
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1568

Object Oriented Programming Concepts Using Python

Abhishek V Tatachar1, Vishwas K V2, Shivanee Kondur3

1,2,3 Students, Department of Information Science and Engineering, Global Academy of Technology, Bangalore.
---***---
Abstract - With the incrementing need of representing real-
world objects into software programs, object oriented
programming has emerged as one of the popular methods to
do so. Python is one such object oriented programming
language, that is used for performing a variety of tasks such as
interactive desktop application development, web application
development, artificial intelligence and image processing, and
many more applications. This paper concentrates on how
object oriented concepts can be implemented using the python
programming language.

Key Words: Object Oriented Concepts, Python, Class
Diagrams, Classes, Objects, Polymorphism, Data
Abstraction, Inheritance.

1. INTRODUCTION

Object Oriented Programming or OOP as it is more
commonly abbreviated as, is the process of implementing
the program in terms of objects and classes. An object is a
representation of a real life entity which comprises of state,
behavior and properties. A class is basically a blueprint or a
template to create an object. In other words, classes can be
put up as group of objects that have similar characteristics.
The class specifies the type and scope of its constituent
members. We will be learning about objects and classes in
the section 5. Based on these properties of object oriented
programming, there are certain characteristics such as
inheritance, polymorphism, abstraction and encapsulation,
which makes more sense as to why object oriented
programming is advantageous.

Fig-1: Objects and Classes

Here there are some different types of cars (sedan, SUV,
sports, etc.) referred to as objects that belong to a particular
class called cars

Python is one such object oriented programming language
that was created by Guido van Rossum, which was released
in the year 1991. In [1] Akshansh Sharma Et al have clearly

indicated as to why python has grown as one of the most
popular programming language. According to [1] python –
has a largest Stack Overflow community, is one the most in
demand skill and has a large career opportunity and it is the
4th most used language on GitHub. Python is known for its
simplicity in terms of the syntax used, it being an open
source platform, portability and a variety of available
libraries. Python has a variety of fields of application. One
can find python being used in Machine Learning and artificial
intelligence, system programming, web applications, system
programming, developing graphical user interfaces or GUIs
and many more. In fact, the peer to peer file sharing network,
Bit Torrent has been written in one. Google and Nasa are
other users of python. One key benefit of python is that it is
object oriented. That is, it allows the usage of classes and
objects. To create a class in python we make use of the class
keyword. The following is the syntax of how a class can be
created in python.

class class_name:
 #block of code containing data members and methods

Now that a class has been created, how do we create an
object, we do that by calling the class name as a function.
Let’s consider the following syntax for creating an object.

object_name = class_name()

This is just the introduction to how it is done, section 5 has
more to explain about objects and classes.

2. LITERATURE SURVEY

The history of computing dates back to the invention of
Pascaline by Blaise Pascal and the invention of the Analytical
Engine by Charles Babbage. In the year 1936, Alan Turing, an
English mathematician and computer scientist proposed a
machine which was later called the Turing Machine, that
consisted of an infinitely long tape which was divided into
cells, a read-write head, and a memory for storing
instructions. Soon, the first digital computer, called the
Electronic Numerical Integrator and Computer (ENIAC) was
furnished in 1942. Interested in this field, John von
Neumann, a mathematician proposed a set of ideas which
are now called the Von Neumann Architecture. Along these
lines were the evolution of the computers and computing in
general.

With the evolution of computing, programming paradigms
gradually came into existence. Programming paradigms are

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1569

methods that are used to solve problems using some
programming languages. In [2] Dr. Selvakumar Samuel
describes a programming paradigm as the core and basis of
any programming language design. In [2] the author has
reviewed most of the relevant literature pertaining to the
concepts of programming paradigms, such as mainstream
programming paradigms, programming paradigm notations,
imperative programming paradigm concepts and much
more. The different programming paradigms that are most
commonly known are the imperative programming
paradigm, declarative programming paradigm (contrasting
to the imperative programming paradigm), procedural
programming paradigm, functional programming paradigm,
object oriented programming paradigm and so on.
Programming languages are based on these programming
paradigms.

One such programming paradigm is the structured
programming paradigm. In [3], Karl Et al describes
structured programming as a technique that was devised to
improve the reliability and clarity of programs. He also tells
that in structured programming, “the control of program
flow is restricted to three structures, sequence, IF THEN
ELSE, and DO WHILE, or to a structure derivable from a
combination of the basic three”. Structured programming
came to light in the late 1950s with the emergence of
programming languages like ALGOL 58 and ALGOL 60.
Although the structured programming is easy to understand
due to the effective usage of selection statements, sequence
and iteration statements, structured programming also has
certain disadvantages. One disadvantage is its relative
inefficiency in use of memory and the speed of execution.
Additionally, structured programming being language
dependent makes development quite slower.

