COMPARATIVE ANALYSIS FOR AUDITORIUM STRUCTURAL ELEMENTS BY USING POST TENSIONING METHOD AND TRADITIONAL METHOD

P. Indumathi ${ }^{1}$, A. Yacop Raja ${ }^{2}$,
${ }^{1}$ PG Scholar, Structural Engineering, Oxford Engineering College, Trichy, Tamil Nadu, India ${ }^{2}$ Assistant Professor ,Department of civil Engineering, Oxford Engineering College, Trichy, Tamil Nadu, India

Abstract

This project "Comparative Analysis for Auditorium Structural Elements by Using Post Tensioning Method and Traditional Method". The development of pre stressing technology has one of the more important in the fields of structural construction. The economy prestressed concrete is well established or long span structures. Traditionally the construction of a building is done by RCC but in present world, construction of high rise buildings is done by Post-Tensioning. This project deals with the multi purpose auditorium so as to accommodate 900 person. The Auditorium space types are areas for large meetings, presentations, and performances. The dimension auditorium building 26 X 50 meters .Required area is calculated NBC. The shape of the auditorium is Rectangular. The drafting of auditorium planning by using Auto CADD. The project strictly in accordance with IS 456:2000 Plain and Reinforced concrete code of practices. This includes planning and designing of structural elements based on the loads coming on them dead load and live load as per IS 875: 1987 Part 1,2. SP - 16:1980 Design Aids for reinforcement. IS 1343 : 1080 code of practice for prestressed concrete. The structures is designed by using limit state method, adopting M20 grade of concrete and Fe 415 HYSD Bars. Conformity of style throughout a conference proceedings. Margins, column widths, line spacing, and type styles are built-in; examples of the type styles are provided throughout this document and are identified in italic type, within parentheses, following the example. Some components, such as multi-leveled equations, graphics, and tables are not prescribed, although the various table text styles are provided. The formatter will need to create these components, incorporating the applicable criteria that follow.

Key Words: Slab, Beam, Column and postension structures.

1. INTRODUCTION

1.1 AUDITORIUM

An Auditorium is a room built to enable an audience to hear and watch performances. Auditorium spaces as designed to accommodate large audience.

1.2 AUDITORIUM IS BASED ON TWO IMPORTANT FACTORS

(i) Seating Capacity
(ii) Type of Performance

1.2.1 SEATING CAPACITY:

Seating Capacity design the volume of the space.

1.2.2 TYPE OF PERFORMANCE:

Type of performance on stage deign is the width, depth and height of the stage.

1.3 PLANNING OF AUDITORIUM :

The shape of the auditorium is rectangular shape. The seating capacity of our auditorium is 900 persons \& stage dimensions are 16 X 6.5 meters. The Above dimensions are followed by using NBC code. The dimensions of auditorium is 26 X 50 meters.

1.3.1 Load-Balancing Method

The concept of load balancing is introduced for prestressed concrete structures, as per T.Y Lin et al [3] a third approach after the elastic stress and the ultimate strength method of design and analysis. It is first applied to simple beams and cantilevers and then to continuous beams and rigid frames. This load-balancing method represents the simplest approach to prestressed design and analysis, its advantage over the elastic stress and ultimate strength methods is not significant for statically determinate structures. When
dealing with statically indeterminate systems including flat slabs and certain thin shells, load-balancing method offers tremendous advantage both in calculating and visualizing. According to load-balancing method, prestressing balances a certain portion of the gravity loads so that flexural members, such as slabs, beams, and girders, will not be subjected to bending stresses under a given load condition. Thus a structure carrying transverse loads is subjected only to axial stresses.

1.3.2 Equivalent Frame Method of Analysis

The equivalent frame method of analysis is known as the beam method. This method of analysis utilizes the conventional elastic analysis assumption and models the slab or slab and columns, as a beam or as a frame, respectively. This is the most widely used and applied method of analysis for the post-tensioned flat plates.

5. METHODOLOGY

6. DESIGN OF SLAB

Slab are said to be deigned under the limit state method of reference of IS 456:2000. When the slab are supported in two way direction it acts as two way supported slab. A tow way slab in economical compared to one way slab.

6.1 DESIGN OF TWO WAY SLAB

Slab which are supported on unyielding supports like walls on four sides are called two - way slab. The span in the large direction is denoted by ly and that in the shorter direction by lx . The distribution of the loads in the ly and lx directions will depend on the ratio ly/lx. If the ratio ly/lx is less than 2 (ly/lx <2) then it is called two way slab. This slab is evenly distributed and will reduced bending and shifting.

