 | Mar 2021                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 2912 
 

Automated Performance Modeling of HPC Applications Using Machine 

Learning 

Subin Babu1, Ajeesh S.2, Dr. Smita C Thomas3 

1M Tech Student, APJ Abdul Kalam Technological University, Kerala, India 
2Asst. Professor, Mount Zion College of Engineering, Kadammanitta, Kerala, India 

3Assoc. Professor, Mount Zion College of Engineering, Kadammanitta, Kerala, India 
---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - Automated performance modeling and 
performance prediction of parallel programs are highly 
valuable in many use cases, such as in guiding task 
management and job scheduling, offering insights of 
application behaviors, and assisting resource requirement 
estimation. In this study, we focus on automatically predicting 
the execution time of parallel programs (more specifically, 
MPI programs) with different inputs, at different scales, and 
without domain knowledge. We model the correlation between 
the execution time and domain-independent runtime features. 
These features include values of variables, counters of 
branches, loops, and MPI communications. Through 
automatically instrumenting an MPI program, each execution 
of the program will output a feature vector and its 
corresponding execution time. After collecting data from 
executions with different inputs, a random forest machine 
learning approach is used to build an empirical performance 
model, which can predict the execution time of the program 
given a new input. An instance-transfer learning method is 
used to reuse an existing performance model and improve the 
prediction accuracy on a new platform that lacks historical 
execution data. Our experiments and analyses of three parallel 
applications, Graph500, GalaxSee, and SMG2000, on three 
different systems confirm that our method performs well, with 
less than 20% prediction error on average. 
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        1. INTRODUCTION  
 
         High-performance computing (HPC) is the ability to      
process data and perform complex calculations at high 
speeds. To put it into perspective, a laptop or desktop with a 
3 GHz processor can perform around 3 billion calculations 
per second. While that is much faster than any human can 
achieve, it pales in comparison to HPC solutions that can 
perform quadrillions of calculations per second.  

One of the best-known types of HPC solutions is the 
supercomputer. A supercomputer contains thousands of 
compute nodes that work together to complete one or more 
tasks. This is called parallel processing. It’s similar to having 
thousands of PCs networked together, combining compute 

power to complete tasks faster. It is through data that 
groundbreaking scientific discoveries are made, game-
changing innovations are fueled, and quality of life is 
improved for billions of people around the globe. HPC is the 
foundation for scientific, industrial, and societal 
advancements.  

As technologies like the Internet of Things (IoT), artificial 
intelligence (AI), and 3-D imaging evolve, the size and 
amount of data that organizations have to work with is 
growing exponentially. For many purposes, such as 
streaming a live sporting event, tracking a developing storm, 
testing new products, or analyzing stock trends, the ability to 
process data in real time is crucial.  To keep a step ahead of 
the competition, organizations need lightning-fast, highly 
reliable IT infrastructure to process, store, and analyze 
massive amounts of data. 

Performance modeling is a widely concerned problem in 
high performance computing (HPC) community. An accurate 
model of parallel program performance, particularly an 
accurate model for predicting execution time can yield many 
benefits. First, a performance model can be used for task 
management and scheduling, assisting the scheduler to 
decide how to map tasks to proper compute nodes [8], [9]. 
Therefore, the utilization of the entire HPC system can be 
improved. Second, the model can offer insights about 
application behaviors [5], which helps developers 
understand the scaling potential and better tune 
applications. Third, the model helps HPC users to estimate 
the number of CPU cores they need [8], [9]. According to the 
predicted performance, users can consider the predicted 
computation time and estimated resources systematically, 
and then request a reasonable number of compute nodes 
and CPU cores from HPC systems. 

Building an accurate performance model of parallel 
programs, however, is a very challenging task. Due to the 
variance and complexity of both system architectures and 
applications, the execution time of a parallel program is 
often with significant uncertainty. For example, 
numerous factors can affect the performance, including 
but not limited to hardware, applications, algorithms, and 
input parameters. It is especially difficult to build a 
general-purpose model that synthesizes all factors. In this 
paper, we focus on designing and developing a model, 
particularly for predicting the execution time of parallel 
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programs, on an HPC cluster with different inputs and at 
different scales. We also focus on MPI programs as MPI is 
the de facto standard parallel programming model. 

