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Abstract - The global epidemic of COVID-19 has wreaked 
havoc on all aspects of our lives. A lot in particular, health care 
systems were highly expanded to their limits and beyond. 
Progress in The installation ingenuity has allowed the 
implementation of complex applications that may be met 
clinical accuracy requirements. In this study, in-depth and pre-
trained study models were based on convolutional neural 
networks used to detect pneumonia caused by COVID-19 
respiratory problems. Chest X-ray images from 370 patients 
confirmed COVID-19 patients were collected locally. In 
addition, data from three public data sets was used. 
Performance tested on four ways. First, the public database 
was used for training and testing. Second, location 
information and community resources were mobilized and 
used to train and test models. Third, the public database was 
used for model training and local data was used for testing 
only. This method adds more loyalty to acquisition models also 
tests their ability to create new information without over-
discovery model in certain samples. Fourth, aggregated data 
was used for training and local databases was used for testing. 
The results show a high acquisition accuracy of 98.7% with 
aggregated data, and many models handle new details with an 
insignificant decrease in clarity.  

Key Words: COVID-19; chest X-ray; deep learning; 
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1. INTRODUCTION 

Coronavirus 2019 (COVID-19), caused by the SARS-CoV-2 
virus, has severely damaged humanity, especially health 
systems. Recently, for example, a wave of infections in India 
has caused many families to seek home care due to a 
shortage of critically ill units. Millions worldwide have been 
affected by the epidemic, and many more have suffered from 
chronic and short-term health problems[1]. The most 
common symptoms of the virus are fever, dry cough, fatigue, 
aches and pains, loss of taste / smell, and respiratory 
problems. Other very rare symptoms may occur (e.g., 
diarrhea, conjunctivitis)[2]. Infection is officially confirmed 
using a real-time reverse transcription polymerase chain 
reaction (RT-PCR)[3]. However, chest radiographs using 
chest chest X-ray (CXRs) and computerized tomography (CT) 
play an important role in confirming infection and assessing 
the extent of damage to the lungs. CXR and CT scans are 
considered to be the main evidence for the clinical diagnosis 
of COVID-19[4]. 

Chest X-ray images are one of the most common 
diagnostic techniques in the clinic. However, reaching the 
right conclusion requires special knowledge and 

experience. Pressure on medical personnel worldwide 
caused by the COVID-19 epidemic, in addition to existing 
an insufficient number of radiologists for individual 
individuals worldwide[5], requires new and accessible 
solutions. Advances in artificial intelligence have led to 
the use of sophisticated applications that can meet the 
requirements of clinical accuracy and capture large 
amounts of data. Installing computer-assisted diagnostic 
tools in the medical field has the potential to reduce 
errors, improve workload conditions, increase reliability, 
and instead improve workflow and reduce diagnostic 
errors by providing radiologists with diagnostic 
guidelines. 

The war against COVID-19 has taken several forms and 
stages. Computerized solutions provide alternative means of 
communication in many aspects of dealing with the 
epidemic[6.] Other examples include robots for physical 
sampling solutions, monitoring key signals ,and disinfection. 
In addition, image recognition and AI are actively used to 
identify verified cases that do not follow incarceration 
agreements. In this work, we propose an automatic artificial 
intelligence (AI) screening program that can detect COVID-
19-related pneumonia in chest X-ray images with high 
accuracy. One convolutional neural networks model and two 
previously trained models (namely, MobileNets[7] and 
VGG16[8]) were included. In addition, CXR images of COVID-
19 certified subjects were collected at an area major hospital 
and evaluated by board-approved specialists in time. 6 
months. These images have been used to enrich a limited 
number of public data sets and to form a large group of 
training / testing of images compared to related books. 
Importantly, the reported results came from testing the 
models with this set of external images completely in 
addition to testing the models using an aggregate set. This 
approach has exposed any model overlap in a particular set 
of CXR images, especially since some data sets contain 
multiple images per subject. 