Short span Length Lx	$=16 \mathrm{~m}$
Longer span Length Ly	$=3 \mathrm{~m}$
Fck	
Fy	$=20 \mathrm{~N} / \mathrm{mm}^{2}$
Unit weight of concrete	$=415 \mathrm{~N} / \mathrm{mm}^{2}$

Check for slab

$$
\text { (ly / lx) } \quad=0.19<2
$$

Hence its two way slab.

Depth of slab

Span / Effective depth	$=26$
d	$=16000 / 26$
	$=615$ say 600 mm
Assume cover (d')	$=25 \mathrm{~mm}$
Over all depth (D)	$=600+25=625$ say 63063 mm

Load calculation`:

Self weight of slab $\quad=b$ X D X unit weight of concrete $=1 \mathrm{X} 0 . \mathrm{X} 25$

$$
=15.75 \mathrm{kN} / \mathrm{m}
$$

$$
\text { Live load } \quad=5 \mathrm{kN} / \mathrm{m}
$$

$$
\text { Floor finishing load } \quad=1 \mathrm{kN} / \mathrm{m}
$$

Total load
(W) $\quad=21.75 \mathrm{kN} / \mathrm{m}$

Ultimate design load $\quad(\mathrm{Wu})=1.5 \times 21.75$

$$
=21.75 \mathrm{kN} / \mathrm{m}
$$

Area of Reinforcement:

Shorter span:

$$
\text { Mu } \quad=0.87 \text { X fy X Ast X d (1- (fy X Ast) } /(\text { fck X b X d }))
$$

$$
618.142 \times 10^{6}=0.87 \times 415 \text { X Ast X } 600(1-(415 \text { Ast }) /(20
$$

$$
\text { x } 1000 \times 600) \text {) }
$$

International Research Journal of Engineering and Technology (IRJET)

Ast $=1801$ say $1800 \mathrm{~mm}^{2}$

Provide 20 mm dia bar

Spacing $=\left(\left(\pi / 4 \mathrm{X} \mathrm{d}^{2}\right) / 1000\right) /$ Ast

$$
=565.48 \text { say } 565 \mathrm{~mm}
$$

Hance provided a spacing @ 565 mm of 20 dia meter.

Area of Reinforcement:

Longer span:

$\mathrm{Mu} \quad=0.87 \mathrm{X}$ fy X Ast X d $(1-(\mathrm{fy}$ X Ast) $/(\mathrm{fck} \mathrm{Xb}$ X d))
$17.91 \times 10^{6}=0.87 \times 415$ X Ast X $600(1-(415 A s t) /(20 \mathrm{x}$ 1000×400))

Ast $\quad=948.30$ say $950 \mathrm{~mm}^{2}$

Provide 12 mm dia bar

Spacing $\quad=\left(\left(\pi / 4 \mathrm{X} \mathrm{d}^{2}\right) / 1000\right) /$ Ast

$$
=113.09 \text { say } 150 \mathrm{~mm}
$$

Hance provided a spacing @ 150 mm of 12 dia meter.

Check for deflection:

$(\mathrm{l} / \mathrm{d}) \max$	$=(\mathrm{l} / \mathrm{d})$ basic X Kt X Kc X Kf
	$=20 \times 1.4 \times 1 \times 1=28$
Kt	$=1.4$ from IS $456: 2000$
$(\mathrm{l} / \mathrm{d})$ actual	$=3650+140 / 140=27.07<28$
	Hance Safe.

7. DESIGN OF BEAM

7.1 BEAM

Beam is a structural member used for bearing loads it is typically use for the resisting vertical loads, shear force and bending moment.

