
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2912

Automated Performance Modeling of HPC Applications Using Machine

Learning

Subin Babu1, Ajeesh S.2, Dr. Smita C Thomas3

1M Tech Student, APJ Abdul Kalam Technological University, Kerala, India
2Asst. Professor, Mount Zion College of Engineering, Kadammanitta, Kerala, India

3Assoc. Professor, Mount Zion College of Engineering, Kadammanitta, Kerala, India
---***---
Abstract - Automated performance modeling and
performance prediction of parallel programs are highly
valuable in many use cases, such as in guiding task
management and job scheduling, offering insights of
application behaviors, and assisting resource requirement
estimation. In this study, we focus on automatically predicting
the execution time of parallel programs (more specifically,
MPI programs) with different inputs, at different scales, and
without domain knowledge. We model the correlation between
the execution time and domain-independent runtime features.
These features include values of variables, counters of
branches, loops, and MPI communications. Through
automatically instrumenting an MPI program, each execution
of the program will output a feature vector and its
corresponding execution time. After collecting data from
executions with different inputs, a random forest machine
learning approach is used to build an empirical performance
model, which can predict the execution time of the program
given a new input. An instance-transfer learning method is
used to reuse an existing performance model and improve the
prediction accuracy on a new platform that lacks historical
execution data. Our experiments and analyses of three parallel
applications, Graph500, GalaxSee, and SMG2000, on three
different systems confirm that our method performs well, with
less than 20% prediction error on average.

Key Words: High-performance computing,
Analytical Modeling, Replay-based Modeling,
Model Transferring, Instrumentation.

 1. INTRODUCTION

 High-performance computing (HPC) is the ability to
process data and perform complex calculations at high
speeds. To put it into perspective, a laptop or desktop with a
3 GHz processor can perform around 3 billion calculations
per second. While that is much faster than any human can
achieve, it pales in comparison to HPC solutions that can
perform quadrillions of calculations per second.

One of the best-known types of HPC solutions is the
supercomputer. A supercomputer contains thousands of
compute nodes that work together to complete one or more
tasks. This is called parallel processing. It’s similar to having
thousands of PCs networked together, combining compute

power to complete tasks faster. It is through data that
groundbreaking scientific discoveries are made, game-
changing innovations are fueled, and quality of life is
improved for billions of people around the globe. HPC is the
foundation for scientific, industrial, and societal
advancements.

As technologies like the Internet of Things (IoT), artificial
intelligence (AI), and 3-D imaging evolve, the size and
amount of data that organizations have to work with is
growing exponentially. For many purposes, such as
streaming a live sporting event, tracking a developing storm,
testing new products, or analyzing stock trends, the ability to
process data in real time is crucial. To keep a step ahead of
the competition, organizations need lightning-fast, highly
reliable IT infrastructure to process, store, and analyze
massive amounts of data.

Performance modeling is a widely concerned problem in
high performance computing (HPC) community. An accurate
model of parallel program performance, particularly an
accurate model for predicting execution time can yield many
benefits. First, a performance model can be used for task
management and scheduling, assisting the scheduler to
decide how to map tasks to proper compute nodes [8], [9].
Therefore, the utilization of the entire HPC system can be
improved. Second, the model can offer insights about
application behaviors [5], which helps developers
understand the scaling potential and better tune
applications. Third, the model helps HPC users to estimate
the number of CPU cores they need [8], [9]. According to the
predicted performance, users can consider the predicted
computation time and estimated resources systematically,
and then request a reasonable number of compute nodes
and CPU cores from HPC systems.

