

Comparison of PSIM & MATLAB-Simulink Usage in Outcomebased Teaching- Learning of Power Electronics based Courses

Prof. Rachana J. Patel¹, Prof. J.C.Patel², Fedrik Macwan³

¹Assistant Professor, Electrical Engineering Department, L. D. College of Engineering, Gujarat Technical University, Ahmedabad, Gujarat, India

²Lecturer, Electrical Engineering Department, Government Polytechnic, Gujarat Technical University, Ahmedabad, Gujarat, India

³Assistant Professor, Electrical Engineering Department, L. D. College of Engineering, Gujarat Technical University, Ahmedabad, Gujarat, India

_____***_____

Abstract - In response to the current COVID situation, educators have been instrumental in finding new ways to ensure learning continues for students. Especially Virtual /online education in Engineering might be relatively a new concept in India, but we are experiencing a new trend of the blended learning model gaining popularity. Online education is not just about taking a lesson through a video conferencing tool; it involves more than that. This helps learning to continue beyond the four walls of the classroom and has opened up possibilities of rethinking the way we are doing teaching & learning. The use of engineering educational and research simulation tools like PSIM, MATLAB can begin to transform the classroom.

This paper presents a comparison analysis between two engineering software platforms, MATLAB/Simulink & PSIM, which are used as major educational tools in teaching of power electronics, electrical drive courses and power quality and FACTs etc,

Key Words: simulation, PSIM, MATLAB, simulink

1. INTRODUCTION

Engineering education is an important component of undergraduate courses. It deals with development of practical ability, knowledge ability, analytic ability and research ability of students. Engineering education also provide ability to identify and solve critical engineering problem related to society, industries etc... For country like India, engineering education play vital role for economic growth and industries development.

National board of accreditation (NBA) is interested for quality based and outcome based engineering education. Many educators have already started to use effective education tools for outcome based teaching learning. All the engineering courses are important equally but some course of electrical engineering play vital role in developing some valuable skill

in students useful for industrial growth and hence country development too. Some of the subject are Facts devices.

power quality, renewable power generation, electrical drive, power electronics, etc..

In today's online mode of education, electrical engineering educators are using several software packages like PSIM, MATLAB, ETAP, multisim, Pspice etc... Use of these softwares in such courses resulted in better teaching outcomes and increased student's engineering ability even in a time of online education.

2. STUDENT LEARNING WITH SIMULATION STUDY.

Challenges: - Now a day, it is strictly needed to move from teacher centered learning method to student centered learning method by including students in participating class Activity, designing and finishing course projects in groups or individual for outcome base education.

To achieve this, educator have started to take advantage of software tool suitable for Electrical or power electronic based subject.

This paper describes modeling of some power electronics circuits by using MATLAB/Simulink and PSIM with respect to output quantities, switch Techniques and special function block for the following circuits:

• Harmonic Analysis of 3 phase nonlinear load along with linear load on same point of coupling;

• Behavioral study of TCR type SVC under different firing angle;

• V/F control of 3 ph induction motor;

International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 08 Issue: 10 | Oct 2021

www.irjet.net

3. MODELLING AND SIMULATION

3.1 Harmonic Analysis of 3 phase nonlinear load along with linear load on same point of coupling

The circuit for both simulation environment are given below. Where on a same point of coupling linear and nonlinear load are connected with 3 ph AC source of 400 V, 50 Hz. Now a days due to fast growth in electronic devices technology, non linear load increased at considerable level. Due to their involvement in power quality issues, harmonic analysis is useful.

Figure 1. PSIM circuit for harmonic study

Figure 2. MATLAB-Simulink model for harmonic study

Table - 1: Comparison Analysis based on Harmonic
Simulation

Parameter	PSIM	Simulink	
Model Building	Simple Slight		
	complicated		
Graph /scope	Meters itself	Separate scope	
	use as scope or	is required to	
	graph	connect.	
simulation run	Quick run is	Take more	
time for 10 cycle	possible	time compare	
		to PSIM	
Source current	18.8 %	12.64% using	
THD	through inbuilt	FFT analysis	
	THD block	tool	
Source voltage	Very less	10.42 %	
THD			

FFT Analysis	Easy	but	not	Not	easy	but
	too ac	curat	e	Accu	rate	due
				to al	ll prac	tical
				para	meter	
				cons	iderati	ion

3.2 Behavioral study of TCR type SVC under different firing angle.

The circuit for this title is shown below for both simulation environments. Inductance of 0.01 H is connected with 230 V (Peak) through back to back connection of Thyristors switch. TCR arrangement help to compensate reactive power at the time of light load by consuming sufficient reactive power concern with load condition. This can be done smoothly with help of Firing angle control of Thyristors.