7.2 DESIGN OF BEAM

Load on slab	$=32.63 \mathrm{kN} / \mathrm{m}$
Unit weight of concrete	$=25 \mathrm{kN} / \mathrm{m}^{3}$
Length o the beam	$=16 \mathrm{kN} / \mathrm{m}$
Thickness of slab (t)	$=150 \mathrm{~mm}$
Fck	$=20 \mathrm{~N} / \mathrm{mm}^{2}$
Fy	$=415 \mathrm{~N} / \mathrm{mm}^{2}$

Load to be consider:

Self weight of the beam $=0.2 \mathrm{X} 0.3 \mathrm{X} 25$

$$
=1.5 \mathrm{kN} / \mathrm{m}
$$

Load from slab per meter $=27.19 \mathrm{kN} / \mathrm{m}$
Total load (W) $\quad=28.69 \mathrm{kN} / \mathrm{m}$

Design load $(\mathrm{Wu}) \quad=28.69 \times 1.5=43.04 \mathrm{kN} / \mathrm{m}$

Bending moment \& shear force:

Mu

$$
\begin{aligned}
& =\mathrm{Wul}^{2} / 8 \\
& =28.14 \mathrm{kNm} \\
& =\mathrm{Wul} / 2 \\
& =43.04 \times 3 / 2=64.56 \mathrm{kN}
\end{aligned}
$$

Vu

Check for limitation moment:

Mu limit	$=0.138 \mathrm{fck} \mathrm{b} \mathrm{d}{ }^{2}$
	$=34.5 \mathrm{kN} / \mathrm{m}$

$$
\mathrm{Mu}<\mathrm{Mu} \text { limit }
$$

The section is under reinforced section.
Mu $\quad=0.87$ X fy X Ast X d (1- (fy X Ast) $/($ fck X b X d) $)$
28.14 X $10^{6}=0.87$ X 415 X Ast X 0.25 (1- (415Ast) / (20 x 200×230)

Ast $\quad=366.30$ say $400 \mathrm{~mm}^{2}$
Ast $\quad=0.12 \% B d$
Ast min $\quad=0.12 / 100 \times 200 \times 300=72 \mathrm{~mm}^{2}$
Provide 12 mm dia bar
No of bars = Ast / ast

$$
\begin{aligned}
& =400 / 113.09 \\
& =3.97 \text { say } 4 \text { bars }
\end{aligned}
$$

Provide 4 bars of 12 mm dia (Ast $=452.38$) and two hanger bars of 10 mm dia.

Check for shear stress:

Tv

$$
\begin{aligned}
& =\mathrm{Vu} / \mathrm{bd} \\
& =0.66 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Check for deflection:

Pt $\quad=0.90$
$(\mathrm{l} / \mathrm{d}) \max =(\mathrm{l} / \mathrm{d})$ basic X Kt X Kc X Kf

	$=20 \times 1.1 \times 1 \times 1=22$
Kt	$=1.1$ from IS $456: 2000$

$(\mathrm{l} / \mathrm{d})$ actual $=4190 / 250$

$$
=16.76 s<28
$$

Hance safe.

8. DESIGN OF COLUMN

8.1 COLUMN

The member which are in compression are called columns. According to the loading condition the column is divided in three types.
(i) Axially loaded column
(ii) Uniaxial loaded column
(iii) Biaxial loaded column

8.2 DESIGN OF BIAXIAL COLUMN

Beam load	$=43.04 \mathrm{kN} / \mathrm{m}$
Load	$=14.34 \mathrm{kN}$
Factored load	$=1.5 \mathrm{X} 14.34=21.51 \mathrm{kN}$
Length	$=4.5 \mathrm{~m}=4500 \mathrm{~mm}$
Fck	$=20 \mathrm{~N} / \mathrm{mm}^{2}$
Fy	$=415 \mathrm{~N} / \mathrm{mm}^{2}$
Moment	$=22.458 \mathrm{kN} / \mathrm{m}$
$\mathrm{e}_{\text {min }}$	$=(\mathrm{l} / 500)+(\mathrm{D} / 30)$
20	$=(4500 / 500)+(\mathrm{D} / 30)$

$20-9$	$=(D / 30)$
11×30	$=D$
D	$=330 \mathrm{~mm}$ say 400 mm

Slenderness ratio

Leff

$$
\begin{aligned}
& =4500 / 400 \\
& =11.25<12
\end{aligned}
$$

Hence design as short column

Depth (D)	$=400 \mathrm{~mm}$
Assume breadth (B)	$=400 \mathrm{~mm}$
Assume cover $\left(\mathrm{d}^{1}\right)$	$=40 \mathrm{~mm}$
$\mathrm{~d}^{1} / \mathrm{D}$	$=40 / 400=0.1 \mathrm{~mm}$