2. Background and Related Work 

COVID-19 patients with clinical symptoms may show 
abnormal CXR[9]. Key findings in a recent study suggest that 
these lung images show reticular-nodular abnormalities and 
connective tissue, and basal, peripheral, and dual 
domination[10]. For example, Figure 1 shows the CXR of 
alittle case of lung tissue involvement with appropriate 
infrahilar reticular-nodular opacity. In addition, Figure 2 
shows the CXR of the moderate to severe case of lung tissue 
involvement. This is CXR shows the fusion of the lungs in the 
lower right and separates the two reticular – nodular 
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airspace opacities, most prominent in the surrounding areas 
of low-lying areas. Similarly, Figure 3 shows the CXR of the 
severe case of lung tissue involvement. This is due to the 
airspace variations on both sides of the reticular – nodular 
opacities that are most noticeable in the lateral parts of the 
lower extremities, and the diminution of the lower glass in 
both lungs that are prominent in the central and lower 
extremities. On the other hand, Figure 4 shows an 
unparalleled CXR with clear lungs and acute costophrenic 
angles (i.e., normal). 

 

Figure 1. CXR of COVID-19 subject showing mild lung 
tissue involvement. 

 

Figure 2. CXR of COVID-19 subject showing moderate to 
severe lung tissue involvement. 

 

 

Figure 3. CXR of COVID-19 subject showing severe lung 
tissue involvement 

 

Figure 4. Normal CXR. 

AI, with its basic machine learning (ML), has taken a major 
step in application in many fields. For example, Vetology 
AI[11] is a paid AI service that provides AI-based radiograph 
reports. Similarly, widespread research and the use of AI in 
medicine have been around for years[12,13]. AI-based web 
or automated diagnostic mobile applications can greatly 
assist physicians in reducing errors, providing long and 
cheap diagnoses in poor and poor facilities, and improving 
speed and quality. of health care[14]. In the context of 
COVID-19 radiographs, ML methods can detect CXR images 
to detect the above-mentioned symptoms of COVID-19 
infection and adverse effects on patients' lungs. This is 
especially important when considering the fact that health 
services expanded to their limits and sometimes reached the 
brink of collapse from the epidemic. 

Deep learning AI enables the development of end-to-end 
models that learn and acquire classification patterns and 
features using multiple layers of processing, providing 
unnecessary to exclude features obviously. The sudden 
spread of the COVID-19 epidemic has necessitated the 
development of new approaches to address the growing 
health care needs of these outbreaks. To date, many recent 
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models have been proposed for the discovery of COVID19. 
These methods rely heavily on CXR and CT imaging as 
inclusion in the diagnostic model[15,16]. Hemdan et al.[17] 
proposed a comprehensive study framework for COVIDX-Net 
to classify CXR images as positive or negative for COVID-19. 
Although they used seven convolutional neural network 
models, the best results were 89% and 91% of F1 effects of 
normal and positive COVID-19, respectively. However, their 
results were based on 50 CXR images only, which is a very 
small database for building reliable depth learning program. 

Several existing out-of-the-box in-depth convolutional 
neural network algorithms are available in the 
literature[18], and are widely used in COVID-19 diagnostic 
literature without modification[15]. They provide proven 
image detection and diagnostic skills in many fields and 
research problems. Some of the foremost widely used 
models are: (1) GoogleNet, VGG-16, VGG-19, AlexNet, and 
LetNet, which are CNNs supported location exploitation. (2) 
MobileNet, ResNet, InceptionV3, and Inception-V4, which are 
deep-based CNNs. (3) Other models contain DenseNet, 
Xception, SqueezeNet, etc. These structures can be used in 
advance training for in-depth transfer learning (e.g., Sethy et 
al.[19]), Or customized (e.g., CoroNet[20]). 