Previous studies have mainly introduced three types 
of methods: analytical modeling, replay-based modeling, 
and statistical model. An analytical modeling method has 
arithmetic formulas describing a parallel program 
performance and can offer a prediction of execution time 
quickly. However, this method needs extensive efforts of 
human experts with in-depth understanding of a 
particular HPC application (e.g. consider the time 
complexity analysis process of a parallel program). Since 
HPC applications have a wide range of domains, it is 
difficult to build an analytical model. Furthermore, it is 
challenging to generalize a model for various domains. 

A replay-based model is built from historical 
execution traces, which contain detailed information 
about computation and communication of an HPC 
program. Through analyzing traces, a synthetic program 
can be automatically reconstructed for replaying 
behaviors of the original program and predicting its 
performance. However, the replay-based modeling 
usually requires large storage space to keep traces 
(ranging from hundreds of megabytes to tens of gigabytes 
for each run [9], [11]). Be- sides, a synthetic program can 
only represent one specific execution path of the original 
program, which also restricts the application of replay-
based modeling. 

A statistical model uses machine learning techniques to 
fit the mapping function between performance metrics and 
certain features. With sufficiently much training data, 
statistical models can make relatively accurate predictions 
of the performance, without requiring domain knowledge 
and human efforts. It is natural and convenient to use input 
parameters of an HPC program as features. However, 
important performance factors may not be explicitly 
covered by input parameters. For instance, it is difficult to 
automatically parse non-scalar inputs (e.g. files, matrices, 
and strings) for modeling without domain experts. Domain 
experts can determine a small number of scalar variables 
in the source code of a program as model features since 
these variables can directly expose the actual performance 
impact from inputs [9]. For applications that contain 
adaptive preprocess or auto-tuning [1], [2], some key 
features are dynamically decided at runtime. In this case, 
input parameters also cannot cover all performance 
features. 

 
 
2. RELATED WORK 
 
In this section, we review and discuss existing studies along  
four categories, analytical modeling methods, replay-based 
modeling methods, statistical modeling, and model 
transferring for the performance prediction of parallel 
programs. 

2.1 Analytical Modeling 

      Analytical modeling uses an analytical formula to 
describe the program performance. As we have introduced 
in Section 1, an analytical model is tightly coupled with a 
particular algorithm and a particular application domain, 
thus it involves extensive efforts from human experts. For 
ex- ample, Eller et. al. [10] proposed an analytical model for 
Krylov Solver on structured grid problems. Hang et. al. [6] 
proposed a detailed performance model for deep neural 
networks. Barker’s model [8] focused on the Krak Hydro- 
dynamics Application. In general, an analytical model for a 
specific application is difficult to be applied to other 
applications. 

2.2  Replay-based Modeling 

Replay-based modeling uses instrumentation or 
similar techniques to trace detailed information from 
program executions. Through analyzing the trace, a 
synthetic program can be reconstructed for replaying 
behaviors of the original program and predicting its 
performance. Since tracing and analysis can be 
automated, this type of modeling and pre- diction method 
can eliminate the requirement of domain knowledge and 
can be generalized for different applications. 

Several studies exist in this area. For instance, Sodhi, 
Zhang and Hao [4], [7] constructed a skeleton of a parallel 
program from traces. Skeleton preserves the flow and 
logic of the original program but reduces calculations and 
communications. Zhai et. al. [4] analyzed traces and 
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introduced a deterministic replay to predict the 
performance. However, traces require a large storage 
space. Even when tracing simple parallel programs like 
NPB bench- mark [7], storage requirements can range 
from hundreds of megabytes to tens of gigabytes for each 
run [9], [4]. Besides, a trace-based modeling usually 
consists of a program skeleton or other forms of a 
synthetic program. A synthetic program shrinks 
computation and communication of the original code. It 
loses the semantic of the original code; therefore, it is not 
human-readable. The prediction lacks interpretability, 
which does not locate the performance  factors of parallel 
programs. 