Equivalent moment

$\mathrm{M}_{\mathrm{U}} \quad=1.15 \sqrt{\mathrm{MuX}^{2}+\mathrm{MuX}^{2}}$
Mux $=$ Muy $\quad=22.45 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{U}} \quad=1.15 \sqrt{22.45^{2}+22.45^{2}}$

$$
=36.51 \mathrm{kNm}
$$

Non dimensional parameter

$\mathrm{Pu} /(\mathrm{fck} \mathrm{b} \mathrm{D})$	$=6.36 \times 10^{3} /(20 \times 400 \times 400)$
	$=1.98 \times 10^{-3}$
$\mathrm{Mu} /\left(\right.$ fck b D $\left.^{2}\right)$	$=36.51 \times 10^{6} /\left(20 \times 400 \times 400^{2}\right)$
	$=0.028$

Longitudinal reinforcement

Pu $/$ fck	$=0.01$
P $/ 20$	$=0.01$
P	$=0.01 \times 20=0.2$
Asc	$=$ Ph D $/ 100$ (From sp 16 Pg No 102$)$
	$=(0.2 \times 400 \times 400) / 100=320 \mathrm{~mm}^{2}$

Provide 20mm dia bar
Number of bars = Asc / asc

$$
=320 /\left(\pi / 4 \times 20^{2}\right)
$$

$=1.52$ say 4 bars

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 08 Issue: 03 | Mar 2021

Area	$=4 \times\left(\pi / 4 \times 20^{2}\right)$
	$=1256.63$ say $1260 \mathrm{~mm}^{2}$
P	$=100$ Asc $/ \mathrm{bD}$
	$=100 \times 320 / 400 \times 400$
	$=0.2 \%$
P / fck	$=0.3 / 20=0.015$

Refer chart of 44in sp 16
Mux $_{1} /\left(\right.$ fck b D $\left.{ }^{2}\right)=0.024$
Mux $_{1} \quad=0.024$ X Fck X b X D ${ }^{2}$

$$
=0.024 \times 20 \times 400 \times 400^{2}=30.72 \mathrm{kNm}
$$

Due to symmetry
$\mathrm{Mux}_{1}=\mathrm{Muy}_{1}=30 \mathrm{kNm}$

Ultimate load

Puz $\quad=0.45 \mathrm{fck}$ Ac +0.75 fy Asc
Ac $\quad=\mathrm{Ag}-$ Asc

$$
=(400 \times 400)-320=159680
$$

Puz $\quad=0.45$ X $20 \times 159680+0.75 \times 415 \times 320$

$$
=1536 \mathrm{kN}
$$

$\mathrm{Pu} / \mathrm{Puz} \quad=6.36 / 1536=4.14 \times 10^{3}$
$\alpha_{\mathrm{n}}=2($ from sp 16 pg no 1 o 4$)$
$\left(\text { Mux } / \text { Mux }^{1}\right)^{\alpha n}+\left(\text { Muy } / \text { Muy }^{1}\right)^{\alpha n}<1$

$$
0.808<1
$$

Hence the section is safe biaxial bending.

Lateral ties

Tie dia $\quad=(1 / 4) \mathrm{X}$ dia meter of main bar
$=(1 / 4) \times 20$
$=5 \mathrm{~mm}$ provide 10 mmdia tie
Tie spacing

$$
\begin{aligned}
& =16 \mathrm{X} \text { dia meter of main bar } \\
& =16 \times 20=320 \mathrm{~mm}
\end{aligned}
$$

Provide 10 mm dia ties at $300 \mathrm{c} / \mathrm{c}$ spacing.
9. DESIN OF POST TENSION SLAB
Shor span length (Lx) $=16 \mathrm{~m}$

Long span length(Ly) $=12 \mathrm{~m}$
Fck
$=30 \mathrm{~N} / \mathrm{mm}^{2}$
Fy
Assume F_{p}
E_{c}

$$
\begin{aligned}
& \text { :1980 (Pg No:16) } \\
& \qquad 5700 \sqrt{30}=31.22 \mathrm{kN} / \mathrm{mm}^{2} \\
& \text { Ratio of Ly } / \mathrm{Lx} \quad=0.75 \mathrm{~m} \\
& \text { Thickness of Slab } \quad=\text { Span } / 50
\end{aligned}
$$

$$
=1600 / 50=320 \mathrm{~mm}
$$

Load Calculation:

Self weight of slab $\quad=b$ X D X unit weight of concrete

$$
=1 \times 0.32 \times 24
$$

$$
=7.68 \mathrm{kN} / \mathrm{m}
$$

Live Load

$$
=5 \mathrm{kN} / \mathrm{m}
$$

Finishing Load

$$
=1 \mathrm{kN} / \mathrm{m}
$$

Total Load

$$
=13.68 \mathrm{kN} / \mathrm{m}
$$

Total ultimate design load $=20.52 \mathrm{kN} / \mathrm{m}$
Refer IS 456: 2000 Table 26 (Pg. No : 91)
Working moment n the middle strip are given by

$$
\begin{aligned}
& \mathrm{Mx}=0.062 \times 13.68 \times(16)^{2}=217 \mathrm{kN} / \mathrm{m} \\
& \mathrm{My}=0.038 \times 13.68 \times(16)^{2}=133 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Total moment in the middle strip (X direction)

$$
=217 \text { X } 0.75 \text { X } 12=1952 \mathrm{kNm} .
$$

Using minimum cover of 30 mm for the tendon at the centre of slab the distance between the top kern and the centroid of cable

$$
=230-30-20
$$

Assume cable of 5 wires of 5 mm diameter.
$P=$ Total pre stressing force required I the $X-$ direction.

$$
\begin{align*}
& =\left(19.01 \times 10^{6}\right) \tag{PX10}\\
& =1901 \mathrm{kN}
\end{align*}
$$

$$
\text { Force in each cable } \quad=100 \mathrm{kN}
$$

Number of cable in X direction.
Middle strip $=1952 / 100$

$$
\begin{gathered}
=19.01 \approx 19 \\
\text { Spacing of cables }=(0.75 \times 12 \times 1000) / 19 \\
=473.68 \approx 173 \mathrm{~mm}
\end{gathered}
$$

Adopt a spacing of 156 mm (four cable per meter).
Total moment in the middle strip (Y direction)

$$
=133 \mathrm{X} 0.75 \times 16=1596 \mathrm{kNm}
$$

Provide cover 30 mm to cable in Y direction distance between cable and top kern.

$$
=73-30-20=23 \mathrm{~mm}
$$

Prestressing force required $=1956 \times 10^{6} / 29 \times 10^{3}$

$$
=550 \mathrm{kN}
$$

Number of able in X direction middle strip $=550 / 100$
Spacing of cable $\quad=0.75 \times 3.65 \times 1000 / 4$

$$
=484.37 \approx 450 \mathrm{~mm}
$$

The cable profile is parabolic with more eccentricity at the centre and concentric at the supports.
Check for limit state of collapse:
Ultimate moment $(\mathrm{X}$ direction $)=0.075 \mathrm{X} 13.68 \mathrm{X}(16)^{2}$

$$
=262.65 \mathrm{kNm} / \mathrm{m}
$$

$$
\mathrm{Ap}=280 \mathrm{~mm}^{2}
$$

Ap X fp /b d fck $=(280 \times 1600) /(1000 \times 60 \times 30)$

$$
=0.248
$$

Refer IS 1343: 1980 table -11 (Pg No 59)
Fck / 0.87 X fp $=1.0$
fpu $\quad=1.0 \times 0.87 \times 1600$

$$
=1392 \mathrm{~N} / \mathrm{mm}^{2}
$$

Refer IS 1343 : 1980 table -12
$\left(X_{u} / d\right) \quad=0.054$
$\mathrm{X}_{\mathrm{u}} \quad=0.451 \mathrm{X} \mathrm{d}$

$$
=0.451 \mathrm{X} 60=27.06 \mathrm{~mm}
$$

$\mathrm{Mu} \quad=$ fpu X Ap X (d-0.42 X_{u})
$=1392 \mathrm{X} 280 \mathrm{X}(60-042 \mathrm{X} 27.06)=18.95 \mathrm{kNm}$.
The ultimate moment capacity of the slab is higher than the minimum value required. A similar check may be made in the y - direction also.

Check for deflection under service loads:

The tendons following a parabolic profile in x and y direction induce uniformly distributed loads acting upward which are give by,

$$
\begin{aligned}
& \text { Equivalent load }(\mathrm{X} \text { direction })=8 \mathrm{Pe} / \mathrm{Lx}^{2} \\
& =8 \mathrm{X} 500 \mathrm{X} 0.03 /(16)^{2} \\
& =0.458 \mathrm{kNm}
\end{aligned}
$$

Unbalance service load $=9-3.65-0.468$

$$
\begin{aligned}
& =2.53 \mathrm{kN} / \mathrm{m}^{2} \\
& =0.0025 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