[4] describes procedural programming as a set of procedures
or a set of functions. In procedural programming a set of
procedures are extensively used to perform tasks.
Procedures are also called functions, routines or subroutines
which basically are set of instructions or computational
steps that has to be performed. Throughout the program, the
procedures or functions can be called at any point and any
number of times. These functions or procedures could also
be called by other procedures. Most believe that the
procedural programming and object oriented programming
are mutually exclusive. However Irene Govender tells that
John Lewis refused the myth “object-orientation and
procedural concepts are mutually exclusive” [5][6].

With the necessity of representing real world objects in
software program, object oriented programming came into
existence. The core of object oriented programming is to
create objects that have certain properties and methods [4].
According to [7], the object-oriented programming approach
will makes it possible to break down a complex program into
smaller and manageable modules that enables development
easier to understand and collaborate by the members within

a development team and also helps in better communication
to those who provide requirements.

2.1 Object Oriented Programming Vs Structured
Programming

The concepts of structured and object-oriented
programming methods are not relatively new but these
approaches used are very much still relevant in today's
paradigm. Structured Programming also known as Modular
Programming. According to [3], most of the development
work of structured programming can be traced to the work
done by Dijkstra. In Structured Programming, programs are
divided into small self-contained functions. Structured
Programming does not provide proper security to the data
declared as there is no way of data hiding. OOC supports
inheritance, encapsulation, abstraction, polymorphism. In
Object Oriented Programming, Programs are divided into
small entities called objects. Object Oriented Programming
can solve any complex programs.

The main difference between OOP and structured
programming is the way the code is written and processed
by computer. In structured programming all functions are
written globally and executed in a sequential manner
whereas in OOC the execution is based on the event when
the object is created. The code lines are processed one by
one in structured programming. By making use of the
concept of OOP works more dynamically, making calls
according to the need of the code for a certain time and gives
the ability to reuse the source code. Currently, object-
oriented programming is more widespread due to the
production gains in large scale. However, the structured
language is not totally ruled out as its advantages for
performance ends up compensating when it comes to
software or hardware that need a much higher performance.

2.2 Object Oriented Programming Vs Procedure
Oriented Programming languages.

POP, abbreviates as Procedural Oriented Programming and
it mainly deals with programs and methods or functions.
Programs are divided into functions and data declared in the
code is global.

The main difference one can find in POP and OOP is that POP
follows Top-down approach and OOP follows Bottom-up
approach of programming. In POP, the main focus is on “how
to solve a problem” i.e. on the procedure or structure of a
program whereas in OOP main focus is on 'data security'.
Hence, only objects are permitted to access the entities of a
class. In POP large programs are divided into divisions called
functions where each function performs different operations
and whereas in OOP the program is divided into class and
objects are created to invoke a class. However, talking about
the property of data sharing, In POP the data once declared
can be used by any member functions of the program. But in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1570

OOP data is shared among the objects through the member
functions and objects can be used to invoke a class.
Languages such as C, VB, FORTRAN, Pascal uses only POP
and does not support OOP but JAVA, C++, C#, Python
supports both OOP and POP. Procedural Oriented
Programming does not have support for the concept of
overloading or polymorphism in it. On the other hand, Object
Oriented Programming supports polymorphism, which
means that using we use the same function name for
performing different operations based on the signatures. It is
possible to overload the functions, constructors, and
operators as well in Object Oriented Programming. In
Procedural Oriented Programming if there is some data that
is to be shared among all the functions in the program, it can
declared in a global scope outside all the functions. Where as
in Object Oriented Programming the data members of the
class will be accessed through the member functions of the
class.

3. DATA FLOW IN OBJECT ORIENTED
PROGRAMMING

In the figure shown below, the data and methods or
functions of each class can be accessed by only a particular
object instantiated for that class. Thus the class can be
invoked by creating an object for that class and calling its
functions to perform a particular function. The data used in
each class can be accessed by only the functions or methods
of that class and cannot be used by other classes though each
function can communicate with other functions of other
classes. In [8] Iqbaldeep Kaur Et al tell that the relations
between different objects are expressed by the interactions
in the form of message passing.