Rajaraman et al.[21] Extensively cut-out reading ensembles 
were used to differentiate CXRs from standard, COVID-19, or 
bacterial pneumonia with 99.01% accuracy. Several models 
were tested and the best results were combined using a 
variety of blending techniques to improve the accuracy of 
the sections. However, such methods are particularly 
suitable for small numbers of COVID-19 images as the 
statistical value of most models is high, and there is no 
guarantee that they will maintain their accuracy with large 
databases[22]. Some of the functions of the division into 
three categories using in-depth study were and proposed in 
this context. Studies by Ucar et al.[23] , Rahimzade and 
Attar[24], Narin et al.[25] , and Kobahi et al.[26] classify 
cases such as COVID-19, common, or pneumonia. Some 
switch to pneumonia into a category that is not generic 
COVID-19[27,28], or acute acute respiratory syndrome 
(SARS). Gradually, the study distinguishes between viral and 
bacterial pneumonia in four stages. A significant number of 
studies have made two divisions into COVID-19 or non-
COVID-19 classes[30]. Although these methods have 
achieved high accuracy (i.e., over 89%), the number of 
COVID-19 images from the database is small. For example, 
Ucar et al.[23] used only 45 COVID-19 images. In addition, 
subsequent testing of models used a subset of the same 
database, which could provide false enhanced results, 
especially since the same subject may have multiple CXR 
images in the database. 

3. Material and Methods 

3.1. Subjects 

Selected images were obtained from chest X-rays recorded 
on the site of COVID-19 patients in addition to publicly 
available data[31]. The combination of the two databases 

adds great reliability to advanced diagnostic models. This is 
because the training / certification is done on one set, and 
the tests are done on a different database. In addition, it has 
increased the size of the database, which is a problem with 
many related books. 

The first group of photographs were found at King Abdullah 
University Hospital, Jordan University of Science and 
Technology, Irbid, Jordan. The study was commissioned by 
the institutional review board (IRB 91/136/2020) at King 
Abdullah University Hospital (KAUH). Informed written 
consent was sought and obtained from all participants (or 
their parents in case they were under age) prior to any 
clinical trials. The database included 368 subjects (215 
males, 153 females) aged ± SD of 63.15 ± 14.8. The minimum 
academic age was 31 months and the maximum age was 96. 
All subjects had at least one RT-PCR test and required 
hospitalization as determined by experts at KAUH. Staying in 
the hospital ranged from 5 days to 6 weeks with some 
subjects passing away (exact number not available). CXR 
images were taken after at least 3 days in the hospital to 
confirm that there was something wrong with the lungs, 
which was present confirmed by participating professionals. 
CXR images were updated using the MicroDicom 
viewerversion3.8.1(seehttps://www.microdicom.com/, 
accessed: 28 May 2021), and shipped as high-resolution 
images (i.e., pixels 1850 × 1300). 

The second group of images is publicly available[31], and 
was produced by a combination of three different databases: 
(1) COVID-19 chest X-ray dataset[32]. (2) Data set for the 
Radiological Society of North America (RSNA)[33]. (3) U.S. X-
ray set National Library of Medicine (USNLM) Montgomery 
County X-ray[34]. At the time of the experiment, the data set 
contained 2295 CXR images (1583 standard and 712 COVID-
19), which were used for this task. However, the data set is 
updated continuously[35]. 

3.2. Deep Learning Models 

Deep learning is a current practice and most used AI 
methods used for classification problems. It has been widely 
used and successfully in a variety of applications, especially 
in the medical field. The next few sections describe the 
models used in this work. 

1. 2D consecutive CNN models are one class in in-
depth textbooks. They are a special class of neural 
networks that are found to be very useful in 
analyzing multidimensional data (e.g., images) . 
However, CNN preserves memory related to multi-
layer ideas by sharing parameters and using fewer 
connections. Input images are converted into a 
matrix that will be processed by various CNN 
features. The model contains a few alternating 
layers of flexibility and integration (see Table 1), as 
follows: 
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Convolutional layer 
The convolution layer determines the features of 
the various patterns in the input. It contains a set of 
dot products (i.e., convolutions) used in the input 
matrix. This step creates an image processing kernel 
that contains a number of filters, which produce a 
feature map (i.e., motifs). Input is divided into small 
windows called reception fields, which are 
integrated with the kernel using a specific set of 
weights. In this work, a 2D layer of conviction (i.e., 
using the CONV2D phase) is used). 
 
