
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2219

Evaluation of Different Optimizers in Neural Networks with

Imbalanced Dataset

Santosh Raghavendraraju[1],Richard Martin.M[2], Keerthi Varman.G[3],Senbagavalli.M[4]

[1][2][3][4] [1][2][3]Students, Department of CSE, Alliance University

[4]Assoc. Professor, Department of Information Technology, Alliance University

---***---

Abstract -With an increasing number of embedded
sensor systems and data collection units set up in
production plants, machines, cars, etc., there are new
possibilities to store, analyse and monitor the data from
such systems. These development makes it possible to detect
anomalies and predict the failures that affect availability of
these systems and impact maintenance plans. Typical
industry scenario points towards have very less failures and
data points related to same being captured in systems
making it difficult to predict a rare event. This paper would
be focusing towards evaluating the different optimizers and
impact they have on accuracy while trying to predict a rare
event target in a time series-based data. We would be
evaluating different built-in optimizer classes in by tensor
flow for training neural networks.

Key Words: Failure Prediction, Neural Networks,
Component Failure, Python, Optimizers, Adadelta,
Adagrad, Adam, Adamax & Nadam

1.INTRODUCTION

Optimizers have been widely used in deep learning.
Although one of the most preferred algorithms has
been Adam recently, its comparison with other
optimization algorithms for large datasets with
imbalanced targets for binary classification when
training deep neural networks has not well evaluated
and documented. The evaluation requires manual
tuning of learning rate and validating the results for
every run. Problems in initial optimization
algorithms like SGD had given space for invention of
more advanced algorithms. Now a days, the
optimization algorithms used for deep learning adapt
their learning rates during training. Current paper
will focus towards evaluating Adam versus Adadelta,
Adagrad, Adamax and Nadam in regard to model
accuracy.

2. BACKGROUND AND RELATED WORK

In deep learning literature, working principles and
performance analysis of optimization algorithms are

widely studied. For example, theoretical guarantees
of convergence to criticality for RMSProp and Adam
are presented in the setting of optimizing a non-
convex objective 9. They design experiments to
empirically study the convergence and
generalization properties of RMSProp and Adam
against Nesterovs accelerated gradient method. In
another study, conjugate gradient, SGD and limited
memory BFGS algorithms are compared 5. A review
is presented on numerical optimization algorithms
in the context of machine learning applications 1.
Additionally, similar to this work, an overview of
gradient optimization algorithms is summarized 8. In
this study, most widely used optimization algorithms
are examined in the context of deep learning. On the
other side, new variants of adaptive methods still
have been proposed more recently. For example, new

variants of Adam and AMSGrad, called AdaBound and

AMSBound respectively, are proposed 6. They

employ dynamic bounds on learning rates to achieve

a gradual and smooth transition from adaptive

methods to SGD. Also, a new algorithm that adapts

the learning rate locally for each parameter

separately and also globally for all parameters

together is presented 3. Another new algorithm,

called Nostalgic Adam (NosAdam), which places

bigger weights on the past gradients than the recent

gradients when designing the adaptive learning rate

is introduced 4. In another study, two variants called

SC-Adagrad and SC-RMSProp are proposed 7. A new

adaptive:optimization algorithm called YOGI is

presented 10.A novel adaptive learning rate scheme,

called ESGD, based on the equilibration

preconditioned is developed 2. Also, a new algorithm

called Adafactor is presented 26. Instead of updating

parameters scaling by the inverse square roots of

exponential moving averages of squared past

gradients, Adafactor maintains only the per-rowand

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2220

per-column sums of the moving averages, and

estimates the per-parameter second moments based

on these sums

3. METHODOLOGY

Below picture depicts high level workflow around
the steps involved in developing and evaluating a
failure prediction solution with different optimizers.
Baseline model developed will be evaluated for
accuracy and number of true failure events capture
by changing the optimizer parameter.

Fig -1:

4.IMPLEMENTATION AND RESULTS

Step 1: Data Collection

Azure Preventive analytics open user data around
Predictive Maintenance has been used in the current
analysis. The available dataset details are as follows,

Machine conditions and usage:Captures operating

conditions of a machine e.g., data collected from

sensors at hourly level for 4 different sensor tags.

This is a telemetry time-series data. It consists of

voltage, rotation, pressure, and vibration

measurements collected from 100 machines in real

time averaged over every hour collected during the

year 2015.

Failure history: The failure history of a machine or
component within the machine. These are the
records of component replacements due to failures.
Each record has a date and time, machine ID, and
failed component type. Data for 100 machines (Two
machine models), failures by 4 components are
captured.