Fig -2 : Data flow in object oriented programming

4. CLASS DIAGRAMS

A class diagram is a static diagram and represents the static
view of an application. It is used for visualizing, describing,
and documenting different aspects of a system. By
formalizing a system using class diagram, we need to show
all of the entities, specifications and behaviour of the system
as a class diagram [9]. Class diagrams provide a structural

view of systems. Class diagrams provides the static
structure of Object-Oriented systems. They provide support
the design and also represent the basics of Object-oriented
systems. They will identify what the classes are, and how
they interrelate with each other and how they interact.
These are useful in identifying the collection of classes,
interfaces, associations, collaborations, and constraints and
also called as a structural diagram of the program

Fig -3: Class diagrams

Here, name refers to name of the class that appears in the
first partition. Next, attributes represent the state of an
object of the class and are descriptions of the structural or
static features of a class, these appear in the second
partition. Operations are found in the third partition. They
define the way in which objects may interact. Operations are
descriptions of behavioural or dynamic features of a class. In
(a), the signature or the data type is not mentioned and are
called as class without signature whereas in (b) the
signature or the data type is mentioned and are called as
class with signatures. A class may be involved in one or more
relationships with other classes. The way of representing
each relationship is unique. Consider the following image.

Fig -4: Types of Relationships

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1571

Summarizing the concepts of class diagrams, we can say
that it is used in Describing the static view of the system.
Describing the functionalities performed by the system.
Gives structural information of all the methods used in
programs and the detailed information of the attributes
along with their signatures or data types.

5. ELEMENTS OF OBJECT ORIENTED
PROGRAMMING IN PYTHON.

The concepts of object oriented programming rotate around
the basic elements of the object oriented programming
systems. However, the concepts of OOP can be divided into
two subcategories, the elements and the features or
characteristics of OOP. In this section we shall concentrate
on the Elements of OOP and the later section (section 6) will
concentrate on the features of OOP. Python being an object
oriented programming language provides the support for
these elements. These elements are class, objects, attributes,
behaviour, methods and messages. Classes and objects are
sometimes also considered features of object oriented
programming languages, but however we will be considering
them elements of object oriented programming as they form
the basic building blocks of every object oriented
programming language.

5.1 Classes

Classes enable tying up data and functionality together into a
single unit. In [10] the author, Rushikesh S Raut describes
the class as a user defined data type that holds the data
members and member functions that operate on these data
members. A class can be considered as a blueprint or
template to create objects. Python enables the usage of
classes. In Python, a class can be created using the “class”
keyword, followed by a class name, a semicolon, and a block
of code with increased indentation. This block of code can
contain the data members and the member functions. A
simple example that describes how a class definition looks in
python is given below.

class student:
 def __init__(self, student_name, student_age):
 self.student_name = name
 self.student_age = student_age
 def display(self):
 print("Student Name = " + self.student_name)
 print("Student Age = " + str(self.student_age))

In this example we have created a class called student, that
has data members as student_name and student_age, and the
functions as __init__() and display(). The __init__() function is
a special function, what in other object oriented
programming languages is considered as constructors. We
will discuss these special functions and constructors in
section 7. So, this class called “student” can be a

representation of a real student who has a name and age, in a
programming language.

5.2 Objects

Generally, an object is any real world entity that has certain
attributes and behaviour. However, in a programming
language, an object is said to be an instance of a class. For
instance, let us consider an example of a class called mobile
phones. Samsung, Nokia, Motorola, Mi, etc. are objects of the
class mobile. A class can have multiple objects. Each of these
objects have their own copy of the class attributes. That is,
they share the class attributes, but have their own individual
values for these attributes. In python objects can be created
by calling the class name as though we are invoking a
function, that is by using a pair of parentheses. The concept
of constructors comes handy here, when dealing with object
oriented programming in general. But coming back to
python, the following example explains how an object is
created in python.

alex = person(“Alex”, 21)
bob = person(“Bob”, 34)

In this example, we have created two objects called alex and
bob. Both of these objects are the instances of the person
class that was used in the section 5.1. So, both of these
objects have attributes name and age, but they have their
own values stored in it. That is the object named alex has the
values “Alex” and 21 for name and age respectively and
similarly, the object bob holds the values “Bob” and 34 for
name and age.

The attributes and functions associated with these objects
can be accessed by making use of the dot(.) operator. That is
to extract the name and age from the object alex, and to call
the display function, we do as follows.

alex.age = 25
alex.display()

When we set alex.age=25, the value of the age attributed
associated with the alex object get overwritten. Now, when
the display function is called we get the output as

Name = Alex
Age = 25

5.3 Attributes

Attributes are the data values that are held in the class. As
explained earlier, attributes are usually shared among the
objects or instances. These attributes are called the class
attributes. However, there is another type of attribute called
the instance attributes. The instance attributes are those
variables that are associated with only one object and are

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1572

not shared. These attributes will belong only to this object’s
scope.

5.4 Behaviour

The behaviour of a class is how an instance or object of a
class will operate or react when it is asked to perform
something by some other class or an object or if its internal
state changes. Behaviour is the only way in which an object
can do anything to itself or have anything done to it. For
example, let us consider the car class, here are some
behaviours that this car class might have:

 Start the engine
 Stop the engine
 Speed up
 Change gear
 Stall

So, typically a behaviour is what an object can do to itself.