Pooling layer 
This down sample layer reduces the size of the 
output volume area reduce the number of feature 
maps and network parameters. In addition, 
integration helps to improve the overall 
performance of the model by reducing overlap[36]. 
I the output in this step is a combination of fixed 
elements in translation and distortion shifts[37]. 
 
Dropout 
Overuse is a common problem in neural networks. 
Therefore, dropout is used as a 
a strategy to introduce familiarity within the 
network, which ultimately improves normal 
performance. It works randomly by ignoring other 
hidden and visible units. This has the effect of 
training the network to handle many independent 
internal presentations. 
 
Fully connected layer 
This layer accepts the feature map as an insert and 
removes indirect modified output with the 
activation function. This is a global function that 
works on elements from all categories to produce 
an indirect set of distinctive features. The modified 
line unit (ReLU) was used in this step as it helps to 
overcome the problem of perishable gradient[38]. 

Table 1. Summary of the CNN models used in this work. 

Summary of the CNN models used in this work. 

Layer Output Shape No. of 
Parameters 

CONV2D-1 (None, 150, 150, 
32) 

2432 

MaxPooling2D-1 (None, 75, 75, 32) 0 
Dropout-1 (None, 75, 75, 32) 0 
Conv2D-2 (None, 75, 75, 64) 51,264 
MaxPooling2D-2 (None, 37, 37, 64) 0 
Dropout-2 (None, 37, 37, 64) 0 
Flatten (None, 87,616) 0 
Dense-1 (None, 256) 22,429,952 
Dropout-3 (None, 256) 0 
Dense-2 (None, 1) 257 
 
 
 

2. Pre-trained models 
MobileNets 
The MobileNets model is a CNN-based software 
platform, selected for this purpose based on the 
mobile application of the future diagnosis. It uses 
highly differentiated convolutions, which greatly 
reduces the number of parameters. MobileNets has 
been provided with open source by Google to 
enable the development of low power, small 
applications, and minimal mobile applications. 
 
VGG-16 
VGG-16 represents many of the existing models in 
the literature. It has undergone various 
improvements to improve its efficiency and use of 
resources (e.g., VGG-19). The VGG model is a 19-
layer CNN site exploitation, 3 × 3 filters 
(computerized), 1 × 1 flexibility between layers of 
convolution (regular), and high consolidation after 
the convolution layer. The model is known for its 
simplicity 

3.3 Model Implementation 

Models are used and tested using the TensorFlow Keras[39] 
(API) application TensorFlow2[40]. Tested on Dell Precision 
5820 Tower  with Intel Xeon W-2155, 64GB RAM  and 16GB 
Nvidia Quadro RTX5000 GPU. 

4.Results and Discussion 
Four different methods were used to test the three in-depth 
study models. First, only the public database was used to 
train and evaluate the models. Second, integrated data was 
used to evaluate and train models (i.e., sets are grouped 
together and treated as one without any differences). Third, 
the public database was used for model training and the 
local data collected was used for testing. This approach 
demonstrates competence model to integrate new data and 
avoid overcrowding in certain images / subjects. Fourth, 
aggregated data (i.e., aggregated) was used for training and a 
set of local data for testing. Table 2 show the number of 
training and assessment courses used for each method. Note 
that the local database did not include standard CXR images 
as those are available in bulk. The matrices of confusion due 
to testing are analyzed to produce a few common 
performance measures. These include accuracy, precision, 
sensitivity, F1 effect, and accuracy as defined in Standards 
(1) - (5) 

Table 2. The number of training and testing subjects used 
for each of the evaluation approaches. 

