
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 880

Automated Unit Test Cases Generation using Machine Learning

Prajwal Wable1, Mangesh Kumar2, Shubham Thorat3, Omkar Gaikwad4, Prof. S. S. Kolte5

1,2,3,4 Undergraduate Students, Dept. of Computer Engineering, AISSMS COE, Pune, Maharashtra, India
5Professor, Dept. of Computer Engineering, AISSMS COE, Pune, Maharashtra, India

---***--
Abstract - Software has become a necessary part of daily
lives. Millions of lines of codes are written and executed every
day all around the world. Development tools are key factors to
the success of the tech industry as the current time constraints
put a lot of pressure on developers to produce high-quality
software. Many of these tools developed are based on decades
of academic research which is mostly articulated around a
deductive-logic approach. Automated Unit Test Cases
generation is one of the fields that has been the focus of
extensive literature within the research community. The
existing approaches usually rely on test coverage criteria,
generating synthetic test cases. These test cases challenging to
read and understand for developers. In recent years there is a
paradigm shift towards data-driven statistics-based research.
In this paper, we propose a new approach that aims at
generating unit test cases by learning from developer written
test cases using machine learning. The training dataset will be
mined from open-source repositories hosted on GitHub. We
will use this dataset to train a machine learning model to
translate code snippets to the corresponding test cases.

Key Words: Automated Unit Test generation, Unit testing,
Machine-Learning, Attention and Transforms, Deep
Learning.

1. INTRODUCTION

Software testing is one of the important process in software
development life cycle process. Software testing helps in
development of good quality software. It is achieved by unit
test cases or test suites. Test case measures the errors and
capability or efficiency of program. Since a long time test
cases are generated manually or software tested manually
due to which there occurs some errors in programs and it
results into bad quality software and we cannot improve
software quality.

The process of generating and maintaining unit test case is
very complicated, time-consuming, and costly and developer
gets frustrated at time of testing process. Hence by automatic
unit test case generator we can improve the efficiency of
software with low cost and in short time. So to achieve this
we are presenting approach for generating automatic unit
test case using deep learning.

Types of Testing:

There are various types of testing in software development
life cycle (SDLC) such as functional testing, non-functional
testing and many more. Here we are focusing on some types

of testing such as Unit Testing, White box testing, Black box
testing etc.

1.1 UNIT TESTING

Unit Testing is sub part of functional testing [1]. It plays
important role in software testing process. In unit testing the
software is divided into smaller testable units to analyse the
source code. It can be carried out for functions, procedures
or methods in Object Oriented Programming (OOP) and
procedural programming.

1.2 WHITE BOX TESTING

White box testing is type of testing which uses source code
to create test cases. It focuses on internal working of
software.

2. RELATED WORK

Common methods for code-based test case generation are
random testing [2], search-based testing [3], and symbolic
testing [4]. This paper [2] benchmarked random testing and
search-based testing on the closed source project [2] and
found that search-based testing had at most 56.40%
effectiveness, while random testing achieved at most 38%.
The following are existing tools that generate automated unit
test cases:

2.1 RANDOOP

Randoop [5] is a self-unit test generator for java language. It
is an automated unit test generator for any class of java in
Junit format. It uses feedback directed random test
generation for generating unit tests. This approach smartly
produces sequence of methods for the class. Randoop
performs the sequence it creates making use of the results of
execution to produce assertions that capture the behaviour of
the program. It then creates test cases from the code
sequences and assertions. After test generation and test
execution they result in highly effective automated test
generation.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 881

2.2 EVOSUITE

It is a similar tool that generates test cases for java
automatically. Evosuite [6] is a progression algorithm to
produce Junit tests. It can be used via command line and also
it has extension to integrate in software like Eclipse, Maven
etc. To accomplish this Evosuite uses a hybrid approach to
generate test cases. After test cases are generated Evosuite
suggests possibilities by adding small sets of assertions to
summarize current behavior. It is open source and freely
available to modify. Evosuite is openly handed and supported
by Google focused research test amplification.

2.3 PONICODE

It is Artificial Intelligence based unit test generator platform
for JavaScript which focuses on modifying and visualizing the
unit test cases [7]. Ponicode uses a machine learning
algorithm which help to test each and every test cases
including edge cases. It first accesses the JavaScript file it tries
to check if it can be used to assisted with the Ponicode then it
provides test case suggestion using Artificial Intelligence,
apart from this Ponicode creates and writes the test file using
correct jest syntax. It also provides an extension to VScode. It
is an AI powered extension for automated test case
generation for a given JavaScript code.

3. PROPOSED SYSTEM

Figure 1 provides an summary of the our approach. Starting
dataset of open-source codebases mined from GitHub, we
mine test cases and map them to the corresponding focal
methods. Finally, we fine-tune a transformer model, which
will be pre-trained on the English language as well as on the
source code corpora, for the task of generating unit test
cases.