5.5 Methods

As discussed earlier, on OOP (Object-Oriented
Programming), we have instances or objects. These objects
have characteristics and behavior. Objects additionally can
also be associated with methods. Methods are those
functions that belong to the object. For example if we get
back to the student class, we remember that there is one
function which is called the display(). This display() function
is invoked upon an object of that class.

class student:
 def __init__(self, student_name, student_age):
 self.student_name = student_name
 self.student_age = student_age

def display():
 print(“Name = “ + self.student_name)
 print(“Age = “ + str(self.student_age))

alex = person(“Alex”, 21)
alex.display()

So, the difference between a function and a method is that,
unlike functions, the methods are called over objects of
classes, and methods basically alter the state of an object,
while functions don’t do that.

5.6 Messages and Message Passing

One additional concept of object orientation is the use of
messages and message passing. Objects communicate with
each other by passing messages. When we say two or more
objects are communicating, the idea behind is that they are
passing messages to each other.

The concept of message passing comes from parallel
processing or parallel computing, where it requires two or
more processes to communicate with each other. Most
object oriented programming languages make use of threads
to allow message passing.

Fig-4: Message Passing

6. FEATURES OR CHARACTERISTICS OF OBJECT
ORIENTED PROGRAMMING

Now that we know what the elements of object oriented
programming are, we can now go ahead and understand the
features or characteristics of OOP. The characteristics
basically define the existence of object oriented
programming. There are four features or characteristics of
OOP. They are abstraction, polymorphism, encapsulation and
inheritance.

Fig-5: Features or characteristics of Object Oriented
Programming

6.1 Inheritance

Inheritance is a property of object oriented programming
that enables a class to inherit the characteristics of the super
class or the parent class. To better explain this scenario, we
can consider the example of the parent child relationship.
We commonly see a son or a daughter replicate their
parents, that is they inherit the features of their parents, this
is how inheritance works. There is one parent class that has
multiple subclasses, each of these subclasses will inherit the
properties of the parent class and then add to it their own set
of properties. Suppose there is a parent class called window,
and two subclasses normal window and the scrolling
window. Both of these subclasses have the common
properties of windows, that is open and close, however the

Characteristics

Abstraction

Polymorphism

Encapsulation

Inheritance

Object

Object

Messages

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1573

normal window has a hinge component in addition and the
scrolling window has the Let us consider the following
example to understand inheritance.

class person:
 def __init__(self, name, age)
 self.name = name
 self.age = age

 def display(self):
 print(“Student name” + self.name)
 print(“Student age” + str(self.age))

class student(person):
 pass

alex = student(“Alex”, 21)
alex.display()

In this example we have considered the student class. The
student also has the properties of the person, which means
that the student inherits the properties of the person. It is
important to note that we created an object of the child class
and not the parent class.

There are different types of inheritance supported in python.
They are Single inheritance, Multiple inheritance, Multilevel
inheritance, Hierarchical inheritance and Hybrid
inheritance.

6.1.1 Single Inheritance

In single inheritance, the child class simply inherits the
features or properties of a single parent class. Single
inheritance will enable reusability of code as well as add new
features to the existing code. The following diagram will
depict the single inheritance.

Fig-6: Single Inheritance

Let us now put this example in terms of python code.

class A:
 def display1(self):

 print(“This is class A”)

class B(A):
 def display2(self):
 print(“This is class B”)

obj = classB()
obj.display1()
obj.display2()

6.1.2 Multiple inheritance

Multiple Inheritance is said to be implemented when a class
inherits the properties of more than one class. So, this is just
how the kid inherits the properties from the mother as well
as the father.

The following diagram will depict the multilevel inheritance.

Fig-7: Multiple Inheritance

Let us now put this example in terms of python code.

class A:
 def display1(self):
 print(“This is class A”)

class B:
 def display2(self):
 print(“This is class B”)

class C(A, B):
 def display3(self):
 print(“This is class C”)

obj = classC()
obj.display1()
obj.display2()
obj.display3()

6.1.3 Multilevel Inheritance

In multilevel inheritance, one class inherits the properties of
a parent class, adds to it it’s own set of properties and this
class is further inherited by another class. This kind of

Class A

Class B

Class C

Class A

Class B

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1574

inheritance happens at different levels and so it is aptly
called the multilevel inheritance.

The following diagram will depict the multilevel inheritance.