Maintenance history: The repair history of a machine,
e.g., error codes, previous maintenance activities or
component replacements. These are the scheduled and
unscheduled maintenance records which correspond
to both regular inspections of components as well as
failures. A record is generated if a component is
replaced during the scheduled inspection or replaced
due to a breakdown. The records that are created
due to breakdowns will be called failures which are
explained in the later sections. Maintenance data has
both 2014 and 2015 records

For the current study, we would be using only
Telemetric& Failure data to build a neural network-
based solution to predict failures.

Step 2: Data Import

Next step in process was to import the Telemetric
and Failure data into the python work environment
and create pandas data frame of it.

 Python (Pandas, Pandas SQL) using for
importing data & shaping the data to
required format

 Imported "PdM_telemetry" and
"PdM_failures" data files into python

 Formatted "datetime" column to required
format i.e. %Y-%m-%d %H:%M:%S
format

 Sorting both datasets based on
"machineID" and "date time" features

 Conversion of 'volt', 'rotate', 'pressure'
& 'vibration' features to numeric format

 Above processing carried out separately
on individual datasets before any
merging

 Merging of failures data to Telemetry
data

 Merging based on "date time" and
"machineID" condition"

 "failure" column captures the failure
component name- "comp1", "comp2,
"comp3" or "comp4"

 Data is merged in a way to create 4 new
indicator columns to base table (i.e.
telemetry) - i.e. indicators of whether the
related component failure happened or
not for the machine &date time (Value =1,
if there was a failure for machine on that
particular timestamp)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2221

Step 3: Exploratory Data Analysis

 Understand the distribution of individual
source features

 Distribution of failures by machine &
failure type

 Distribution of failures by Month-Year by
Machine for each failure type

 Outlier identification
 Identification of percentiles (P1, P5, P10,

P90, P95, P99)
 Finalization of lower and upper

percentiles by component for creating
Lower and Upper data thresholds

 Extreme outlier treatment- cap and floor
of values

Fig -2:

Fig -3:

Step 4: Target Mapping

Failure events mapping to telemetric data was
carried out based on machineID and datetime
variables. Since both failure and telemetric were

represented at hour scale on datetime, data could be
merged easily without loss of any failure data. This
paper currently will focus on component 1 type
failure and the count of failuresavailablefor analysis
is limited to 192. Less than 1% of the total population
i.e., telemetric data points.

Below table details the number of failures occurrence
every month as captured in the failure dataset.

Year

Month

Failure_cou
nt of

Failure_co
mp1

Failure_count
of

Failure_comp
2

Failure_count
of

Failure_comp
3

Failure_count
of

Failure_comp
4

2015-01 25 30 17 22
2015-02 19 11 7 13

2015-03 18 15 11 15
2015-04 15 28 11 15

2015-05 16 21 10 17

2015-06 15 18 12 13
2015-07 18 24 11 11

2015-08 15 21 12 16
2015-09 12 19 12 16

2015-10 9 27 8 15
2015-11 15 23 12 12

2015-12 15 22 8 14
2016-01 0 0 0 0

GRAND
TOTAL

192 259 131 179

Table -1:

Step 5: Feature Engineering

In view of limited sensor tags and the data being time
series in nature, we undertook steps to engineer new
features from the raw sensor readings to enrich the
data. All the features derived are based on the
statistical nature of the data and no domain
engineered features were derived during this
exercise. Below listed are details of some of the
features derived for each of the individual sensor tag.

 Following features to be derived (Phase
1) for all the 4 source features
('volt', 'rotate', 'pressure' & 'vibration')

o If feature value <= Lower
threshold then feature_LT

o If feature value >= Upper
threshold then feature_UT

o "Change over time Cm+1 =
(Xm+1 – Xm)/(tm+1 – tm)"

o "Rate of change over
time RTm= (Cm+1 –
Cm)/(tm+1 – tm)"

o "Growth or decay Gm+1 =
(Xm+1 – Xm)/Xm"

o "Rate of growth or
decay RGm= (Gm+1 –
Gm)/(tm+1 – tm)"

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2222

o Count of obs above
Threshold

o Count of obs Below
Threshold

o Moving average = Average of
(Xm-p to Xm)

o Moving standard deviation =
Standard deviation of (Xm-p
to Xm)

o Relative average = Moving
average / Global average

o Relativestandard deviation =
Moving standard deviation /
Global standard deviation

o Ratio: Change Over time to
SD

o Ratio: Rate of Change Over
time to SD

o Ratio: Growth or Decay Over
time to SD

o Ratio: Rate of Growth or
Decay Over time to SD

 Step 6: Data subsets creation

In view of limited sensor tags and the Target data
being very limited and rare in our scenario, we
decided to have at least 80% of the data for training
the baseline model and remaining 20% for testing
the model. Any data points falling under Jan’2016
was excluded from analysis as there were no targets
captured for that month.

