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Abstract - Software has become a necessary part of daily 
lives. Millions of lines of codes are written and executed every 
day all around the world. Development tools are key factors to 
the success of the tech industry as the current time constraints 
put a lot of pressure on developers to produce high-quality 
software. Many of these tools developed are based on decades 
of academic research which is mostly articulated around a 
deductive-logic approach. Automated Unit Test Cases 
generation is one of the fields that has been the focus of 
extensive literature within the research community. The 
existing approaches usually rely on test coverage criteria, 
generating synthetic test cases. These test cases challenging to 
read and understand for developers. In recent years there is a 
paradigm shift towards data-driven statistics-based research. 
In this paper, we propose a new approach that aims at 
generating unit test cases by learning from developer written 
test cases using machine learning. The training dataset will be 
mined from open-source repositories hosted on GitHub. We 
will use this dataset to train a machine learning model to 
translate code snippets to the corresponding test cases. 
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1. INTRODUCTION  
 
Software testing is one of the important process in software 
development life cycle process. Software testing helps in 
development of good quality software. It is achieved by unit 
test cases or test suites. Test case measures the errors and 
capability or efficiency of program. Since a long time test 
cases are generated manually or software tested manually 
due to which there occurs some errors in programs and it 
results into bad quality software and we cannot improve 
software quality. 
 
The process of generating and maintaining unit test case is 
very complicated, time-consuming, and costly and developer 
gets frustrated at time of testing process. Hence by automatic 
unit test case generator we can improve the efficiency of 
software with low cost and in short time. So to achieve this 
we are presenting approach for generating automatic unit 
test case using deep learning.  
 
Types of Testing: 
 
There are various types of testing in software development 
life cycle (SDLC) such as functional testing, non-functional 
testing and many more. Here we are focusing on some types 

of testing such as Unit Testing, White box testing, Black box 
testing etc. 
 

1.1 UNIT TESTING 
 
Unit Testing is sub part of functional testing [1]. It plays 
important role in software testing process. In unit testing the 
software is divided into smaller testable units to analyse the 
source code. It can be carried out for functions, procedures 
or methods in Object Oriented Programming (OOP) and 
procedural programming. 
 

1.2 WHITE BOX TESTING 
 
White box testing is type of testing which uses source code 
to create test cases. It focuses on internal working of 
software. 

 
2. RELATED WORK 
 
Common methods for code-based test case generation are 
random testing [2], search-based testing [3], and symbolic 
testing [4]. This paper [2] benchmarked random testing and 
search-based testing on the closed source project [2] and 
found that search-based testing had at most 56.40% 
effectiveness, while random testing achieved at most 38%. 
The following are existing tools that generate automated unit 
test cases: 

 
2.1 RANDOOP 
 
Randoop [5] is a self-unit test generator for java language. It 
is an automated unit test generator for any class of java in 
Junit format. It uses feedback directed random test 
generation for generating unit tests. This approach smartly 
produces sequence of methods for the class. Randoop 
performs the sequence it creates making use of the results of 
execution to produce assertions that capture the behaviour of 
the program. It then creates test cases from the code 
sequences and assertions. After test generation and test 
execution they result in highly effective automated test 
generation. 
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2.2 EVOSUITE 
 
It is a similar tool that generates test cases for java 
automatically. Evosuite [6] is a progression algorithm to 
produce Junit tests. It can be used via command line and also 
it has extension to integrate in software like Eclipse, Maven 
etc. To accomplish this Evosuite uses a hybrid approach to 
generate test cases. After test cases are generated Evosuite 
suggests possibilities by adding small sets of assertions to 
summarize current behavior. It is open source and freely 
available to modify. Evosuite is openly handed and supported 
by Google focused research test amplification. 
  

2.3 PONICODE 
 
It is Artificial Intelligence based unit test generator platform 
for JavaScript which focuses on modifying and visualizing the 
unit test cases [7]. Ponicode uses a machine learning 
algorithm which help to test each and every test cases 
including edge cases. It first accesses the JavaScript file it tries 
to check if it can be used to assisted with the Ponicode then it 
provides test case suggestion using Artificial Intelligence, 
apart from this Ponicode creates and writes the test file using 
correct jest syntax. It also provides an extension to VScode. It 
is an AI powered extension for automated test case 
generation for a given JavaScript code.  
 

3. PROPOSED SYSTEM 
 
Figure 1 provides an summary of the our approach. Starting 
dataset of open-source codebases mined from GitHub, we 
mine test cases and map them to the corresponding focal 
methods. Finally, we fine-tune a transformer model, which 
will be pre-trained on the English language as well as on the 
source code corpora, for the task of generating unit test 
cases. 
 

3.1 DATA COLLECTION 
 
The aim of this stage is to collect test cases and their focal 
methods (i.e., the methods those test cases are written for.) 
from a set of mined projects. The projects will be open 
source projects on GitHub with recent commits and good 
number of stars. We can parse each repository to obtain 

methods. We then identify each test class and its 
corresponding focal class. Lastly, for each test case, we will 
map the test case to the corresponding focal method 
obtaining a set of mapped test cases. 
 
For mapping the test classes to focal methods following 
techniques will be used: 
 
Path Matching: The best practice is to place the test cases in 
similarly named directory in the test folder. For example the 
test cases for the class src/main/java/Bar.java will be saved 
in src/test/java/FooTest.java. Taking advantage of this 
practice we can map test classes to the focal classes. 
 
Name Matching: The name of a test class is often written as 
the name of the focal class with a "Test" prefix or suffix. For 
example, if the name of class is Bar.java the test would be 
named as TestBar.java or BarTest.java. Using this pattern, we 
can map the test and focal classes. 
 
The class for which no test cases are found are discarded. 
 

3.2 PRETRAINING 
 
We will be using the BART transform model [8] as shown in 
figure 2, that uses encoder decoder for sequence to sequence 
translation to generate the test cases [9]. The pretraining 
will be done in 2 semi-supervised stages on English text and 
then on Code Pretraining. 

Figure 1: Overview of proposed system 
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Figure 2: Transformer model architecture [8] 

3.2.1 ENGLISH PRETRAINING 
 
The model will first be trained on a large corpus of English 
text data. The aim of this stage is to let the model learn the 
semantic and statistical properties of natural language. The 
BART is trained unsupervised by corrupting the text and 
reconstructing the original text. 
 

 3.2.2 CODE PRETRAINING 
 
The model will next be trained on the code data that was 
mined earlier from GitHub. The aim of this stage is to let the 
model learn the syntax and code properties. 
 

3.3 FINETUNING  
 
In this stage optimize the model on the task of creating unit 
test cases for a given method is done. Specially, we represent 
this task as a translation task, where the source is a focal 
method and the target is the corresponding test case 
originally written by a software developer. 
 

4. FUTURE SCOPE 
 
The model we have built is no way the most efficient and 
advanced work in this field. Therefore, there is still scope for 
improvement. In future work, with more study and research 
the performance of the model can be improved by including 
more data and novel loss functions. For now, due to 
limitations we have only developed the model for a single 
programming language, in future we can make it compatible 
with all testing framework and languages. 
 
 

5. CONCLUSION 
 
We present a deep learning based approach that aims at 
generating unit test cases by learning from real-world, 
developer-written test cases. Our approach relies on a deep 
learning model which will be pre trained both on English and 
program source code fine-tuned on the task of generating 
test cases given a method under test. 
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