Fig-8: Multilevel Inheritance

Let us now put this example in terms of python code.

class A:
 def display1(self):
 print(“This is class A”)

class B(A):
 def display2(self):
 print(“This is class B”)
class C(B):
 def display3(self):
 print(“This is class C”)

obj = classC()
obj.display1()
obj.display2()
obj.display3()

6.1.4 Hierarchical Inheritance

In hierarchical inheritance, one class is inherited by more
than one class. This case is similar to a family hierarchy,
where one person can have multiple sons and daughters.

The following diagram depicts the hierarchical inheritance.

Fig-9: Hierarchical Inheritance

Let us now put this example in terms of python code.

class A:
 def display1(self):
 print(“This is class A”)

class B(A):
 def display2(self):
 print(“This is class B”)

class C(A):
 def display3(self):
 print(“This is class C”)

class D(A):
 def display4(self):
 print(“This is class D”)

obj1 = B()
obj2 = C()
obj3 = D()
obj1.display1()
obj1.display2()
obj2.display3()
obj3.display4()

6.1.5 Hybrid Inheritance

When there is more than one kind of inheritance involved,
this kind of inheritance is called the hybrid inheritance.
The following diagram will depict the hybrid inheritance
that involves multilevel inheritance as well as the hybrid
inheritance.

Fig-10: Hybrid Inheritance

Let us now put this example in terms of python code.

class A:
 def display1(self):

Class A

Class B

Class C Class D

Class A

Class B Class C Class D

Class A

Class B

Class C

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1575

 print(“This is class A”)
class B(A):
 def display2(self):
 print(“This is class B”)

class C(B):
 def display3(self):
 print(“This is class C”)

class D(B):
 def display4(self):
 print(“This is class D”)

obj1 = C()
obj1.display1()
obj1.display 2()
obj1.display 3()

obj2 = D()
obj2.display1()
obj2.display2()
obj2.display4()

6.2 Abstraction

Abstraction is the process of showing only the necessary
details and hiding every other detail, that is not necessary to
the user. For example, suppose we consider an example of a
car, the user of the car that is the driver is required to know
how to accelerate, brake, change gears, raise and lower the
window shutter, turn on and turn off the indicators and so
on. However, it is not required for him to know how each of
these individual components are devised, that is how the
window mechanism works from the inside or how the
engine works.

The problem with abstraction is that, an abstract data type
will define a kind of black box, once it has been defined, it
does not interact with the rest of the program. This can lead
to inflexibility [11].

This feature of hiding what the user is not required to know
is called abstraction. Abstraction is helpful because this will
reduce the complexity of the program.

Let us consider the following example of a student class to
explain abstraction

from abc import ABC
class student(ABC):
 def studid(self, id, name, age):
 pass
class juniorstudent(student):
 def studid(self, id):
 print(“Student id is” +str(id))

st = juniorstudent()

st.studid(1101)

In the above example we have imported the class ABC. The
class student becomes an abstract class as we have defined
the abstract method in it. The abstract methods are not
supposed to contain any implementation, hence we make
use of a pass statement along with the abstract method.
Hence the studid becomes the abstract method of the
student class. We have another class called the junior
student that inherits the student class.

There are two important things we need to remember about
an abstraction in python, one - an abstract class can contain
both normal methods as well as abstract methods, and two -
an abstract method cannot be instantiated, that is, it is not
possible to create an object of the abstract class.

6.3 Encapsulation

One of the important characteristics of object oriented
programming language is the encapsulation. Encapsulation
is the process of wrapping up of data and the functions that
operate on this data into one single unit. Encapsulation will
apply restriction on the access to data members and member
functions and prevents any accidental changes to the data.
Class is one such encapsulated entity that will encapsulate
within it the data members and the member functions.

To better understand the concept of encapsulation let us
consider the example of a educational institution. This
institution consists of a number of departments and
branches. Suppose there is a necessity where the faculty of
one department, say department A needs to view the details
of a student of another department, say department B. This
faculty cannot simply go and fetch the details of that student.
He will have to ask the head of the department B in which
the student is a studying and ask for the required details.
This feature itself is the encapsulation. There was a
restriction applied on the access of the details of the student
by the faculty of another department.

The following figure shows the encapsulation process.

Fig-11: Encapsulation

In python it is possible to set restrictions to access variables
and methods. We make use of private attributes. Private
attributes in python are denoted by prefixing the attributes
using the single underscore(_) or double underscore (__).
Consider the following example.

class student:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1576

 def __init__(self):
 self.__id = 1101

 def display(self):
 print(“Student id is “+str(self.__id))

 def setstudid(self, id)
 self.__id = id

obj1 = student()
obj1.display()

obj1.__id = 1102
obj1.display()

obj1.setstudid(1102)
obj1.display()

Now, when we tried self.__id = 1102, the value of the variable
will not change, it will still be the same old value. However,
when we tried setstudid (1102), the value of the variable
changes.