2.3 Statistical Modeling 

The development of machine learning techniques 
enables the possibility of empirically analyzing the 
performance patterns of a parallel program under 
different input parameters. Song et. al. [9] adopted a 
machine learning method called Delta Latent Dirichlet 
Allocation (∆LDA) [6] to model application executions. It 
can locate possibly low- performance code blocks but not 
predict the exact execution time cost. Ogilvie and 
Thiagarajan [3], [5] focused on constructing surrogate 
models for auto-tuning. In these problem settings, 
performance models are mainly required to achieve good 
accuracy on high-performance sub-space while low-
performance part can be ignored. Lee et. al. [11] proposed 
methods that employ artificial neural networks to predict 
the performance of parallel programs. Their methods can 
capture system complexity implicitly from various input 
data, but their work only focuses on a fixed number of 
cores. Additionally, their method cannot analyze the 
impact of each feature since the artificial neural network is 
a black- box model. A series of studies [9], [10], attempted 
to model the performance of kernels in a parallel program 
with using linear regression methods like ridge regression, 
least absolute shrinkage and selection operator (LASSO), 
or their variants to model the relationship between 
features and execution time. Linear regression methods 
are easy to be implemented and their prediction results 
are concise and interpretable. However, since parallel 
programs can have complex behavior patterns, a linear 
model may not be accurate to characterize the 
performance under different input parameters. EPMNF 
transformation [9], [10] can be used to improve the 
nonlinear fitness of linear regressions, but before the 
transformation, domain experts are required to determine 
a small range of feature candidates. 

   2.4 Model Transferring 

The traces of an application from a certain platform 
cannot be used directly when modeling the performance 
of the application on another platform. It is feasible to 
collect data and build another model on the new 
platform; however, it is troublesome and often 
unnecessary. A better solution would be transferring the 

existing model to reuse it or assist in building the new 
model. Numerous studies have been conducted, but these 
existing studies usually do not focus on the execution 
time prediction but the prediction of the performance 
rank of an application under different conditions, since 
transferring the rank correlation across different 
platforms is easier than transferring the execution time 
model. Hoste et. al. [2] used benchmarks to measure 
different platforms, then according to the similarity 
between benchmarks and the application of interest, their 
work can predict the performance rank of an application 
on different platforms. Chen et. al. [1] used the Bayesian 
network to capture the parameter dependencies of an 
application. Maratheet. al. [3] built a performance model 
with deep neural networks. They transferred neural 
networks with a fine-tuning method, which took a trained 
network for a platform to initialize the connection 
weights of a network for a new platform. Their work 
showed that deep neural networks do not outperform 
traditional machine learning methods (e.g. random 
forest) on execution time prediction in general, but they 
can help users find better application configurations on 
different platforms. 

The use of performance modeling manually has been 
explored before. There are approaches that focus  on 
models generated for a very specific purpose but less on 
human readable general-purpose models. For example, 
Ipek and de Supinski propose multi-layer artificial neural 
networks to learn application performance [9] and Lee and 
Brooks compare different schemes for automated machine-
based performance learning and prediction [1]. Zhai, Chen, 
and Zheng extrapolate single-node performance to 
complex parallel machines [2]. Wu and Muller  extrapolate 
traces ¨ to larger process counts and can thus predict 
communication operations. Hoefler and Gropp. aimed to 
popularize performance modeling by defining a simple six-
step process to create application performance models [3]. 
Bauer, Gottlieb, and Hoefler show how to model 
performance variations using simple statistical tools [4]. 
Another objective of performance modeling is to predict 
application performance on a different target architecture. 
Carrington et al. propose a model-based prediction 
framework for applications on different computers [5], 
Marin and Mellor-Crummey demonstrate how application 
models can be derived semi-automatically to predict 
performance on different architectures [6], and Yang, Ma, 
and Muller ¨ model application performance on different 
architectures by running kernels on the target architecture 
[7]. Besides program inputs, predictors generated from 
hardware features can be used in our hybrid approach to 
model performance of applications across architectures. 
This poses an interesting direction of future work. The 
authors of the Statistical Stall Breakdown [8] describe a 
mechanism that samples hardware counters and 
dynamically multiplexes hardware counters to compute a 
breakdown model for a PowerPC based microprocessor. 
The work by Huck et al. [9] focuses on automating the 
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process for parallel performance experimentation, analysis 
and problem diagnosis. Such mechanism is built on top of 
the PerfExplorer performance data mining system 
combined with the OpenUH [10] compiler infrastructure. 
The PerfExpert [3] tool employs the HPCToolkit [5] 
measurement system to execute a structured sequence of 
performance counter measurements to detect probable 
core, socket and node-level performance bottlenecks in 
important procedures and loops of an application. The 
work of Pavlovic et al. characterizes the memory behavior, 
including memory footprint, memory bandwidth and cache 
efficiency of several scientific applications. Based on the 
analysis of the executions of such applications they also 
estimate the impact of the memory system on the amount 
of the instruction stalls and on the real computation 
performance. Their results are shown per application 
execution, summing up all the information from the 
different tasks. There are other performance tools that 
exploit processor hardware counters and that have 
integrated sampling capabilities into their analyses. Tools 
like TAU, Scalasca [4], HPCToolkit, use sampling in addition 
to instrumentation, their sampling capabilities are mainly 
focused on assigning time consumption to source code lines 
instead of providing finer details on the hardware counters. 
Gonzalez, Gimenez and Labarta present a tool that 
automatically characterizes the different computation 
regions of the program [5]. Llort, Gonzalez and Servat 
detect clusters based on IPC and number of instructions 
committed and then detects the change of performance 
counters like cache misses inside the clusters [6]. Alam and 
Vetter propose code annotations, called “Modeling 
Assertions” [7] that combine empirical and analytical 
modeling techniques and help the developer to derive 
performance models for his code. Kerbyson and Alme 
propose a performance modeling approach [8] that is based 
on manually developed human expert knowledge about the 
application. Those modeling techniques rely on empirical 
execution of serial parts on the target architecture and are 
usually applied to stable codes which limits their usefulness 
during software development. The recent automatic online 
performance modeling strategy [5] had serious limitations 
as described in previous sections. Our hybrid strategy is the 
first technique that combines the knowledge obtained from 
static analysis and the power of dynamic analysis to 
produce more precise model.  

