PREDICTION OF LIVER DISEASE USING CONVOLUTIONAL NEURAL NETWORK- A SURVEY

Kaviya P1, Dr. R. Vijayabhanu2

1 Research Scholar, Department Computer Science, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamilnadu, India
2Assistant Professor, Department of Computer Science, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamilnadu, India

Abstract - Health is Wealth. Though the medical field has grown rapidly with highly effective technologies, chronic diseases such as Heart and Liver diseases are life-menacing. Various life factors such as alcohol, smoking, stress, food, lifestyle, etc causes imbalance and add toxics to the human body leading to the occurrence of assorted diseases and disorders. The medical records of the patients is a vast source of data are applied to the data mining techniques to extract the valid dataset to predict the liver disease. The classification algorithms have been widely used in the decision-making process. RNN being a text classifier of deep learning technique with the advantage of processing in multiple loops in a sequential manner to obtain best performances measured by the factor of accuracy has been proposed in this study.

Key Words: (Liver Disease, Data Mining, Deep Learning, Classification Algorithms, Convolutional Neural Network (CNN).

1. INTRODUCTION

The Liver of the human body is quite a mesmerizing internal organ which is capable of performing around 500 different functions. The major functions are boosting immunity, detoxification and cleaning, production of proteins and hormones; maintain the blood sugar level and preventing blood loss during injuries by clotting [1]. With more complex metabolic activities, the liver is known as the visceral organ hence it has the ability to re-grow and repair its own tissues. If such an organ malfunctions, it might cause serious health issues.

According to a survey on the leading causes of medical casualties in India, Liver disease comes within the top ten on the list of diseases and around the world in 2017, India has been placed on the 63rd rank for the Liver Disease. Liver diagnosis takes place through both image testing and the liver function testing. Major liver diseases include:

- **Fatty liver**: Irritation of the liver tissues
- **Cirrhosis**: Long-term Damage of the liver tissues
- **Hepatitis A, B**: Infection of the liver tissues

Fig 1. Stages of Liver Damage
Medical database has an enormous amount of data which are subjected to data mining process to extract the required and fascinated dataset. These data sets are used to predict the disease and other odd factors using algorithms such as classification and clustering.

Both the classification and the clustering algorithms involves in the process of prediction. The clustering algorithms aids in the grouping of the data based on their common properties but the classification algorithms categories the data according to a specific predefined class [2]. Thus, the chronic diseases such as Heart, Liver, and Lung Diseases are subjected to the classification and prediction machine learning algorithms.

The Deep Learning is also a machine learning technique yet works such better than the later. The conventional machine learning algorithms are much slower in comparison with the emerging deep learning algorithms [3]. These are also known as the representation-methods since the input data has been transformed through the multi-layer representation.

According the study in “Prediction of Heart Disease using RNN Algorithms” proposed by N. Sowri Raja Pillai et al. [4], the conventional text-classification deep learning algorithm, RNN has shown prominent results in comparison with the genetic and KNN learning algorithm. Thus, this study is about the implementation of deep learning algorithm instead of using traditional machine learning algorithms.

The below table 1, illustrates the various machine learning algorithms that have been used so far to predict different kinds of disorders in the medical field. The researchers have been comparing the machine learning algorithms based on the performance measure such as accuracy.