The number of training and testing subjects used for 
each of the evaluation approaches. 
Approach Training Testing 

COVID-19 Normal COVID-19 Normal 
Public 
dataset 

545 1266 167 317 

Fused 
dataset 

842 1266 238 317 
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Public 
dataset 
for 
training 
and local 
dataset 
for 
testing 

545 1266 368 317 

Fused 
dataset 
for 
training 
and local 
dataset 
for 
testing 

842 1266 368 317 

 

 
where tp: true positive, stands for pre-arranged studies 
(positive) class. 
fn: false negative, represents subjects that are not well 
classified in another category (negative). 
fp: false positive, representing subjects that are not well 
classified in the pre-defined (good) category. 
tn: Real negative, represents well-organized lessons in 
another (negative) category. 
 
Figure 5 shows the loss of training and validation of the two 
model training methods. The CND 2D model needed more 
time to achieve the correct accuracy development, but the 
training was smooth and with minimal oscillation. In 
addition, the other two models required very few sessions 
(e.g., VGG-16 required one period and the combined data, 
hence the plan is not available). Figure 6 shows the accuracy 
of training and certification. Statistics often show that the 
models are able to fine-tune the training data and improve 
with knowledge. It is clear that the MobileNets and VGG-16 
models achieve higher and higher stage accuracy. The test 
database (i.e., COVID-19 CXR images collected locally) is 
different from the training database 
 
 

 

 

 

 

 

 

 

 

(a) CNN trained using the public dataset. 

 

 

 

 

 

 

 

(b) CNN trained using the fused dataset. 

 

 

 

 

 

 

 

(c) MobileNets trained using the public dataset 

 

 

 

 

 

 
 
 

(d) MobileNets trained using the fused dataset. 
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(e) VGG-16 trained using the public dataset. 

Figure 5 

Figure 5. Training and loss of validation of three community-
trained facilities with integrated databases. Note that VGG-
16 integrated datasets expire after only one period, so there 
is no corresponding value. Models are able to fine-tune 
training data and improve knowledge (as evidenced by 
validation curves). 

 

 

 

 

 

 

 

 

(a) CNN trained using the public dataset. 

 

 

 

 

 

 

 

 

 

(b) CNN trained using the fused dataset. 

 

 

 

 

 

 

 

 

(c) MobileNets trained using the public dataset. 

 

 

 

 

 

 

 

 

(d) MobileNets trained using the fused dataset. 

 

(e) VGG-16 trained using the public dataset. 

Figure 6. 

Figure 6. Training and verification of the accuracy of three 
community-trained facilities and integrated data sets. Note 
that VGG-16 integrated datasets expire after only one period, 
so there is no corresponding value. Models are able to fine-
tune training data and improve knowledge (as evidenced by 
validation curves). 
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4.1. 2D Sequential CNN 
Tables 3 and 4 show the metrics for performance analysis 
and parallel confusing matrices of CNN 2D sequential 2D 
model. Architecture achieved the best 96.1% accuracy in all 
training methods and testing methods. However, the 
accuracy decreases significantly to 79% when tests are 
performed using a site (i.e., COVID-19 CXR images collected 
locally) that are different from training (i.e., set of public 
data). This indicates a model failure to integrate new data, 
and that there may be subtle or obscure differences between 
images from two data sets. This is further confirmed by the 
fact that standard images (see Table 4c), taken from public 
databases, are generally classified accordingly. The source of 
the errors is derived from the false negative classification 
(i.e., type II errors). However, the accuracy has improved to 
88%, when a different portion of the test database was 
included in the training. However, most errors were type II 
(see Table 4d). This is a problem of variability in the 
performance of the CNN custom model, often caused by 
unsupported data samples. However, as other models are 
trained with the same data, this reason may be reduced. 
MobileNets and VGG-16 models are employed using transfer 
learning, which naturally reduces overload. In addition, 
these models are larger and deeper than the custom CNN, 
which due to the parameters of the parameter can lead to 
normal operation. 

Table 3. Performance evaluation metrics for the 
customized CNN model. Acc.: Accuracy, Sens.: Sensitivity, 

Spec.: Specificity, Prec.: Precision. 

Performance evaluation metrics for the customized 
CNN model.  

Dataset Acc. Sens. Spec. F1-
Score 

Prec. 

