
 International Research Journal of Engineering and jTechnology (IRJET) e-ISSN: 2395-056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1824

Preview a Novel Approach to Organize Big Data in Columnar Storage

Format

Jadhawar B. A.1, Dr. Neeraj Sharma2

1Research Scholar, Department of Computer Science & Engineering, Sri Satya Sai University of Technology and
Medical Sciences, Sehore , MP, India

2Associate Professor, Department of Computer Science & Engineering, Sri Satya Sai University of Technology and
Medical Sciences, Sehore , MP, India

---***--
Abstract - The reason we decided to do research in Hadoop,
storage of different documents is provided by HDFS (Hadoop
Distributed File System). With the rise of big data, people
begin to focus on storage of it. There are different file formats
that have been evolved which tries to manage the large data
and to increase the read and write performance. These
formats are generally columnar in nature instead of row,
which helps to analyze the data and fetch only the required
columns. Some optimization methods have been introduced on
this format which further increases the performance. In this
research thesis we will try to implement one such format
which will not only increase the performance but also
manages data efficiently. We will also do the benchmark of
this format and publish the numbers comparing to the already
existing formats.

Key Words: High Speed Processing, Reducing file sizes,
Columnar Format, HDFS.

1. INTRODUCTION

The reason we decided to do research in Hadoop, storage of
different documents is provided by HDFS (Hadoop
Distributed File System). With the rise of big data, people
begin to focus on storage of it. There are different file
formats that have been evolved which tries to manage the
large data and to increase the read and write performance.
These formats are generally columnar in nature instead of
row, which helps to analyze the data and fetch only the
required columns. Some optimization methods have been
introduced on this format which further increases the
performance. In this research thesis we will try to implement
one such format which will not only increase the
performance but also manages data efficiently. We will also
do the benchmark of this format and publish the numbers
comparing to the already existing formats.

 Predicate pushdown uses those indexes to determine which
stripes in a file need to be read for a particular query and the
row indexes can narrow the search to a particular set of
10,000 rows. ORC supports the complete set of types in Hive,
including the complex types: structs, lists, maps, and unions.

Many large Hadoop users have adopted ORC. For instance,
Facebook uses ORC to save tens of petabytes in their data
warehouse and demonstrated that ORC is significantly faster
than RC File or Parquet. Yahoo uses ORC to store their
production data and has released some of their benchmark
results

ORC files are divided in to stripes that are roughly 64MB by
default. The stripes in a file are independent of each other
and form the natural unit of distributed work. Within each
stripe, the columns are separated from each other so the
reader can read just the columns that are required [7].

Parquet file format were created to make the advantages of
compressed, efficient columnar data representation
available to any project in the Hadoop ecosystem. Parquet is
built from the ground up with complex nested data
structures in mind, and uses the record shredding and
assembly algorithm described in the Dremel paper. We
believe this approach is superior to simple flattening of
nested name spaces.

Parquet is built to support very efficient compression and
encoding schemes. Multiple projects have demonstrated the
performance impact of applying the right compression and
encoding scheme to the data. Parquet allows compression
schemes to be specified on a per-column level, and is future-
proofed to allow adding more encodings as they are invented
and implemented.

Parquet is built to be used by anyone. The Hadoop ecosystem
is rich with data processing frameworks, and we are not
interested in playing favorites. We believe that an efficient,
well-implemented columnar storage substrate should be
useful to all frameworks without the cost of extensive and
difficult to set up dependencies [8].

1.1 A brief review of the work already done in the
field

In the columnar storage structure, more sorted columns
mean better query performance. However, as columns are
sorted respectively, the records are no longer horizontal
alignment, which causes trouble to the record

 International Research Journal of Engineering and jTechnology (IRJET) e-ISSN: 2395-056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1825

reorganization. There is a simple solution to this problem,
and that is to copy the ID number to each key column. But
owing to the huge cost of the storage space and the searching
time, there are few systems that use this method [1]. A new
technique to transform procedural code so that it operates
on hierarchically nested, columnar data natively, without
row materialization. It can be viewed as a compiler pass on
the typed abstract syntax tree, rewriting references to
objects as columnar array lookups. Also present
performance comparisons between transformed code and
conventional object-oriented code in a High Energy Physics
context [2].

With the development and popularization of e-commerce
and social network [3] [4], 21the structured data meeting
the relation model have seen continuous increase and shown
to reach PB level and even larger scale. For example, the data
warehouse constructed by Facebook has stored 300PB
structured data in 2014 and expanding by 600TB per day
[5]. The search engine system developed by Baidu could
handle 100PB of data daily in 2013[6,7]. Supporting
interactive query on such large volumes of data necessitates
the development of large-scale storage management ability
and rapid analysis and calculation capability. These
requirements pose new challenges for big data storage and
management technology [18, 19].