Building an accurate performance model of parallel
programs, however, is a very challenging task. Due to the
variance and complexity of both system architectures and
applications, the execution time of a parallel program is
often with significant uncertainty. For example,
numerous factors can affect the performance, including
but not limited to hardware, applications, algorithms, and
input parameters. It is especially difficult to build a
general-purpose model that synthesizes all factors. In this
paper, we focus on designing and developing a model,
particularly for predicting the execution time of parallel

•

https://www.netapp.com/data-storage/unstructured-data/internet-of-things-iot
https://www.netapp.com/artificial-intelligence
https://www.netapp.com/artificial-intelligence

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2913

programs, on an HPC cluster with different inputs and at
different scales. We also focus on MPI programs as MPI is
the de facto standard parallel programming model.

Previous studies have mainly introduced three types
of methods: analytical modeling, replay-based modeling,
and statistical model. An analytical modeling method has
arithmetic formulas describing a parallel program
performance and can offer a prediction of execution time
quickly. However, this method needs extensive efforts of
human experts with in-depth understanding of a
particular HPC application (e.g. consider the time
complexity analysis process of a parallel program). Since
HPC applications have a wide range of domains, it is
difficult to build an analytical model. Furthermore, it is
challenging to generalize a model for various domains.

A replay-based model is built from historical
execution traces, which contain detailed information
about computation and communication of an HPC
program. Through analyzing traces, a synthetic program
can be automatically reconstructed for replaying
behaviors of the original program and predicting its
performance. However, the replay-based modeling
usually requires large storage space to keep traces
(ranging from hundreds of megabytes to tens of gigabytes
for each run [9], [11]). Be- sides, a synthetic program can
only represent one specific execution path of the original
program, which also restricts the application of replay-
based modeling.

A statistical model uses machine learning techniques to
fit the mapping function between performance metrics and
certain features. With sufficiently much training data,
statistical models can make relatively accurate predictions
of the performance, without requiring domain knowledge
and human efforts. It is natural and convenient to use input
parameters of an HPC program as features. However,
important performance factors may not be explicitly
covered by input parameters. For instance, it is difficult to
automatically parse non-scalar inputs (e.g. files, matrices,
and strings) for modeling without domain experts. Domain
experts can determine a small number of scalar variables
in the source code of a program as model features since
these variables can directly expose the actual performance
impact from inputs [9]. For applications that contain
adaptive preprocess or auto-tuning [1], [2], some key
features are dynamically decided at runtime. In this case,
input parameters also cannot cover all performance
features.

2. RELATED WORK

In this section, we review and discuss existing studies along
four categories, analytical modeling methods, replay-based
modeling methods, statistical modeling, and model
transferring for the performance prediction of parallel
programs.

2.1 Analytical Modeling

 Analytical modeling uses an analytical formula to
describe the program performance. As we have introduced
in Section 1, an analytical model is tightly coupled with a
particular algorithm and a particular application domain,
thus it involves extensive efforts from human experts. For
ex- ample, Eller et. al. [10] proposed an analytical model for
Krylov Solver on structured grid problems. Hang et. al. [6]
proposed a detailed performance model for deep neural
networks. Barker’s model [8] focused on the Krak Hydro-
dynamics Application. In general, an analytical model for a
specific application is difficult to be applied to other
applications.

2.2 Replay-based Modeling

Replay-based modeling uses instrumentation or
similar techniques to trace detailed information from
program executions. Through analyzing the trace, a
synthetic program can be reconstructed for replaying
behaviors of the original program and predicting its
performance. Since tracing and analysis can be
automated, this type of modeling and pre- diction method
can eliminate the requirement of domain knowledge and
can be generalized for different applications.

Several studies exist in this area. For instance, Sodhi,
Zhang and Hao [4], [7] constructed a skeleton of a parallel
program from traces. Skeleton preserves the flow and
logic of the original program but reduces calculations and
communications. Zhai et. al. [4] analyzed traces and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2914

introduced a deterministic replay to predict the
performance. However, traces require a large storage
space. Even when tracing simple parallel programs like
NPB bench- mark [7], storage requirements can range
from hundreds of megabytes to tens of gigabytes for each
run [9], [4]. Besides, a trace-based modeling usually
consists of a program skeleton or other forms of a
synthetic program. A synthetic program shrinks
computation and communication of the original code. It
loses the semantic of the original code; therefore, it is not
human-readable. The prediction lacks interpretability,
which does not locate the performance factors of parallel
programs.