6.4 Polymorphism

In object oriented programming, polymorphism is one of the
most useful characteristics. Polymorphism enables data to
be processed in several different ways. That is
polymorphism enables a single action to be performed in
several different ways. The word polymorphism itself can be
split into two halves - poly meaning many and morphism
meaning forms or types.

Let us consider the plus (+) operator. The plus operator
while operating on two numeric (integer or floating point)
values will act as an addition operator, it adds the two
values. But when the plus operator is used with two string
values, it acts as a concatenation operator. That is it joins the
second string to the end of the first string. There is a similar
case with the asterisk (*) operator. While working with
numeric operands, the * will act as a multiplication operator,
but while working with one string value and one integer
value, the * acts as a string replication operator. This feature
using which an operator behaves differently according to the
type of data passed to it, is called operator overloading.

Python also supports function polymorphism. Function
polymorphism means the same function operates on
different data types. There polymorphic functions that are
built in as well as user defined polymorphic functions. Let us
consider the len() function. The len() function works well
with strings, lists, tuples and dictionaries as well. While
working with strings, it will return the length of the string.
While working with lists and tuples it will return the number
of items and while working with dictionaries it will return
the number of keys. Consider the following.

print(len(“Hello World”) #output: 11
print(len([1, 2, 3, 4, 5])) #output : 5
print(len({a:1, b:2})) #output : 2

Similarly let consider the add() function which can be
defined as .

def add(a, b):
 return a+b

print(add(2, 3)) #Prints 5
print(add(“good”, ” day”) #prints good day

The add function in the above example uses the plus
operator. So as discussed earlier, the value obtained on using
a + operator depends on the data type of the value passed. So
this function add() behaves according to the value that has
been passed to the function. If numeric values are passed it
will return the sum of the values and if strings are passed it
will return the concatenated string.

Polymorphism can also be used while creating the class
methods. Suppose we have two classes, say student and
teacher. Both the student and the teacher have a similar
function called display_info(). When a call is made to this
function it depends to which class the object belongs to and
suitable operation is performed.

class Student:
 def __init__(self, id):
 self.id = id
 def display_info(self):
 print(“Student id is “ + str(self.id))

class Teacher:
 def __init__(self, id):
 self.id = id
 def display_info(self):
 print(“Teacher id is “ + str(self.id))

obj1 = Student(1101)
obj2 = Teacher(121)
for x in (obj1, obj2):
 x.display()

We will get the following output when we run the above
code.

Student id is 1101
Teacher id is 121

Since python also supports inheritance, there might be a
necessity to redefine certain functions of the parent class in
the child class. This feature is called the method overriding.
Polymorphism makes it possible to access the overridden
methods that have the same name as the one in the parent
class. Let us consider one simple example to understand the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1577

concept of method overriding. We have a parent class called
animal and a child class called dog. The following code will
implement method overriding on a method called the eat().

class animal:
 def __init__(self, name):
 self.name = name
 def eat(self):
 pass
class dog:
 def __init__(self, food):
 super().__init__(“Jim”)
 self.food = food
 def eat(self):
 print(“Jim eats “+self.food)

7. CONCEPTS OF CONSTRUCTORS

When we are hiding the representation of a type, then there
must be some way in which we initialize values to the
variables. A usable solution would be to have the user call a
function to initialize the value. Such a function is called a
constructor. Using a constructor the allocation of memory as
well as initializing a value to the variable becomes a single
operation rather than it being two different operations [11].
A constructor is a unique method that is invoked when an
object of the class is created. In other words, the work of a
constructor is to initialize the objects of a class.
Understanding the name constructor, it is called so because
they construct the values of the data members of a class.

In most Object Oriented Programming Languages, like java
and C++, constructors are defined by using the class name as
a function name and they are called by calling the class
names as function calls. However in python, constructors are
created using the __init__() method. The __init__() method is
basically the definition of the constructor, as in other object
oriented programming languages. However, while calling the
constructor, we use the class name as usual.

Consider the following example of a constructor. In this
example we have considered a student class. The __init__()
method will take one mandatory argument called the self-
variable followed by the two other parameters,
student_name and student_id. The values to these
parameters are called during the function call.

class students:
 def __init__(self, student_name, student_id):
 self.student_name = student_name
 self.student_id = student_id
 def display(self):
 print(“Name = “ +self.student_name)
 print(“Id = “ + str(self.student_id))

alex = students(“Alex”, 101)
alex.display()

The word “self” is used to represent the instance of class. By
using the keyword “self” we can access the attributes and
methods of a class in python. It is important to use the self-
parameter inside an object’s method if have to persist value
with the object.