3. EXISTING METHODS 

Many researchers have previously been carried out in 
this field of phishing detection. Gathered the 
information from various such works and have 
profoundly reviewed them which has helped us in 
motivating our own methodologies in the process of 
making a more secure and accurate system. 
Performance prediction is arguably a challenging 
problem. Theoretically, it is impossible to find a perfect 
prediction for every program (e.g. the halting problem). 
In practice, it is also difficult to predict the performance 

of a program driven by dynamic factors in its entire 
execution period (e.g. many randomized algorithms). In 
this work, we aim for modeling a program of which 
execution time mainly depends on its early execution 
phase. This research focus is inspired by the fact that a 
typical HPC application consists of three phases: 
initialization, repetitive calculation, and termination. 
Among these three phases, the initialization phase is 
usually used to define what will be calculated and how 
to be calculated. 

 Our method of performance modeling and 
prediction includes two phases: a training phase and a 
predicting phase, as shown in Fig 1. The training phase 
is used to collect data and build a performance model. It 
mainly consists of four stages: instrumentation, model 
learning, feature reduction, and model transfer. The 
predicting phase is used to handle a new input data of 
the target program, calculate the value of features, and 
output a predictive execution time with the transferred 
model or the non-transferred model depending on 
whether the transferred model is available. Next, we 
describe the processes of our method in detail. 

3.1 Instrumentation  

To capture behavior patterns of parallel programs 
without domain knowledge, we collect the runtime 
features through instrumentation. Instrumentation is a 
dynamic analysis for a program, which extracts 
program features from sample executions. We develop 
an instrumentor  using clang [1]. The instrumentor 
automatically analyzes the abstract syntax tree (AST) of 
the source code of the target program, and inserts 
detective code around assignments, branches, loops, 
and communications to generate the instrumented 
program. Assignments reflect the data flow of a 
program. Branches and loops reflect the control flow. 
MPI communications can be regarded as the skeleton of 
a program [5]. To reduce the overhead of 
instrumentation, the inserted code keeps lightweight, 
like an incrementing integer counter for each branch 
feature and loop feature, and an assignment for each 
assignment feature [8]. We describe the 
instrumentation of these different types of features, 
respectively, below. 

3.1.1 Assignments  

The size of a problem and the amount of calculation are 
decided by key variables like the problem size, iteration 
count, convergence condition, and solution accuracy. To 
discover the key variables from the source code, we 
insert the instrumentation code after assignments. If a 
variable is assigned twice or more, all values are 
recorded as different features. We do not instrument 
the variables in a loop, because their values are updated 
frequently.  
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3.1.2 Branches  

Branches can lead to different execution paths, which may 
have significantly different execution times. Thus the results 
of conditional statements in branches are important features 
for predicting performance. This type of feature is difficult to 
fetch via domain knowledge or static code analysis. For 
example, code fragment 2 shows a common process that 
examines whether a file is successfully opened. If successful, 
the program will load data from the file and execute a heavy 
calculation, otherwise the program exits immediately. We 
cannot predict the result of this branch according to the file 
path string until the branch is actually executed. This example 
also indicates that black-box performance modeling that only 
considers program input parameters as features is 
insufficient, since some important features can often only be 
fetched at runtime. 
 