2.3 Statistical Modeling

The development of machine learning techniques
enables the possibility of empirically analyzing the
performance patterns of a parallel program under
different input parameters. Song et. al. [9] adopted a
machine learning method called Delta Latent Dirichlet
Allocation (∆LDA) [6] to model application executions. It
can locate possibly low- performance code blocks but not
predict the exact execution time cost. Ogilvie and
Thiagarajan [3], [5] focused on constructing surrogate
models for auto-tuning. In these problem settings,
performance models are mainly required to achieve good
accuracy on high-performance sub-space while low-
performance part can be ignored. Lee et. al. [11] proposed
methods that employ artificial neural networks to predict
the performance of parallel programs. Their methods can
capture system complexity implicitly from various input
data, but their work only focuses on a fixed number of
cores. Additionally, their method cannot analyze the
impact of each feature since the artificial neural network is
a black- box model. A series of studies [9], [10], attempted
to model the performance of kernels in a parallel program
with using linear regression methods like ridge regression,
least absolute shrinkage and selection operator (LASSO),
or their variants to model the relationship between
features and execution time. Linear regression methods
are easy to be implemented and their prediction results
are concise and interpretable. However, since parallel
programs can have complex behavior patterns, a linear
model may not be accurate to characterize the
performance under different input parameters. EPMNF
transformation [9], [10] can be used to improve the
nonlinear fitness of linear regressions, but before the
transformation, domain experts are required to determine
a small range of feature candidates.

 2.4 Model Transferring

The traces of an application from a certain platform
cannot be used directly when modeling the performance
of the application on another platform. It is feasible to
collect data and build another model on the new
platform; however, it is troublesome and often
unnecessary. A better solution would be transferring the

existing model to reuse it or assist in building the new
model. Numerous studies have been conducted, but these
existing studies usually do not focus on the execution
time prediction but the prediction of the performance
rank of an application under different conditions, since
transferring the rank correlation across different
platforms is easier than transferring the execution time
model. Hoste et. al. [2] used benchmarks to measure
different platforms, then according to the similarity
between benchmarks and the application of interest, their
work can predict the performance rank of an application
on different platforms. Chen et. al. [1] used the Bayesian
network to capture the parameter dependencies of an
application. Maratheet. al. [3] built a performance model
with deep neural networks. They transferred neural
networks with a fine-tuning method, which took a trained
network for a platform to initialize the connection
weights of a network for a new platform. Their work
showed that deep neural networks do not outperform
traditional machine learning methods (e.g. random
forest) on execution time prediction in general, but they
can help users find better application configurations on
different platforms.

The use of performance modeling manually has been
explored before. There are approaches that focus on
models generated for a very specific purpose but less on
human readable general-purpose models. For example,
Ipek and de Supinski propose multi-layer artificial neural
networks to learn application performance [9] and Lee and
Brooks compare different schemes for automated machine-
based performance learning and prediction [1]. Zhai, Chen,
and Zheng extrapolate single-node performance to
complex parallel machines [2]. Wu and Muller extrapolate
traces ¨ to larger process counts and can thus predict
communication operations. Hoefler and Gropp. aimed to
popularize performance modeling by defining a simple six-
step process to create application performance models [3].
Bauer, Gottlieb, and Hoefler show how to model
performance variations using simple statistical tools [4].
Another objective of performance modeling is to predict
application performance on a different target architecture.
Carrington et al. propose a model-based prediction
framework for applications on different computers [5],
Marin and Mellor-Crummey demonstrate how application
models can be derived semi-automatically to predict
performance on different architectures [6], and Yang, Ma,
and Muller ¨ model application performance on different
architectures by running kernels on the target architecture
[7]. Besides program inputs, predictors generated from
hardware features can be used in our hybrid approach to
model performance of applications across architectures.
This poses an interesting direction of future work. The
authors of the Statistical Stall Breakdown [8] describe a
mechanism that samples hardware counters and
dynamically multiplexes hardware counters to compute a
breakdown model for a PowerPC based microprocessor.
The work by Huck et al. [9] focuses on automating the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2915