3.1 DATA COLLECTION

The aim of this stage is to collect test cases and their focal
methods (i.e., the methods those test cases are written for.)
from a set of mined projects. The projects will be open
source projects on GitHub with recent commits and good
number of stars. We can parse each repository to obtain

methods. We then identify each test class and its
corresponding focal class. Lastly, for each test case, we will
map the test case to the corresponding focal method
obtaining a set of mapped test cases.

For mapping the test classes to focal methods following
techniques will be used:

Path Matching: The best practice is to place the test cases in
similarly named directory in the test folder. For example the
test cases for the class src/main/java/Bar.java will be saved
in src/test/java/FooTest.java. Taking advantage of this
practice we can map test classes to the focal classes.

Name Matching: The name of a test class is often written as
the name of the focal class with a "Test" prefix or suffix. For
example, if the name of class is Bar.java the test would be
named as TestBar.java or BarTest.java. Using this pattern, we
can map the test and focal classes.

The class for which no test cases are found are discarded.

3.2 PRETRAINING

We will be using the BART transform model [8] as shown in
figure 2, that uses encoder decoder for sequence to sequence
translation to generate the test cases [9]. The pretraining
will be done in 2 semi-supervised stages on English text and
then on Code Pretraining.

Figure 1: Overview of proposed system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 882

Figure 2: Transformer model architecture [8]

3.2.1 ENGLISH PRETRAINING

The model will first be trained on a large corpus of English
text data. The aim of this stage is to let the model learn the
semantic and statistical properties of natural language. The
BART is trained unsupervised by corrupting the text and
reconstructing the original text.

 3.2.2 CODE PRETRAINING

The model will next be trained on the code data that was
mined earlier from GitHub. The aim of this stage is to let the
model learn the syntax and code properties.

3.3 FINETUNING

In this stage optimize the model on the task of creating unit
test cases for a given method is done. Specially, we represent
this task as a translation task, where the source is a focal
method and the target is the corresponding test case
originally written by a software developer.

4. FUTURE SCOPE

The model we have built is no way the most efficient and
advanced work in this field. Therefore, there is still scope for
improvement. In future work, with more study and research
the performance of the model can be improved by including
more data and novel loss functions. For now, due to
limitations we have only developed the model for a single
programming language, in future we can make it compatible
with all testing framework and languages.

5. CONCLUSION

We present a deep learning based approach that aims at
generating unit test cases by learning from real-world,
developer-written test cases. Our approach relies on a deep
learning model which will be pre trained both on English and
program source code fine-tuned on the task of generating
test cases given a method under test.

ACKNOWLEDGEMENT

We would like to acknowledge the partial support of our
project guide Prof. S. S. Kolte, serving as a Professor in the All
India Shri Shivaji Memorial Society’s College of Engineering,
Pune-01. She provided proper guidance time to time and her
suggestions stood noteworthy in making this paper complete

REFERENCES

[1] M. Cohn, Succeeding with agile: software development

using Scrum. Pearson Education, 2010.

[2] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea
Arcuri, and Janis Benefelds. An industrial evaluation of
unit test generation: Finding real faults in a financial
application. In Proceedings of the 39th International
Conference on Software Engineering: Software
Engineering in Practice Track, 2017.

[3] Gordon Fraser, Jose Miguel Rojas, Jose Campos, and
Andrea Arcuri. Evosuite at the sbst 2017 tool
competition. In Proceedings of the 10th International
Workshop on Search-Based Software Testing, 2017.

[4] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
volume 8, pages 209-224, 2008.

[5] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed
random testing for Java,” in Companion to the 22nd ACM
SIGPLAN conference on Object oriented programming
systems and applications companion - OOPSLA ’07, vol.
2. New York, New York, USA: ACM Press, 2007, p. 815.
[Online]. Available: http://portal.acm.org/citation.cfm?
doid=1297846.1297902

[6] G. Fraser and A. Arcuri, “Whole Test Suite Generation,”
IEEE Transactions on Software Engineering, vol. 39, no.
2, pp. 276–291, feb 2013. [Online]. Available:
http://ieeexplore.ieee.org/document/6152257/

[7] Hamza Sayah. Machine Learning on Source Code
[Online].Available:
https://www.ponicode.com/blog/machine-learning-on-
source-code.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online].
Available: http://arxiv.org/abs/1706.03762

[9] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart:
Denoising sequence-to-sequence pre-training for
natural language generation, translation, and
comprehension,” 2019.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 03 | Mar 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 883

BIOGRAPHIES

 PRAJWAL WABLE,

Student at AISSMS COE, Pune-01.
Savitribai Phule Pune University,
B.E. in Computer Science.

MANGESH KUMAR,
Student at AISSMS COE, Pune-01.
Savitribai Phule Pune University,
B.E. in Computer Science.

SHUBHAM THORAT,
Student at AISSMS COE, Pune-01.
Savitribai Phule Pune University,
B.E. in Computer Science.

OMKAR GAIKWAD,
Student at AISSMS COE, Pune-01.
Savitribai Phule Pune University,
B.E. in Computer Science.

PROF. S. S. KOLTE,
Professor, Dept. of Computer
Engineering,
AISSMSCOE, Pune-01.