Public 
dataset 

96.1% 92.8% 97.8% 94.2% 95.7% 

Fused 
dataset 

93.7% 85.7% 99.7% 92.1% 99.5% 

Public 
dataset 
for 
training 
and 
local 
dataset 
for 
testing 

79% 62.8% 97.8% 76.2% 97.1% 

Fused 
dataset 
for 
training 
and 
local 
dataset 
for 
testing 

88% 80.4% 99.7% 89% 99.7% 

 
 

Table 4. The confusion matrices resulting from the 
customized CNN model. Positive refers to confirmed 

COVID-19 case 

a) Public Dataset 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 155  12 

Negative  7 310 
(b) Fused Public and Local Datasets 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 204 34 

Negative 1 316 
(c) Public Dataset for Training and Local Dataset for 
Testing 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 231 137 

Negative 7 310 
(d) Fused Dataset for Training and Local Dataset for 
Testing 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 296 72 

Negative 1 316 
 
4.2. MobileNets 
Tables 5 and 6 show the metrics for performance 
measurement and compatible confusion matrics for 
MobileNets model. It found accuracy rates between 97.1% 
and 98.7%, indicating stability in the face of new data, and 
the ability to integrate. Errors, though few, were created to 
classify COVID-19 CXR images as normal. However, errors of 
type I increased slightly (Table 6c). 

Table 5. Performance evaluation metrics for the 
customized MobileNets model. Acc.: Accuracy, Sens.: 

Sensitivity, Spec.: Specificity, Prec.: Precision. 

Performance evaluation metrics for the customized 
MobileNets model. 
Dataset Acc. Sens. Spec. F1-

Score 
Prec. 

Public 
dataset 

98.3% 98.2% 98.4% 97.6% 97% 

Fused 
dataset 

97.1% 92.8% 99.4% 95.7% 98.7% 

Public 
dataset 
for 
training 
and 
local 
dataset 
for 
testing 

98% 97.6% 98.4% 98.1% 98.6% 

Fused 98.7% 98.1% 99.4% 98.8% 99.4% 
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dataset 
for 
training 
and 
local 
dataset 
for 
testing 
 
 

Table 6. The confusion matrices resulting from the 
customized MobileNets model. Positive refers to 

confirmed COVID-19 case. 

a) Public Dataset 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 164 3 

Negative 5 312 
(b) Fused Public and Local Datasets 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 155 12 

Negative 2 315 
(c) Public Dataset for Training and Local Dataset for 
Testing 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 359 9 

Negative 5 312 
(d) Fused Dataset for Training and Local Dataset for 
Testing 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 361 7 

Negative 2 315 
 
4.3. VGG-16 
Tables 7 and 8 show the metrics for performance 
measurement and compatible confusion matrics for VGG-16 
model. The model obtained the best accuracy of all models 
(i.e., 99%) where the combined database is used for training 
and the local database is used for testing, which 
demonstrates its ability to capture different properties in 
different sets. However, it fell behind MobileNets slightly 
when the training database (i.e., the public database) 
differed from the test database. In addition, the model 
obtained very high accuracy (98.7%) with your combined 
database for both training and testing. However, MobileNets 
has gained a bit of a higher accuracy when it is trained and 
tested by the public database alone. Such a small difference 
in performance when the database is supplemented with 
data from other sources may require further investigation. 
Confused matriculants indicate that, in VGG-16, most errors 
are type I in all test methods, as opposed to errors in CNN or 
MobileNets (i.e., type II). Improving VGG-16 management of 
standard images should reduce the level of errors 
significantly. 

Table 7. Performance evaluation metrics for the 
customized VGG-16 model. Acc.: Accuracy, Sens.: 

Sensitivity, Spec.: Specificity, Prec.: Precision. 

Performance evaluation metrics for the customized 
VGG-16 model. 
Dataset Acc. Sens. Spec. F1-

Score 
Prec. 