3.2 Model Learning 

After collecting runtime features via instrumentation, we 
then try to discover the correlation between features and 
program execution time. It can be treated as a multivariate 
nonlinear regression problem. Assume that there are n 
samples. Each sample is expressed as (x, y), where x is a 
vector consisting of m features and y is the corresponding 
execution time. The goal of this regression problem is to find 
a mapping relation, f : x −→ y, that minimizes the mean 
square error (MSE) between the predictive value and the real 
execution time in the n samples:  

                                   

There exist numerous approaches to solve this regression 
problem, like ridge regression [11], LASSO [4], artificial 
neural network (ANN), and random forest [12]. We adopt a 
random forest approach with an optimization called 
extremely randomized trees [2]. Random forest is widely 
used in classification or regression tasks. Besides the 
capability of modeling complex nonlinear data, another 
advantage of random forest is that it can process mixed 
different types of features including float, integer, and 
enumeration [5]. Such a characteristic makes it suitable to 
model the runtime features we trace from MPI program 
execution. Besides, random forest can analyze the importance 
of each feature. It enables reducing redundant features and 
corresponding instrumentations.  

4. PROPOSED SYSTEM 

In this section, we present the evaluation results and 
analyses of our method. 

 

4.1 Experimental Setup  

4.1.1 Applications  

Three applications, Graph500, GalaxSee, and 
SMG2000, were tested to predict their execution time 
under different input parameters. Graph500 (version 
2.1.4) [3] is a widely used benchmark focusing on data 
intensive computing. The main kernel of Graph500 is a 
Breadth-First Search (BFS) of a graph which starts with 
a single source vertex. GalaxSee [2] is a parallel N-body 
simulation program used for simulating the 
movements of multiple celestial objects. It contains 
categorical parameters that determine different 
implementations of algorithms to solve the problem. 
SMG2000 [4] is a parallel semicoarsening multigrid 
solver for the linear systems arising from finite 
difference, finite volume, or finite element 
discretizations of the diffusion equation. This solver is 
a key component for achieving scalability in radiation 
diffusion simulations. Among these three applications, 
Graph500 is a simple application since it contains few 
input parameters and each parameter has a 
straightforward impact on performance. In contrast, 
GalaxSee contains different types of parameters, and 
their impact on performance is not obvious. Table 1, 2, 
and 3 show their parameters and value range in our 
experiments, respectively. 3.1.2 Platforms and 
Environment The experiments were conducted on 
three different platforms, denoted as A, B, and C. Table 
4 lists the configuration of each platform. These three 
platforms have different characteristics. Platform B has 
higher single-core performance, but the number of 
cores per node is only 4. Platform C is a fat node with 8 
low-frequency, 18-core CPUs. All communications in 
Platform C are intra-node communications. A single 
node of Platform A is in between Platform B and 
Platform C, but the size of the entire Platform A is much 
larger than that of B and C. Since the maximum number 
of CPU cores in platform B and C is 160 and 144, 
respectively, the parameter N P ROC, namely the 
number of processes, of each application is set to [16, 
128] on these two platforms. Applications were 
compiled using Intel C/C++ compiler 15.0.0 and ran on 
CentOS 7.3 system. The regression model and the model 
transferring programs were written in Python 3.6.1 and 
scikit-learn library [5]. The Intel MPI version 5.0 was 
used as the MPI library.  

4.2  Feature Reduction  

We first evaluated the feature reduction methods 
introduced in Section 3.4. In this series of experiments, 
each application was tested 100 times on Platform A 
with different input parameters to trace runtime 
features. Since a d−order polynomial expansion on m 
features will generate m+d d  new features, in this 
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series of tests, we did not adopt polynomial expansion. 
We aim for reducing the number of features to under 20 
so that a 3-order polynomial expansion will not 
generate too many new features. The effectiveness of 
reductions is controlled by the time threshold and the 
importance threshold as defined in Section 2.4. We first 
evaluated the impact of varying time threshold settings. 
Table 5 shows the evaluation results, taking GalaxSee as 
an example. The actual time means the real time 
proportion of fetching feature values under its 
corresponding time threshold. For example, 
whensetting the time threshold to be 5% of the 
complete program execution time, the actual time 
proportion we measured is 1.5%. The actual value is 
always smaller since the threshold is an upper bound. 
We took 50% of data as training set and used random 
forest to predict the others. The prediction error in our 
experiments is calculated by the below formula: 