II. RELATED WORK

<table>
<thead>
<tr>
<th>S.No</th>
<th>Authors</th>
<th>Classification Techniques</th>
<th>Best performed Algorithm Based on Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sanjay Kumar et al. [5]</td>
<td>NB, K-Means, C5.0, KNN</td>
<td>C5.0 with Adaptative boosting Algorithm</td>
</tr>
<tr>
<td>2</td>
<td>Ashwani Kumar et al. [6]</td>
<td>C4.5, RF, CART, REP</td>
<td>RF</td>
</tr>
<tr>
<td>3</td>
<td>Sindhuja et al. [7]</td>
<td>C4.5, NB, SVM, BPNN, CART, DT</td>
<td>C4.5</td>
</tr>
<tr>
<td>4</td>
<td>Chich-Chen et al. [8]</td>
<td>RF, NB, ANN, Logistic Regression</td>
<td>RF</td>
</tr>
<tr>
<td>5</td>
<td>Vijarani et al. [9]</td>
<td>NB, SVM</td>
<td>SVM</td>
</tr>
<tr>
<td>6</td>
<td>Alice Auxilia et al. [10]</td>
<td>DT, SVM, NB</td>
<td>DT</td>
</tr>
<tr>
<td>7</td>
<td>P. Rajeswari et al. [11]</td>
<td>NB, FT Tree, K Star Algorithm</td>
<td>FT Tree</td>
</tr>
<tr>
<td>8</td>
<td>B. V. Ramana et al. [12]</td>
<td>NB, C4.5, BPNN, SVM, KNN</td>
<td>KNN, BPNN</td>
</tr>
<tr>
<td>9</td>
<td>Veena G. S et al. [13]</td>
<td>KNN, C5.0, K-Means, NB, RF, C5.0 Boosting</td>
<td>C5.0 Boosting</td>
</tr>
<tr>
<td>10</td>
<td>Dhamodharan et al. [14]</td>
<td>NB, FT Tree</td>
<td>NB</td>
</tr>
<tr>
<td>11</td>
<td>Joel Jacob et al. [15]</td>
<td>Logistic Regression, SVM, KNN, ANN</td>
<td>ANN</td>
</tr>
<tr>
<td>12</td>
<td>Bendi Venkata Ramana et al. [16]</td>
<td>NB, C4.5, BPNN, SVM, KNN</td>
<td>KNN, BPNN, SVM</td>
</tr>
<tr>
<td>13</td>
<td>Anju Gula et al. [17]</td>
<td>J-48, Multilayer Preceptor, SVM, RF, NB</td>
<td>RF with Feature Selection</td>
</tr>
<tr>
<td>14</td>
<td>R. Kalaiselvi et al. [18]</td>
<td>RF, REP Tree, Decision Stump, Hoeffding</td>
<td>Decision Stump</td>
</tr>
<tr>
<td>15</td>
<td>Dr. K. Rajeswari et al. [19]</td>
<td>NB, AdaBoost, J48, Bagging, RF</td>
<td>RF</td>
</tr>
</tbody>
</table>

III. METHODOLOGY

3.1. Data Mining:

There are two forms of extraction of models in Data analysis that is based on either the categorical classes or the continuous valued function, known as classification and prediction respectively. The process of classification is composed of two consequent steps namely construction of a classifier model and implementation of a classifier for the classification. Data mining classification composed of various initial processes to retrieve the data that are used for the prediction:

- Noise data – The missing values and other irrelevant noisy data are removed during the process of data cleaning.
- Normalization – The retrieved data has been exposed to the normalization process and a scale of range (0 to 1), with specified values are set to transform the data suitable for the proceeding processes.
- Pattern Recognizing - The process of prediction takes places based on the identification of certain pattern formations thus the data mining process are consider predominant.

3.2. Deep Learning:

Artificial Intelligence (AI) has the fundamental techniques that have been used in numerous applicable areas and have achieved greater results, yet have been upgraded with significant Machine Learning techniques. The intensive techniques of Machine Learning techniques mainly based on multiple layer- artificial neural networks mainly used in complex applications such Speech Recognizing, Image Identification and exclusive predictions are the deep learning algorithms.

![Diagram of Liver Dataset, Pre-Processing the data, Training, Testing, classifier to get the input, Classification Technique, CNN, Prediction of liver disease.]

FIG 2 SYSTEM FLOW DIAGRAM

3.3. CNN

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can take in an input image, assign importance (learnable weights and biases) to various aspects/objects in the image and be able to differentiate one from the other. The pre-processing required in a ConvNet is much lower as compared to other classification algorithms. While in primitive methods filters are hand-engineered, with enough training, ConvNets have the ability to learn these filters/characteristics.

The architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons in the Human Brain and was inspired by the organization of the Visual Cortex. Individual neurons respond to stimuli only in a restricted region of the visual field known as the Receptive Field. A collection of such fields overlap to cover the entire visual area.

IV. CONCLUSION

Machine Learning is the subset of Artificial Intelligence which Deep Learning is the subset of Machine Learning algorithms, ensuring that Deep Learning is capable of performing better than the long-established algorithms. Thus, this paper is the proposal of RNN, a deep learning test classifier which has the scope to provide best accuracy in the prediction of Liver disease by detaining the sequential information passed down from the input dataset with optimum computational cost and time.

V. REFERENCES

BIOGRAPHIES

Kaviya P has completed her Master degree in Master of Computer Application and Bachelor degree in B.Sc. Computer Technology at Kg college of Arts & Science College, Coimbatore in 2019 after which she is undertaking Research at Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore. Her research area in computer science includes data mining and her current research work is focused on Liver disease prediction using classification algorithm.

Dr. R. Vijayabhanu is an assistant professor in the department of computer science. She has completed MCA, M.Phil. And Ph.D. in computer science at Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore. Her thesis is area of Soft Computing. She has published 22 papers in International journals and presented five papers at International Conferences.