Yea

r

Mo

nth

Failure

Count of

Target_

Comp1

Failure

Count of

Target_

Comp2

Failure

Count of

Target_

Comp3

Failure

Count of

Target_

Comp4

Trai

n/T

est

201

5-01

25 30 17 22 Trai

n

201

5-02

19 11 7 13 Trai

n

201

5-03

18 15 11 15 Trai

n

201

5-04

15 28 11 15 Trai

n

201

5-05

16 21 10 17 Trai

n

201

5-06

15 18 12 13 Trai

n

201

5-07

18 24 11 11 Trai

n

Table -1:

2015-

08

15 21 12 16 Train

2015-

09

12 19 12 16 Train

2015-

10

9 27 8 15 Test

2015-

11

15 23 12 12 Test

2015-

12

15 22 8 14 Test

2016-

01

0 0 0 0 Excluded

Grand

Total

192 259 131 179

Table -1:

Step 7: Train Model

Defined a function that creates a simple neural

network with a densely connected hidden layer, a

dropout layer to reduce over fitting, and an output

sigmoid layer that returns the probability of a event

being failure. We trained the model and validated

using different optimization algorithms by changing

the parameter value in optimizer within the model.

Compile class. We defined number of epochs to be

200 and batch size to its default value of 2048

records.

METRICS = [
 keras.metrics.TruePositives(name='tp'),
 keras.metrics.FalsePositives(name='fp'),
 keras.metrics.TrueNegatives(name='tn'),
 keras.metrics.FalseNegatives(name='fn'),
 keras.metrics.BinaryAccuracy(name='accuracy'),
 keras.metrics.Precision(name='precision'),
 keras.metrics.Recall(name='recall'),
 keras.metrics.AUC(name='auc'),
]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2223

def make_model(metrics=METRICS,
output_bias=None):
 if output_bias is not None:
 output_bias =
tf.keras.initializers.Constant(output_bias)
 model = keras.Sequential([
 keras.layers.Dense(
 16, activation='relu',
 input_shape=(train_features.shape[-1],)),
 keras.layers.Dropout(0.5),
 keras.layers.Dense(1, activation='sigmoid',
 bias_initializer=output_bias),
])

model. Compile(
 optimizer=keras.optimizers.Adam(lr=1e-3),
 loss=keras.losses.BinaryCrossentropy(),
 metrics=metrics)

 return model

5. RESULTS

Nadam, Adam and Adamax have good performance

in detecting the true positive, though all had

considerable false positive cases as well. Nadam

seems to outform Adam in terms of performance and

with reduced false positive cases while still

maintaining same level of true positive capture.

Study shows that Adam might be popular and been

used heavily, but there are other optimizers that

might fare well based on type of data and the model

we trying to build for our use case.

Adam:

Fig -4:

Fig -5:

Adadelta

Fig -6:

Fig -7:

Adagrad

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2224

Fig -8:

Fig -9:

Adamax

Fig -10:

Fig -11:

Nadam

Fig -12:

Fig -13:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2225

References:

1. L. Bottou, F.E. Curtis and J. Nocedal, Optimization

methods for large-scale machine learning, Siam

Review, 60(2) (2018) 223{311.

2. Y. Dauphin, H. De Vries, J. Chung and Y. Bengio,

RMSProp and equilibrated adaptive learning

rates for non-convex optimization, CoRR

abs/1502.04390, 2015.

3. H. Hayashi, J. Koushik and G. Neubig, Eve: A

gradient based optimization method with locally

and globally adaptive learning rates, arXiv

preprint arXiv:1611.01505, 2016.

4. H. Huang, C. Wang and B. Dong, Nostalgic Adam:

Weighing more of the past gradients when

designing the adaptive learning rate, arXiv

preprint arXiv:1805.07557, 2018.

5. Q.V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow

and A.Y. Ng, On optimization methods for deep

learning, in Proc. 28th International Conference

on Machine Learning, Bellevue, Washington, USA,

2011, pp. 265{272.

6. L. Luo, Y. Xiong, Y. Liu and X. Sun, Adaptive

gradient methods with dynamic bound of

learning rate, International Conference on

Learning Representations, New Orleans, 2019.

7. M.C. Mukkamala and M. Hein, Variants of
RMSProp and Adagrad with logarithmicregret
bounds, in Proc. 34th International Conference
on Machine Learning, Sydney,Australia, 70
(2017) 2545{2553.

8. S. Ruder, An overview of gradient descent

optimization algorithms, arXiv
preprintarXiv:1609.04747, 2016.

9. N. Shazeer and M. Stern, Adafactor: Adaptive
learning rates with sublinear memorycost, arXiv
preprint arXiv:1804.04235, 2018.

10. D. Soham, M. Anirbit and U. Enayat, Convergence
guarantees for RMSProp andAdam in non-convex
optimization and an empirical comparison to
Nesterov acceleration, arXiv preprint
rXiv:1807.06766, 2018.