 

where ypredict[i] is the predicted performance and 
yreal[i] is the actual performance of the ith testing 
sample. Table 5 reports these results, which confirms 
our hypothesis discussed in Section 2.4 that lower time 
threshold can achieve better reduction, but it may 
reduce some useful features and decrease the 
prediction accuracy. When setting the time threshold to 
be 100%, it can achieve a very low error rate, but it is 
almost useless since the actual time and the overhead 
are impractical. The 5% time threshold is sufficient to 
achieve acceptable accuracy, and meanwhile to keep 
low actual time and overhead. Note that in this series of 
evaluation tests, we only ran 100 samples since some of 
the full instrumented programs took too much time. 
These samples were used to analyze the trend of the 
impact under varying thresholds. The errors measured 
in these tests are higher than those presented in Section 
2.3 with the same reduction setting, since the latter was 
evaluated with more data samples. We also evaluated 
with varying the importance threshold on GalaxSee 
with 5% time thresholds, and the results are shown in 
Table 6. With the decrease of the importance threshold, 
the number of reserved features also decreases, but the 
error rate becomes higher. The results of 95% 
threshold in Table 6 indicate that, after reduction by 5% 
time as shown in Table 5, there still exist many 
redundant features among 84 features. Removing these 
redundant features only slightly increased the error 
rate from 22.1% to 23.1%. Further  reduction may 
remove some important features and result in a higher 
error rate. 

4.3 Performance Prediction  

In this section, we discuss the prediction accuracy of different 
machine learning methods for our performance model. We 
ran each application on each platform 1,000 times with 
different input parameters. In other words, each modeling 
task had 1,000 data samples. The input parameters we used 
for experiments were generated from the parameter value 
range of each application uniformly and randomly. Figure 3 
shows the time distribution of three applications. After 
fetching runtime feature values of these samples, each feature 
was normalized to zero mean and unit variance 
independently. Part of data samples was randomly selected 
as the training set while others were used as the testing set. 
Figure 6 presents the mean errors of the testing set under 
different ratios of the training data. The regression methods 
we tested include least absolute shrinkage and selection 
operator (LASSO), support vector machine regression (SVR) 
with radial basis function (rbf) kernel, and random forest 
(RF). Each method was applied to both the raw form of data 
and its 3-order polynomial expansion. We also tested two 
sophisticated modeling methods from related works. One is a 
linear model based on performance model normal form 
(PMNF) [9], [10], [11]. The other one is a deep learning model 
called PerfNet [2]. PMNF contains a special form of nonlinear 
expansion. PerfNet does not have a process for feature 
reduction so that the polynomial expansion would make the 
model unnecessarily large and possibly overfitting. Therefore 
we did not use polynomial expansion on PMNF and PerfNet. 
Since the mapping relation between the features and the 
execution time is complicated, a linear regression method, 
like LASSO, has higher prediction error than nonlinear 
methods. Using polynomial basis function, it is actually 
converted to nonlinear methods, and the corresponding 
errors are significantly reduced. It indicates that polynomial 
function is an acceptable approximation between features 
and program execution time. 
 
5. CONCLUSIONS 
 
In this seminar, we introduce a novel method to model and 
predict the performance of parallel programs (MPI  
programs). We develop a tool to automatically analyze the 
syntax tree of MPI programs and instrument them, so that 
we can detect its runtime features related to computation 
and communication, without requiring any domain 
knowledge. We design a strategy to automatically analyze 
and fit the runtime feature data of MPI programs using 
random forest technique, thereby we can predict the 
performance. Since we adopt a lightweight instrumentation 
and further reduce features by two reduction processes, the 
overhead of instrumentation is low, with much less storage 
demand compared to existing methods. Combined with 
model transferring method, an existing performance model 
can be reused to predict the performance on a new platform 
with a small number of training samples. 
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Although we have achieved desired prediction on three 
tested applications that well represent typical HPC 
applications, the ability of our method can be further 
optimized. Since we only extract features from early 
execution phase of an application, if its behavior is not only 
decided by the early phase, our method may not have an 
accurate prediction. In the future, we will further investigate 
how to extract behavior patterns throughout the entire 
execution period of an application and further optimize our 
model.  
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