process for parallel performance experimentation, analysis
and problem diagnosis. Such mechanism is built on top of
the PerfExplorer performance data mining system
combined with the OpenUH [10] compiler infrastructure.
The PerfExpert [3] tool employs the HPCToolkit [5]
measurement system to execute a structured sequence of
performance counter measurements to detect probable
core, socket and node-level performance bottlenecks in
important procedures and loops of an application. The
work of Pavlovic et al. characterizes the memory behavior,
including memory footprint, memory bandwidth and cache
efficiency of several scientific applications. Based on the
analysis of the executions of such applications they also
estimate the impact of the memory system on the amount
of the instruction stalls and on the real computation
performance. Their results are shown per application
execution, summing up all the information from the
different tasks. There are other performance tools that
exploit processor hardware counters and that have
integrated sampling capabilities into their analyses. Tools
like TAU, Scalasca [4], HPCToolkit, use sampling in addition
to instrumentation, their sampling capabilities are mainly
focused on assigning time consumption to source code lines
instead of providing finer details on the hardware counters.
Gonzalez, Gimenez and Labarta present a tool that
automatically characterizes the different computation
regions of the program [5]. Llort, Gonzalez and Servat
detect clusters based on IPC and number of instructions
committed and then detects the change of performance
counters like cache misses inside the clusters [6]. Alam and
Vetter propose code annotations, called “Modeling
Assertions” [7] that combine empirical and analytical
modeling techniques and help the developer to derive
performance models for his code. Kerbyson and Alme
propose a performance modeling approach [8] that is based
on manually developed human expert knowledge about the
application. Those modeling techniques rely on empirical
execution of serial parts on the target architecture and are
usually applied to stable codes which limits their usefulness
during software development. The recent automatic online
performance modeling strategy [5] had serious limitations
as described in previous sections. Our hybrid strategy is the
first technique that combines the knowledge obtained from
static analysis and the power of dynamic analysis to
produce more precise model.

3. EXISTING METHODS

Many researchers have previously been carried out in
this field of phishing detection. Gathered the
information from various such works and have
profoundly reviewed them which has helped us in
motivating our own methodologies in the process of
making a more secure and accurate system.
Performance prediction is arguably a challenging
problem. Theoretically, it is impossible to find a perfect
prediction for every program (e.g. the halting problem).
In practice, it is also difficult to predict the performance

of a program driven by dynamic factors in its entire
execution period (e.g. many randomized algorithms). In
this work, we aim for modeling a program of which
execution time mainly depends on its early execution
phase. This research focus is inspired by the fact that a
typical HPC application consists of three phases:
initialization, repetitive calculation, and termination.
Among these three phases, the initialization phase is
usually used to define what will be calculated and how
to be calculated.

 Our method of performance modeling and
prediction includes two phases: a training phase and a
predicting phase, as shown in Fig 1. The training phase
is used to collect data and build a performance model. It
mainly consists of four stages: instrumentation, model
learning, feature reduction, and model transfer. The
predicting phase is used to handle a new input data of
the target program, calculate the value of features, and
output a predictive execution time with the transferred
model or the non-transferred model depending on
whether the transferred model is available. Next, we
describe the processes of our method in detail.

