
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 218

Secure Isolation and Migration of Untrusted Legacy Applications

Dr. Khalid Ahmed Ibrahim

Associate Professor, Faculty of CS & IT, Karary University, Omdurman, Sudan

---***---
Abstract - To address the system security and availability issues, we have developed peas and pods. Pea provides a least

privilege environment that can restrict processes to the minimal subset of system resources needed to run. Pod provides a

group of processes and associated users with a consistent, machine-independent virtualized environment. This mechanism

allows system administrators the flexibility to patch their operating systems immediately without worrying over potential loss

of data or needing to schedule system downtime. We have implemented peas and pods in Linux without requiring any

application or operating system kernel changes. Our measurements on real world desktop and server applications demonstrate

that peas and pods impose little overhead

Key Words: Security, Peas and Pods, System Resource, Operating System, Schedule, Kernel

1.INTRODUCTION

Security problems can wreak havoc on an organization’s computing infrastructure. To prevent this, software vendors

frequently release patches that can be applied to address security issues that have been discovered. However, software patches

need to be applied to be effective. It is not uncommon for systems to continue running unpatched applications long after a

security exploit has become wellknown . This is especially true of the growing number of server appliances intended for very

low-maintenance operation by less skilled users. Furthermore, once a patch has been released, exploits of unpatched

applications based on reverse engineering the patch now occur as quickly as a month later whereas such exploits took closer to

a year just a couple years ago .

Software updates to existing applications may not address security problems that result from users accidentally downloading

and executing malicious code. Recently a security hole was discovered in a popular mp3 player that could result in arbitrary

code being executed if a user played a maliciously constructed mp3. If the mp3 player were run within a simple sandbox that

limited the player to one’s collection of mp3s, the damage the malicious code could accomplish would be severely limited. Over

the years, complex services like Sendmail have similarly been exploited to allow malicious code to be run within its context.

Since Sendmail runs with privilege, the malicious code also runs with privilege. A sandbox can be used to protect an entire

machine from a faulty service, such as Sendmail. However, these services don’t run by themselves, but also depend on other

aspects of the machine, such as programs a user might want to call from a Procmail script to filter their mail. Consequently, one

might end up including the entire machine within the sandbox. Since common sandboxes simply provides a single namespace,

they don’t provide good security solutions for the complex services in use today.

Furthermore, even when software updates are applied to address security issues, they commonly result in system services

being unavailable. Patching an operating system can result in the entire system having to be down for some period of time. If a

system administrator chooses to fix an operating system security problem immediately, he risks upsetting his users because of

loss of data. Therefore, a system administrator must schedule downtime in advance and in cooperation with all the users,

leaving the computer vulnerable until repaired. If the operating system is patched successfully, the system downtime may be

limited to just a few minutes during the reboot. If the patch is not successful, downtime can extend for many hours while the

problem is diagnosed and a solution is found. For systems that need to provide a high degree of availability, downtime due to

security-related issues is not only inconvenient but costly as well. While application servers can sometimes mirror application

state between servers and allow an application to continue even when one server has to be taken down, they only work in

specific situations. For instance, a regular user’s desktop can not be mirrored between servers. Even for applications that can

mirror their data, the application has to be designed to interface with the mirroring architecture, resulting in application

specific solutions that are difficult to generalize. We introduce Pea-Pods to provide a solution to these security problems.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 219

 Pea-Pods provide two key abstractions, peas (Protection and Encapsulation Abstraction) and pods (PrOcess Domain). A pod is

a lightweight migratable virtual execution environment that looks just like the underlying operating system environment. A pea

is a least privilege environment within a pod that allows access to a subset of processes and resources in the pod. In tandem,

peas and pods decouple process execution from the underlying operating system to provide transparent, secure isolation and

migration of untrusted applications. Pea-Pods can isolate untrusted applications within sandboxes, preventing them from

causing harm to the underlying system or other applications if they are compromised.

Pea-Pods achieve these goals through three distinguishing characteristics.

First, a pod provides a consistent private virtual namespace that gives all processes within it the same virtualized view of the

system. This virtualized view isolates sandboxed processes from the underlying system by associating virtual identifiers with

operating system resources and only allowing access to resources that are made available within the virtualized namespace.

This isolation mechanism provides a simple way to control what operating system resources are accessible to a group of

processes. Similarly, it allows a pod to define a complete set of users which can be distinct from those supported by the

underlying system.

Second, a pea provides a least privilege encapsulation layer within a pod that can limit certain processes from interacting with

other processes and accessing file system and network resources. This is effective for preventing compromised applications

from attacking other processes and resources of the system. We provide intuitive tools to easily and dynamically create Pea-

Pods tailored for individual applications or groups of applications.

Third, Pea-Pod virtualization is integrated with checkpoint-restart mechanism that decouples processes from dependencies on

the underlying system and maintains process state semantics to enable processes to be migrated across different machines.

The checkpoint-restart mechanism employs an intermediate format for saving the state associated with processes and Pea-Pod

virtualization. This format provides a high degree of portability to support process migration across machines that are running

operating systems that differ in the security and maintenance patches applied. It also enables application services to be

checkpointed on a system and restarted after the underlying operating system is upgraded and the system is restarted. We

have implemented Pea-Pods in a prototype system as a loadable Linux kernel module. We have used this prototype to securely

isolate and migrate a wide range of unmodified legacy and network applications. We measure the performance and

demonstrate the utility of Pea-Pods across multiple systems running different Linux 2.4 kernel versions using three real-world

application scenarios, including a full KDE desktop environment with a suite of desktop applications, an Apache/MySQL web

server and data base server environment, and a Sendmail/Procmail e-mail processing environment. Our performance results

show that Pea-Pods can provide secure isolation and migration functionality on real world applications with low overhead.