ORC files

Fig -1: ORC File Layout

The above Fig.1. Shows ORC file format. The running
scenario for this four-part series is a startup, which

processes data from different sources, SQL and NoSQL
stores, and logs. The challenge with big data, as the domain
matures, and for evolving deployments in companies, is to
not only to process the data but to also do it efficiently,
reducing cost and time required [7].

In the scenario, and for many companies, tables containing
billions of rows and numerous columns are unexceptional.
Querying and reporting on this data swiftly requires a
sophisticated storage format. It ideally stores data compact
and enables skipping over irrelevant parts without the need
for large, complex, or manually maintained indices. The ORC
file format addresses all of these issues.

The Stinger initiative heads the ORC file format development
to replace the RCFile. Former should become part of the
stable Hadoop releases this year. ORC stores collections of
rows in one file and within the collection the row data is
stored in a columnar format. This allows parallel processing
of row collections across a cluster. Each file with the
columnar layout is optimized for compression and skipping
of data/columns to reduce read and decompression load.

ORC goes beyond RCFile and uses specific encoders for
different column data types to improve compression further,
e.g. variable length compression on integers. ORC introduces
a lightweight indexing that enables skipping of complete
blocks of rows that do not match a query. It comes with basic
statistics — min, max, sum, and count — on columns. Lastly, a
larger block size of 256 MB by default optimizes for large
sequential reads on HDFS for more throughput and fewer
files to reduce the load on the name node.

1.2 ORC is a columnar file format

The below Fig.2. ORC is a columnar file format. Visualize the
structure of an ORC file as an area that is divided into
Header, body and footer. The Header contains the text ORC
in case some tools require determining the type of file while
processing.

 International Research Journal of Engineering and jTechnology (IRJET) e-ISSN: 2395-056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1826

Fig.2. ORC File Format

The body contains the actual data as well as the indexes.
Actual data is stored in the ORC file in the form of rows of
data that are called Stripes. Default stripe size is 250 MB.

Stripes are further divided into three more sections viz the
index section that contains a set of indexes for the stored
data, the actual data and a stripe footer section. One
interesting thing to note here is that both index and data
section are stored as columns so that only the columns
where the required data is present, is read. Index data
consists of min and max values for each column as well as
the row positions within each column. ORC indexes help to
locate the stripes based on the data required as well as row
groups. The Stripe footer contains the encoding of each
column and the directory of the streams as well as their
location [11, 12].

The footer section consists of three parts viz. file metadata,
file footer and postscript. The file Metadata section contains
the various statistical information related to the columns
and this information is present at a stripe level. These
statistics enable input split elimination based on predicate
push down which are evaluated for each stripe.

The file footer contains information regarding the list of
stripes in the file, number of rows per stripe, and the data
type for each column. It also contains aggregates counts at
column-level like min, max, and sum.

The Postscript section contains the file information like the
length of the file‘s Footer and Metadata sections, the version
of the file, and the compression parameters like general
compression used (e.g. none, zlib, or snappy) and the size of
the compressed folder [13, 14].

2. PROPOSED METHODOLOGY DURING THE
TENURE OF THE RESEARCH WORK.

This research work will be carried out in three phases.
Following are those phases

1) Understanding the parquet file format and modifying
it to support the research to be done:

In this phase existing optimized parquet format will be
analyzed and extended to expose the API that will help to
implement the proposed research. During this phase code of
parquet file format will be analyzed to understand the read
and write path and how metadata is maintained which will
help us to understand where we need to inject the code for
the proposed work

2) Analyzing the best indexes and implementing them:

In this phase we will analyze different types of indexes like
Bitmap index, dictionary based index etc. And will also do
some performance benchmarking to understand which index
suits which data type. Once this is done suitable indexes will
be implemented for different data types and will be injected
in parquet file format.

3) Implementing Sources for apache spark:

In order to understand the performance we need to
implement a custom parquet source with index for apache
spark which we will be used to compare the results. The
results will be compared with different types of big data use
cases and will be published as a part of this thesis

3. EXPECTED OUTCOME OF THE PROPOSED WORK

These three are the expected outcomes are

1. File Format.
2. Read Path for file format.
3. Write path for file format.

 International Research Journal of Engineering and jTechnology (IRJET) e-ISSN: 2395-056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1827

1. File Format

Fig. 1 File Format

The below fig.1. Shows File Format for the proposed
research work which will not only increase the performance
but also manages data efficiently. We will also do the
benchmark of this format and publish the numbers
comparing to the already existing formats.