Constructors are of two types, they are the default
constructor and the parameterized constructor. The default
Constructor is simply a constructor which is without any
arguments. Consider the following example.

class demo:
 n=10
 def display(self):
 print(self.n)

obj=demo()
obj.display()
This will give an output 10, because we initialized the
variable with the value 10 by default.

A Constructor with parameters is known as a parameterized
constructor. For example consider the following snippet of
code.

class demo:
 def __init__(self,data):
 self.data=data
 def display(self):
 print(self.data)

obj=demo(55)
obj.display()

We have passed a value 55 when we created the object of the
class, so this value is initialized to the data variable for that
object. Hence when we call the display() function we will get
an output as 55.

Constructors also verify that there are enough resources for
the object to perform any task.

8. CONCEPT OF DESTRUCTOR

In cases where certain objects of the class are not of
significance, in those cases one might have to perform a
complementory oprtstion of the constructor, that is these
objects have to be cleaned up after the object has been used
for the last time. The Destructor in a program plays the role
of reversing the operation performed by the constructor,
that is used for clearing the object of the class that was
created by the constructor.

Python has a garbage collector that handles memory
management. Destructors are defined by ‘__del__()’ in
python. When it is called ,all the reference to the object gets
deleted, which is also known as garbage collection.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1578

Let us consider an example to see how destructors work in
python. We have considered the Computer class and the
__del__() function is called on one of the objects of the class.

class Computer:
 def __init__(self):
 print(“Instance of computer created”)
 def__del__(self):
 print(“destructor called, computer destroyed”)

laptop = Computer ()
del laptop

The output is displayed, even though there is no method that
is called. Just like the constructors, the destructors are also
called automatically .The del keyword is used to delete an
object with no further references for an object,it will
automatically invoke this method to clean up the memory
occupied by the object. Exceptions explicitly raised in case
the __del__ is ignored.

9. ADVANTAGES AND DISADVANTAGES OF OBJECT
ORIENTED PROGRAMMING

Just by the name we can know that it breaks the program
based on the basic of the object in it. It’s aim is to bind the

data and functions together to operate on them.

Some advantages of object oriented programming include:

 Object oriented programming is modular, this
results in high maintainable code. It is extensible, as
objects can be extended to include new attributes
and behaviors. Objects can be reused in other
projects as well. Due to extensibility, modularity
and the reusability, object oriented programming
provides improved and better software
development productivity .

 Object oriented software is also easier to maintain.
Since the design is modular, part of the system can
be updated if any issues arise without need of any
large scale changes.

 Object oriented programming languages come with
rich libraries of objects and code development
during projects , reuse also enables faster
development .

 The reusability of code makes it lower the cost of
development, much effort is seen in object oriented
analysis and design ,which lowers the overall cost of
development.

 Faster development and lower cost allows more
time and resources to be used in verification of

software.Object oriented programming tends to
result in higher quality software.

Some disadvantages of object oriented programming
include:

 Object oriented programs typically involve more
lines of code than procedural programs.

 Object oriented programs are typically slower than
procedural programs, hence require more
instruction to execute .

 One should know the detailed knowledge of the
software being developed is needed in order to
create objects.

10. CONCLUSION

In this paper we have seen what Object Oriented
Programming or OOP as it most commonly known is, and
some salient features and concepts of object oriented
programming. Object oriented programming is the
programming paradigm of the future and most programming
langugaes like C++, Java, PHP, python are based on OOPS.
OOP is advantageous for a fact that it breaks down a
program into smaller and effective modules which enables
better understanding of the code. Python being an object
oriented programming language provides all the features of
OOP such as inheritance, abstraction, polymorphism and
encapsulation. We have choosen python to convey these
concepts in the paper due to its easy and understandable
syntax.

REFERENCES

[1] Akshansh Sharma, Firoj Khan, Deepak Sharma, Dr. Sunil

Gupta, “Python: The Programming Language of Future”.

IJIRT, May 2020, Volume 6 Issue 12.

http://ijirt.org/master/publishedpaper/IJIRT149340_P
APER.pdf

[2] Dr. M. Selvakumar Samuel, “An Insight into
Programming Paradigms and Their Programming
Languages". Journal of Applied Technology and
Innovation vol. 1, no. 1, (2017), pp. 37-57.
https://dif7uuh3zqcps.cloudfront.net/wp-
content/uploads/sites/11/2018/07/17035708/2017_I
ssue1_Paper4.pdf

[3] Hunt, Karl. (1979). An introduction to structured
programming. Behavior Research Methods. 11. 229-233.
10.3758/BF03205654.

https://www.researchgate.net/publication/225724365
_An_introduction_to_structured_programming