3.1 Instrumentation

To capture behavior patterns of parallel programs
without domain knowledge, we collect the runtime
features through instrumentation. Instrumentation is a
dynamic analysis for a program, which extracts
program features from sample executions. We develop
an instrumentor using clang [1]. The instrumentor
automatically analyzes the abstract syntax tree (AST) of
the source code of the target program, and inserts
detective code around assignments, branches, loops,
and communications to generate the instrumented
program. Assignments reflect the data flow of a
program. Branches and loops reflect the control flow.
MPI communications can be regarded as the skeleton of
a program [5]. To reduce the overhead of
instrumentation, the inserted code keeps lightweight,
like an incrementing integer counter for each branch
feature and loop feature, and an assignment for each
assignment feature [8]. We describe the
instrumentation of these different types of features,
respectively, below.

3.1.1 Assignments

The size of a problem and the amount of calculation are
decided by key variables like the problem size, iteration
count, convergence condition, and solution accuracy. To
discover the key variables from the source code, we
insert the instrumentation code after assignments. If a
variable is assigned twice or more, all values are
recorded as different features. We do not instrument
the variables in a loop, because their values are updated
frequently.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2916

3.1.2 Branches

Branches can lead to different execution paths, which may
have significantly different execution times. Thus the results
of conditional statements in branches are important features
for predicting performance. This type of feature is difficult to
fetch via domain knowledge or static code analysis. For
example, code fragment 2 shows a common process that
examines whether a file is successfully opened. If successful,
the program will load data from the file and execute a heavy
calculation, otherwise the program exits immediately. We
cannot predict the result of this branch according to the file
path string until the branch is actually executed. This example
also indicates that black-box performance modeling that only
considers program input parameters as features is
insufficient, since some important features can often only be
fetched at runtime.

3.2 Model Learning

After collecting runtime features via instrumentation, we
then try to discover the correlation between features and
program execution time. It can be treated as a multivariate
nonlinear regression problem. Assume that there are n
samples. Each sample is expressed as (x, y), where x is a
vector consisting of m features and y is the corresponding
execution time. The goal of this regression problem is to find
a mapping relation, f : x −→ y, that minimizes the mean
square error (MSE) between the predictive value and the real
execution time in the n samples:

There exist numerous approaches to solve this regression
problem, like ridge regression [11], LASSO [4], artificial
neural network (ANN), and random forest [12]. We adopt a
random forest approach with an optimization called
extremely randomized trees [2]. Random forest is widely
used in classification or regression tasks. Besides the
capability of modeling complex nonlinear data, another
advantage of random forest is that it can process mixed
different types of features including float, integer, and
enumeration [5]. Such a characteristic makes it suitable to
model the runtime features we trace from MPI program
execution. Besides, random forest can analyze the importance
of each feature. It enables reducing redundant features and
corresponding instrumentations.

4. PROPOSED SYSTEM

In this section, we present the evaluation results and
analyses of our method.

4.1 Experimental Setup

4.1.1 Applications

Three applications, Graph500, GalaxSee, and
SMG2000, were tested to predict their execution time
under different input parameters. Graph500 (version
2.1.4) [3] is a widely used benchmark focusing on data
intensive computing. The main kernel of Graph500 is a
Breadth-First Search (BFS) of a graph which starts with
a single source vertex. GalaxSee [2] is a parallel N-body
simulation program used for simulating the
movements of multiple celestial objects. It contains
categorical parameters that determine different
implementations of algorithms to solve the problem.
SMG2000 [4] is a parallel semicoarsening multigrid
solver for the linear systems arising from finite
difference, finite volume, or finite element
discretizations of the diffusion equation. This solver is
a key component for achieving scalability in radiation
diffusion simulations. Among these three applications,
Graph500 is a simple application since it contains few
input parameters and each parameter has a
straightforward impact on performance. In contrast,
GalaxSee contains different types of parameters, and
their impact on performance is not obvious. Table 1, 2,
and 3 show their parameters and value range in our
experiments, respectively. 3.1.2 Platforms and
Environment The experiments were conducted on
three different platforms, denoted as A, B, and C. Table
4 lists the configuration of each platform. These three
platforms have different characteristics. Platform B has
higher single-core performance, but the number of
cores per node is only 4. Platform C is a fat node with 8
low-frequency, 18-core CPUs. All communications in
Platform C are intra-node communications. A single
node of Platform A is in between Platform B and
Platform C, but the size of the entire Platform A is much
larger than that of B and C. Since the maximum number
of CPU cores in platform B and C is 160 and 144,
respectively, the parameter N P ROC, namely the
number of processes, of each application is set to [16,
128] on these two platforms. Applications were
compiled using Intel C/C++ compiler 15.0.0 and ran on
CentOS 7.3 system. The regression model and the model
transferring programs were written in Python 3.6.1 and
scikit-learn library [5]. The Intel MPI version 5.0 was
used as the MPI library.