2. Read path for file format

Fig. 2. Read path for file format

The above fig.2. Shows Read path for file format. When a
read request for a record is submitted to the proposed file
format it is first validated against bloom filter (an efficient
data structure used to test whether an element is a member
of set). If bloom filter returns the availability we will go our
search for next step but if it fails we will stop for the search.
In the next step we will search for the element in the index

which we have created while insertion of the record and find
the exact location of element in the actual columnar file.

3. Write Path

Fig. 3 Write Path

The above fig.3. Shows write path for file format. This part
explains how the records are written in the proposed file
format. When a record is requested to be written in the
proposed file format the bloom filter will be updated for
that record. Once the bloom filter is updated the index for
the proposed file format is updated and then the record is
written to the base file.

4. CONCLUSION

 We expect to design and create novel approaches for storing
data in Big Data in Hadoop. We will also do the benchmark of
this format and publish the numbers comparing to the
already existing formats.

ACKNOWLEDGEMENT

I like to acknowledgement my gratitude to Dr. Neeraj Sharma
for valuable suggestions in carrying my research work. I also
thankful to CSE Department of our University.

REFERENCES

[1] Tao Xu and Dongsheng Wang ―KCGS-Store: A Columnar
Storage Based On Group Storing of Key Colum ns”, in
Proceedings of the 2016 IEEE 9th International Conference
on Cloud Computing, DOI 10.1109/CLOUD.2016.39.
[2] Jim Pivarski, Peter Elmer, and Brian Bockelman, Zhe
Zhang, ―Fast Access to Columnar, Hierarchically Nested Data
via Code Transformation,‖ in Proceedings of the 2017 IEEE
International Conference on Big Data (BIGDATA), 978-1-
5386-2715-0/17/$31.00 ©2017 IEEE.

 International Research Journal of Engineering and jTechnology (IRJET) e-ISSN: 2395-056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1828

[3] C. Budak, D. Agrawal, and A. El Abbadi, ―Structural trend
analysis for online social networks,” in Proceedings of the
VLDB Endowment, vol. 4, no. 10, pp. 646-656, 2011.
[4] L. Pu, J. Xu, B. Yu and J. Zhang, ―Smart cafe: A mobile local
computing system based on indoor virtual cloud,‖ China
Communications, vol. 11, no. 4, pp. 38-49, 2014.
[5] Scaling the Facebook Data Warehouse to 300 PB.
[6] K. Yu, ―Large-scale deep learning at Baidu,‖ in
Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management, pp.
2211-2212, 2013.
[7] A. Jacobs, ―The Pathologies of Big Data,‖
Communications of the ACM, vol. 52, no. 8, pp. 36–44, 2009.
[8] S. Ghemawat, H. Gobioff, and S. T. Leung, ―The Google file
system,‖ in ACM SIGOPS Operating Systems Review, vol. 37,
no. 5, pp. 29-43, 2003.
[9] Evans, Chris (Oct 2013). "Big data storage: Hadoop
storage basics". Computer weekly.com. Computer Weekly.
Retrieved 21 June 2016. HDFS is not a file system in the
traditional sense and isn't usually directly mounted for a
user to view
[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop Distributed File System,” in Proceedings of IEEE
Conference on Mass Storage Systems and Technologies, pp.
1-10, 2010.
[11] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata,
“Column-Oriented Storage Techniques for MapReduce,” in
Proceedings of the VLDB Endowment, vol. 4, no. 7, pp. 419-
429, 2011.
[12] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu,
―RCFile: A Fast and Space-efficient Data Placement Structure
in MapReduce-based Warehouse Systems,‖ in Proceedings of
the 2011 IEEE 27th International Conference on Data
Engineering, pp. 1199– 1208, 2011.
[13]https://issues.apache.org/jira/secure/attachment/1256
4124/OrcFileInt ro.pptx.
[14] https://github.com/cutting/trevni.
[15] https://github.com/Parquet.
[16] http://parquet.apache.org/documentation/latest
[17] S. Chen, ―Cheetah: a high performance, custom data
warehouse on top of MapReduce,‖ in Proceedings of the
VLDB Endowment, vol. 3, no. 1-2, pp. 1459-1468, 2010.
[18] https://parquet.apache.org/documentation/latest/
[19] https://orc.apache.org/

BIOGRAPHIES

Dr. Neeraj Sharma,Associate
Professor, Department Of
Computer Science & Engineering,
Sri Satya Sai University of
Technology and Medical Sciences,
Sehore , MP, India.20 year’s of
teaching experience UG & PG
students,08 research papers
published in international &
national journals, 11
conferences/Webinars & 3 AICTE
sponsored workshops.

Bhagyashala Jadhawar, Received
Master Degree From Shivaji
University of Kolhapur in
Computer Science and
Engineering, currently she is
Research Scholar at Sri Satya Sai
University of Technology and
Medical Sciences, Sehore , MP,
India