2. MATERIALS AND METHODOLOGY

Mainly this project is the combination of Operating System Concept and Network Security Here we need xml parser and little

j2ee knowledge to know how to deploy a component .Ant is the tool to built the xml tree for target location.Linux environment

we prefer to use .With this we can upgrade the system without restart .Process migration can done using file transfer Protocol

and sand box creation is done using java and checkpointing can be done using c.Pea-pod layer is mirror image of underlying

operating system in this layer kernel versions are deployed in it.Any upgradation can be done by shifting the currently running

Processes to the near by system and activate the newer version there by no change in the Underlying Kernel version.Hence

upgradation without restart .

How it works :

It work like this,the applications that are running in out-dated versions are called legacy untrusted applications we are going to

securely migrate this to latest version that is running in the nearby computer, by using digital signature to each processes that

are currently running in the older versions.After updating our system,the processes is once again remigrated to the same

system .This mechanism provides high uptime without needing to schedule system downtime for upgradation.Main module is

the Checkpoint restart mechanism , which means that after migration we restart the process from the point we have left,not

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 220

from the beginning .Main aim of this project is to upgrade the system without restarting thus providing high uptime rather the

allocating system downtime for the upgradation .

3. COMPARISON WITH EXISTING SYSTEMS

 Existing system consisting of migration without using digital signature, it is disadvantage Since it is not secure .Existing system

does not support any larger sandbox migration hence this software plays a vital role in larger organization where system

downtime results in unavailability of services and loss of data. Existing system contains more number of lines of coding hence it

results in large overhead. Peapod layer construction is only 50 lines of coding hence it results in lower overhead and

performance of the system up gradation technique is improved.Isolation of processes and allocating of processes ID is

difficult and confusing.This software uses private virtual name space hence it is easier to isolate processes and avoid confusion

of allocating processes ID after migration

4. CONCLUSION

The Pea-Pod system provides an operating system virtualization layer that decouples process execution from the underlying

operating system. The virtualization layer supports two key abstractions for encapsulating processes, peas and pods. Pods

provide lightweight sandboxes that mirror the underlying operating system environment, and peas provide fine-grain least

privilege environments within pods. Together, peas and pods can isolate untrusted applications within sandboxes, preventing

them from being used to attack the underlying host system or other applications even if they are compromised. The Pea-Pod

sandboxes can be transparently migrated across machines running different operating system kernel versions. This enables

security patches to be applied to operating systems in a timely manner with minimal impact on the availability of sandboxed

application services. Pea-Pod secure isolation and migration functionality is achieved without any changes to applications or

operating system kernels. We have implemented Pea-Pods in a Linux prototype and demonstrated how peas and pods can be

used to improve computer security and application availability for a range of applications, including e-mail delivery, web

servers and databases, and desktop computing. Our results show that Pea-Pods can provide easily configurable, secure

migratable sandboxes that can run a wide range of desktop and server Linux applications in least privilege environments with

low overhead.

REFERENCES

[1].WWW.PeaPod.org

[2]. WWW.Checkpointing .org

[3]. WWW.TrustedComputing.Org

[4]. Y. Artsy, Y. Chang, and R. Finkel. Interprocess communication in charlotte. IEEE Software, pages 22–28, Jan 1987.

 [5] A. Baratloo, N. Singh, and T. Tsai. Transparent Run-Time Defense Against Stack smashing Attacks. In Proceedings of the

USENIX Annual Technical Conference, 2000.Honolulu, Hawaii, Apr. 1996.

[6] R. Rashid and G. Robertson. Accent: A communication oriented network operating system kernel. In Proceedings of the 8th

Symposium on Operating System Principles, pages 64–75, Dec 1984.

[7] E. Rescorla. Security holes... Who cares? In Proceedings of the 12th USENIX Security Conference, Washington, D.C., Aug. 2003.

[8] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,M. Guillemont, F. Herrman, C. Kaiser, S. Langlois, P. L´eonard, andW.

Neuhauser. Overview of the Chorus distributed operating system. In Workshop on Micro-Kernels and Other Kernel Architectures,

pages 39–70, Seattle WA(USA), 1992.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 221

[9] P. Smith and N. C. Hutchinson. Heterogeneous process migration:The Tui system. Software – Practice and

Experience,28(6):611–639, 1998.

 [10] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen,and J. Lepreau. The Flask Security Architecture: System Support

for Diverse Security Policies. In Proc. of theEighth USENIX Security Symposium, Aug. 1999

[11] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in the Denali Isolation Kernel. In Proceedings of the Fifth

Symposium on Operating Systems Design and Implementation (OSDI 2002), Boston, MA, Dec. 2002.

[12] E. Zadok and J. Nieh. FiST: A Language for Stackable File Systems. In Proceedings of the AnnualUSENIX technicalConference,

pages 55–70, June 2000.

FLOWCHART

 Create Pea –Pod layer.
 Small replicate of the kernel

Create the sand box
Least privilege Environment for
Legacy Untrusted Applications

Checkpoint all the processes running in

peapod layer and add it to the migratable

sand box

Migrate the sand box to the near by

system

Restart the processes in
the sand box

Meanwhile upgrade the Pea-
pod layer

Remigrate the processes

to host system

Hot upgradation without restart