Public 
dataset 

97.1% 98.2% 96.5% 95.9% 93.7% 

Fused 
dataset 

98.7% 99.2% 98.4% 98.5% 97.9% 

Public 
dataset 
for 
training 
and local 
dataset 
for 
testing 

97.2% 97.8% 96.5% 97.4% 97% 

Fused 
dataset 
for 
training 
and local 
dataset 
for 
testing 

99% 99.5% 98.4% 99.1% 98.7% 

 
Table 8. The confusion matrices resulting from the 

customized VGG-16 model. Positive refers to confirmed 
COVID-19 case. 

a) Public Dataset 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 164 3 

Negative 11 306 
(b) Fused Public and Local Datasets 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 236 2 

Negative 5 312 
(c) Public Dataset for Training and Local Dataset for 
Testing 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 360 8 

Negative 11 306 
(d) Fused Dataset for Training and Local Dataset for 
Testing 
 Predicted diagnosis 
  Positive Negative 
Actual Positive 366 2 

Negative 5 312 
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4.4. Comparison to Related Work 

Table 9 shows the performance comparisons of deep 
learning lessons in binary classification using CXR images. 
Some studies did not report accuracy as their data sets were 
unequal. Although many related studies have reported high 
levels of accuracy, a common theme among them is the lack 
of a significant number of COVID-19 cases of this type of 
separation model. For example, Narin-et-al. state that an 
excessive number of standard images caused high accuracy 
in all those models. This is vanity considering the fact that 
there is very little difference between the normal lung 
images in different subjects. Similarly, Hemdan et al.  
identified a limited number of COVID-19 X-ray images as a 
major problem in their work. In addition, the database that 
we have included in this project contains only one image per 
subject, unlike other data sets that include more images than 
topics. In addition, the type of cases included in the database 
was specifically considered, because the effect of COVID-19 
on the lungs is not really pronounced. appear immediately 
with symptoms and may take a few days. In deep learning 
textbooks for general medical diagnosis and COVID-19 the 
division is especially large and growing. However, large data 
sets are needed to have standard and reliable models. We 
believe that the development of more accessible and 
accessible mobile apps that capture and store data faster will 
allow for better data collection and in-depth learning models 
developed 

Table 9. Performance comparison of deep learning 
studies in binary COVID-19 diagnosis (i.e., positive or 

negative) using CXR images. Some studies did not report 
the accuracy as their datasets were largely imbalanced. All 

websites were last accessed on 28 May 2021. 

Study Method Accuracy 
Singh et al. [42] MADE-based CNN 94.7% 
Sahinbas et al. [43] VGG16, VGG19, 

ResNet, DenseNet, 
InceptionV3 

80% 

Medhi et al. [44] Deep CNN 93% 
Narin et al. [25] InceptionV3, 

ResNet50, 
ResNet101 

96.1% 

Sethy et al. [19] most available 
models (e.g., 
DenseNet, ResNet) 

95.3% 

Minaee et al. [30] ResNet18, 
ResNet50, 
SqueezeNet, 
DenseNet-121 

– 

Maguolo et al.[45] AlexNet – 
Hemdan et al. [17] VGG19, ResNet, 

DenseNet, 
Inception, 
Xception 

90% 

This work 2D CNN, VGG16, 
MobileNets 

up to 99% 

 

5. Conclusions 

Global disasters bring people together and inspire new 
things. The current epidemic and the devastating effects of 
globalization should present an opportunity to advance 
technological solutions that help in everyday life. In this 
study, we collected X-ray images of patients from 
hospitalized COVID-19. This data will enrich the existing 
public data sets and enable additional configurations for the 
systems they use. In addition, intelligent models for in-depth 
learning activities are designed, trained, and evaluated using 
locally collected databases and public data sets, both 
separately and integrated. The results of high accuracy 
provide an opportunity to improve portable and simple 
applications that improve diagnostic accuracy, reduce the 
burden on struggling health workers, and provide better 
access to health care in poorly maintained / poor facilities. 
Future work will focus on this approach as well as the 
development and testing of models divided into multiple 
categories. 
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