The deflection is given by

α (Coefficient)	$=0.00772$
q	$=0.0025 \mathrm{~N} / \mathrm{mm}^{2}$
D	
	$=\left(\mathrm{Eh}^{2}\right) / 12\left(\left(1-\mathrm{V}_{\mathrm{c}}{ }^{2}\right)\right.$
	$=31220 \times 80^{2} / 12\left(1-0.125^{2}\right)$
	$=1.5 \times 10^{9}$
$\mathrm{a}_{\text {max }}$	$=0.0072 \times\left(0.0026 \times(365)^{4} / 1.35 \times 10^{9}\right.$
	$=0.000263 \mathrm{~mm}$

Maximum permissible long term deflection $=16000 / 156$

$$
=100 \mathrm{~mm}
$$

Check for Stresses:

$\begin{array}{ll}\text { Unbalance service load } & =2.53 \mathrm{kN} / \mathrm{m}^{2} \\ \text { Moment due to this load (X-direction) } & =0.09 \times 0.468 \mathrm{X}\end{array}$ $(16)^{2}=10.78 \mathrm{kNm}$

Stresses developed $=10.78 \times 10^{6} /\left(\left(1000 \times 80^{2}\right) / 6\right)$

$$
=10.10 \mathrm{~N} / \mathrm{mm}^{2}
$$

Compression at top and tension of soffit of slab.
Direct stress due to pre stressing force $=500 \times 1000 /$ 1000 X 80

$$
=6.25(\text { Compression })
$$

Max compressive stress in concrete at the top of slab

$$
=3.028+6.25=9.278 \mathrm{~N} / \mathrm{mm}^{2}
$$

Which is less than the permissible stress of $13 \mathrm{~N} / \mathrm{mm}^{2}$

The max shear stress under ultimate load is

$$
\begin{aligned}
& =(0.424 \times 11.88 \times 1600) / 1000 \times 60 \\
& =1.34 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

RESULT:

The thickness of Post Tension slab $=320 \mathrm{~mm}$
Self weight of $\mathrm{Slab}=7.68 \mathrm{kN} / \mathrm{m}$
COMPARATIVE ANALYSIS:

REINFORCED CEMENT CONCRETE SLAB	POST TENSION SLAB
Thickness of slab $=630 \mathrm{~mm}$	$\begin{aligned} & \text { Thickness of slab = } \\ & 320 \mathrm{~mm} \end{aligned}$
Self weight of the slab $=$ $15.75 \mathrm{kN} / \mathrm{m}$	Self weight of the slab $=$ $7.68 \mathrm{kN} / \mathrm{m}$
Area of steel $=1800 \mathrm{~mm}^{2}$	Area of prestressing in steel $=280 \mathrm{~mm}^{2}$
$\begin{aligned} & \text { Moment of resistance }= \\ & 618.142 \mathrm{kNm} \end{aligned}$	$\begin{aligned} & \text { Moment of resistance }= \\ & 18.95 \mathrm{kNm} \end{aligned}$

We have Designed the post tension slab reduce the slab
thickness, self weight of the slab, area of steel and moment of resistance compare to the reinforced cement concrete slab.

10. CONCLUSION

Design of beam slab is done by post tensioning method and hence the slab thickness is reduced. The post tensioned flat slab is designed by manually. In our project we have applied Post-Tensioning method for designing the Slab and hence the thickness of the slab is reduced.

REFERENCES

[1]. Iverson, JK Hawkins, NM et al.,(1994) The paper title " Performance of precast/prestressed building structures during Northridge earthquake". January 17, 1994[2]. Wight, R., Green, M., and Erki, m. et al.,(2001) ${ }^{[2]}$ Presented a paper entitled Prestressed FRP sheets for the post strengthening reinforced concrete beams".
[3] . T. Y. Lin, "Load balancing for design and analysis of prestressed concrete structures;" Journal of American Concrete Institute, vol. 60, no. 6, June 1963.
[4]. IS 456:2000 Plain and Reinforced concrete code of practices.
[5] SP - 16 : 1980 Design Aids for reinforcement.
[6] IS 1343 : 1080 code of practice for prestressed concrete.
[7] IS 875 : 1987 (Part 1,2) Code of practice for live load and dead load

BIOGRAPHIES

A.Yacop Raja M.E.,(Ph.d) AssistantProfessor Department of Civil engineering Oxford Engineering College Anna University

P.Indumathi

Student
Department of Civil engineering Oxford Engineering College Anna University