4.2 Feature Reduction

We first evaluated the feature reduction methods
introduced in Section 3.4. In this series of experiments,
each application was tested 100 times on Platform A
with different input parameters to trace runtime
features. Since a d−order polynomial expansion on m
features will generate m+d d new features, in this

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2917

series of tests, we did not adopt polynomial expansion.
We aim for reducing the number of features to under 20
so that a 3-order polynomial expansion will not
generate too many new features. The effectiveness of
reductions is controlled by the time threshold and the
importance threshold as defined in Section 2.4. We first
evaluated the impact of varying time threshold settings.
Table 5 shows the evaluation results, taking GalaxSee as
an example. The actual time means the real time
proportion of fetching feature values under its
corresponding time threshold. For example,
whensetting the time threshold to be 5% of the
complete program execution time, the actual time
proportion we measured is 1.5%. The actual value is
always smaller since the threshold is an upper bound.
We took 50% of data as training set and used random
forest to predict the others. The prediction error in our
experiments is calculated by the below formula:

where ypredict[i] is the predicted performance and
yreal[i] is the actual performance of the ith testing
sample. Table 5 reports these results, which confirms
our hypothesis discussed in Section 2.4 that lower time
threshold can achieve better reduction, but it may
reduce some useful features and decrease the
prediction accuracy. When setting the time threshold to
be 100%, it can achieve a very low error rate, but it is
almost useless since the actual time and the overhead
are impractical. The 5% time threshold is sufficient to
achieve acceptable accuracy, and meanwhile to keep
low actual time and overhead. Note that in this series of
evaluation tests, we only ran 100 samples since some of
the full instrumented programs took too much time.
These samples were used to analyze the trend of the
impact under varying thresholds. The errors measured
in these tests are higher than those presented in Section
2.3 with the same reduction setting, since the latter was
evaluated with more data samples. We also evaluated
with varying the importance threshold on GalaxSee
with 5% time thresholds, and the results are shown in
Table 6. With the decrease of the importance threshold,
the number of reserved features also decreases, but the
error rate becomes higher. The results of 95%
threshold in Table 6 indicate that, after reduction by 5%
time as shown in Table 5, there still exist many
redundant features among 84 features. Removing these
redundant features only slightly increased the error
rate from 22.1% to 23.1%. Further reduction may
remove some important features and result in a higher
error rate.

4.3 Performance Prediction

In this section, we discuss the prediction accuracy of different
machine learning methods for our performance model. We
ran each application on each platform 1,000 times with
different input parameters. In other words, each modeling
task had 1,000 data samples. The input parameters we used
for experiments were generated from the parameter value
range of each application uniformly and randomly. Figure 3
shows the time distribution of three applications. After
fetching runtime feature values of these samples, each feature
was normalized to zero mean and unit variance
independently. Part of data samples was randomly selected
as the training set while others were used as the testing set.
Figure 6 presents the mean errors of the testing set under
different ratios of the training data. The regression methods
we tested include least absolute shrinkage and selection
operator (LASSO), support vector machine regression (SVR)
with radial basis function (rbf) kernel, and random forest
(RF). Each method was applied to both the raw form of data
and its 3-order polynomial expansion. We also tested two
sophisticated modeling methods from related works. One is a
linear model based on performance model normal form
(PMNF) [9], [10], [11]. The other one is a deep learning model
called PerfNet [2]. PMNF contains a special form of nonlinear
expansion. PerfNet does not have a process for feature
reduction so that the polynomial expansion would make the
model unnecessarily large and possibly overfitting. Therefore
we did not use polynomial expansion on PMNF and PerfNet.
Since the mapping relation between the features and the
execution time is complicated, a linear regression method,
like LASSO, has higher prediction error than nonlinear
methods. Using polynomial basis function, it is actually
converted to nonlinear methods, and the corresponding
errors are significantly reduced. It indicates that polynomial
function is an acceptable approximation between features
and program execution time.