[4] Mala Dutta, “Basic Concept of Object Oriented and
Procedure Oriented Programming”. International
Journal of Information and Tech nology (IJIT) – Volume
2 Issue 4, Jul-Aug 2016

http://ijirt.org/master/publishedpaper/IJIRT149340_PAPER.pdf
http://ijirt.org/master/publishedpaper/IJIRT149340_PAPER.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2018/07/17035708/2017_Issue1_Paper4.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2018/07/17035708/2017_Issue1_Paper4.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2018/07/17035708/2017_Issue1_Paper4.pdf
https://www.researchgate.net/publication/225724365_An_introduction_to_structured_programming
https://www.researchgate.net/publication/225724365_An_introduction_to_structured_programming

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1579

http://www.ijitjournal.org/volume-2/issue-4/IJIT-
V2I4P1.pdf

[5] Govender, Irene. (2010). From procedural to object-
oriented programming (OOP) - An exploratory study of
teachers' performance. South African Computer Journal.
46.

https://www.researchgate.net/publication/236156223
_From_procedural_to_object-
oriented_programming_OOP_-
_An_exploratory_study_of_teachers'_performance

[6] Lewis, John. (2000). Myths about object-orientation and
its pedagogy. ACM Sigcse Bulletin. 245-249.
10.1145/331795.331863.

https://www.researchgate.net/publication/221538451
_Myths_about_object-orientation_and_its_pedagogy

[7] Yilmaz, Rahime & Sezgin, Anil & Kurnaz, Sefer & Arslan,
Yunus Ziya. (2018). Object-Oriented Programming in
Computer Science. 10.4018/978-1-5225-2255-3.ch650.

https://www.researchgate.net/publication/317957956
_Object-Oriented_Programming_in_Computer_Science

[8] Iqbaldeep Kaur, Navneet Kaur, Amandeep Ummat,
Jaspreet Kaur, Navjot Kaur, “Research Paper on Object

Oriented Software Engineering”. IJCST Vol. 7, Issue 4, Oct

- Dec 2016. http://www.ijcst.com/vol74/1/8-iqbaldeep-
kaur.pdf

[9] Souri, Alireza & Shariffloo, Mohammad & Norouzi,
Monire. (2011). Formalizing class diagram in UML.
10.1109/ICSESS.2011.5982368.

https://www.researchgate.net/publication/235635905
_Formalizing_class_diagram_in_UML

[10] Mr. Rushikesh S. Raut. “Research Paper on Object-
Oriented Programming”, International Research Journal
of Engineering and Technology (IRJET). Volume: 07
Issue: 10 | Oct 2020.

https://www.irjet.net/archives/V7/i10/IRJET-
V7I10247.pdf

[11] Stroustrup, Bjarne. (1988). What is “Object-oriented
Programming”?. Software, IEEE. 5. 10 - 20.
10.1109/52.2020.

https://www.researchgate.net/publication/3246605_W
hat_is_Object-oriented_Programming

http://www.ijitjournal.org/volume-2/issue-4/IJIT-V2I4P1.pdf
http://www.ijitjournal.org/volume-2/issue-4/IJIT-V2I4P1.pdf
https://www.researchgate.net/publication/236156223_From_procedural_to_object-oriented_programming_OOP_-_An_exploratory_study_of_teachers'_performance
https://www.researchgate.net/publication/236156223_From_procedural_to_object-oriented_programming_OOP_-_An_exploratory_study_of_teachers'_performance
https://www.researchgate.net/publication/236156223_From_procedural_to_object-oriented_programming_OOP_-_An_exploratory_study_of_teachers'_performance
https://www.researchgate.net/publication/236156223_From_procedural_to_object-oriented_programming_OOP_-_An_exploratory_study_of_teachers'_performance
https://www.researchgate.net/publication/221538451_Myths_about_object-orientation_and_its_pedagogy
https://www.researchgate.net/publication/221538451_Myths_about_object-orientation_and_its_pedagogy
https://www.researchgate.net/publication/317957956_Object-Oriented_Programming_in_Computer_Science
https://www.researchgate.net/publication/317957956_Object-Oriented_Programming_in_Computer_Science
http://www.ijcst.com/vol74/1/8-iqbaldeep-kaur.pdf
http://www.ijcst.com/vol74/1/8-iqbaldeep-kaur.pdf
https://www.researchgate.net/publication/235635905_Formalizing_class_diagram_in_UML
https://www.researchgate.net/publication/235635905_Formalizing_class_diagram_in_UML
https://www.irjet.net/archives/V7/i10/IRJET-V7I10247.pdf
https://www.irjet.net/archives/V7/i10/IRJET-V7I10247.pdf
https://www.researchgate.net/publication/3246605_What_is_Object-oriented_Programming
https://www.researchgate.net/publication/3246605_What_is_Object-oriented_Programming