Figure 3. PSIM circuit for TCR type SVC simulation

Figure 4. MATLAB-Simulink model for TCR types SVC simulation

Table - 2: Comparison	Analysis based	on TCR Simulation
-----------------------	----------------	-------------------

Parameter	PSIM	Simulink
Model Building	Easy	Slight
		complicated
simulation run	Fast	Comparatively
time for 10 cycle		slow

International Research Journal of Engineering and Technology (IRJET)

T Volume: 08 Issue: 10 | Oct 2021

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Gate	pulse	Very eas	y as	Not too e	asy as
setting		only swit	ching	other p	recise
		point	is	details	
		required	to	required	to
		assign		assign.	
THD	for	11% in	line	13%in	line
alpha=150)	current		current	
Other featu	ure	Pulse		Pulse	
		generator		generator	and
		block is		repeating	
		available		signal	block
				both	are
				available.	

3.3 V/F control for 3 ph induction motor.

The circuit for both simulation environment are given below. Where on a same point of coupling linear and nonlinear load are connected with 3 ph AC source of 400 V ,50 hz. Now a days due to fast growth in electronic devices technology, non linear load increased at considerable level. Due to their involvement in power quality issues ,Harmonic analysis is useful.

Figure 5. PSIM circuit for V/F control

Figure 6. MATLAB-Simulink model for V/F control

Table - 3: Comparison Analysis based on V/f control Simulation

Parameter	PSIM	Simulink		
Model Building	Easy	Slight		
		complicated		
simulation run	Fast	Comparatively		
time for 10		slow		
cycle				
PWM setting	Easy	Easy with		
		more options		
		for setting		
Speed sensor	Ideal speed	Practical		
output	graph is	speed graph is		
	available	available		
Shape of	Smooth	distortive		
waveform with	shape show	shape show		
same pwm	low THD.	more THD.		
setting				

CONCLUSIONS

The following conclusion may be from comparison

• Both software platforms have their strengths and weaknesses.

• With respect to the educational point of view, PSIM is simple tool for simple learning than MATLAB/Simulink.

• With respect to the research and project point of view, Simulink has advanced features and special tools which increase its functionality and simulation capability.

• It is recommended that both these two platforms can be used to gain course efficiency and course outcome of all subjects and may be more as mention in this paper.

References:

- [1] MATLAB/Simulink User's Guide, 2010b www.mathwork.com
- [2] PSIM, User;'s Guide, 2009, www.powersim.com
- [3] Bülent Ertan H., "A Report on the Evaluation of PSIM and Some Other Possibilities for Power Electronics Circuit Simulation", 2007.
- [4] Armata J.M, Besrest B., Pauly R., "PSIM/MATLAB cosimulation for electrical architectures global models", AES 2005
- [5] Rashid M., "Power Electronics: Circuits, Devices and Applications", Prentice-Hall, 2004, Transactions on Applied Superconductivity, 1051-8223 (c) 2017 IEEE.

BIOGRAPHIES

Prof. Rachana J. Patel, obtained her Master Degree in Power System from Sankalchand Patel University, Visnagar. Currently, she is working as an Assistant Professor in Electrical Engineering Department, L. D.

College of Engineering, Ahmedabad.

Prof. Jayendra C. Patel, obtained his Master Degree in Power Electronics, Machines & Drives from Nirma University, Ahmedabad. Currently, he is working as a Lecturer in Engineering Department, Government

Polytechinc, Ahmedabad.

Prof. Fedrik Macwan, obtained his Master Degree in Microprocessor System and Application from the Maharaja Sayajirao University, Vadodara. Currently, he is working as an Assistant Professor in

Electrical Engineering Department, L. D. College of Engineering, Ahmedabad.