5. CONCLUSIONS

In this seminar, we introduce a novel method to model and
predict the performance of parallel programs (MPI
programs). We develop a tool to automatically analyze the
syntax tree of MPI programs and instrument them, so that
we can detect its runtime features related to computation
and communication, without requiring any domain
knowledge. We design a strategy to automatically analyze
and fit the runtime feature data of MPI programs using
random forest technique, thereby we can predict the
performance. Since we adopt a lightweight instrumentation
and further reduce features by two reduction processes, the
overhead of instrumentation is low, with much less storage
demand compared to existing methods. Combined with
model transferring method, an existing performance model
can be reused to predict the performance on a new platform
with a small number of training samples.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2918

Although we have achieved desired prediction on three
tested applications that well represent typical HPC
applications, the ability of our method can be further
optimized. Since we only extract features from early
execution phase of an application, if its behavior is not only
decided by the early phase, our method may not have an
accurate prediction. In the future, we will further investigate
how to extract behavior patterns throughout the entire
execution period of an application and further optimize our
model.

REFERENCES

[1] Clang: a c language family frontend for llvm.

http://clang. llvm.org/.
[2] Galaxsee hpc module 1: The n-body problem, serial and

parallel simulation. http://shodor.org/petascale/
materials/UPModules/NBody/.

[3] Graph 500 reference implementations.
http://www.graph 500.org/referencecode.

[4] The smg2000 benchmark code.
https://asc.llnl.gov/computing
resources/purple/archive/benchmarks/smg/.

[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C.
Scheiman. Loggp: Incorporating long messages into the
logp model for parallel computation. Journal of parallel
and distributed computing, 44(1):71–79, 1997.

[6] D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu.
Statistical debugging using latent topic models. In J. N.
Kok, J. Koronacki, R. L. d. Mantaras, S. Matwin, D.
Mladenic, and A. Skowron, edi- ̌ tors, Machine Learning:
ECML 2007, pages 6–17, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, et al. The nas parallel
benchmarks. The International Journal of
Supercomputing Applications, 5(3):63–73, 1991.

[8] K. J. Barker, S. Pakin, and D. J. Kerbyson. A performance
model of the krak hydrodynamics application. In 2006
International Conference on Parallel Processing
(ICPP’06), pages 245–254, Aug 2006.

[9] A. Bhattacharyya and T. Hoefler. Pemogen: Automatic
adaptive performance modeling during program
runtime. In Proceedings of the 23rd international
conference on Parallel architectures and compilation,
pages 393–404. ACM, 2014.

[10] A. Bhattacharyya, G. Kwasniewski, and T. Hoefler. Using
compiler techniques to improve automatic performance
modeling. In Parallel Architecture and Compilation
(PACT), 2015 International Conference on, pages 468–
479. IEEE, 2015.

[11] C. M. Bishop. Pattern recognition. Machine Learning,
128:1–58, 2006.

[12] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen.
Classification and regression trees. CRC press, 1984.

https://asc.llnl.gov/computing%20resources/purple/archive/benchmarks/smg/
https://asc.llnl.gov/computing%20resources/purple/archive/benchmarks/smg/

