# ANALYSIS OF R.C.C OVERHEAD TANK USING STAAD PRO FOR DIFFERENT ZONES WITH FULL, HALF, EMTY CONDITION 

Abdulrazaq M kalledevar ${ }^{1}$, Dr.H.Eramma ${ }^{2}$<br>${ }^{1}$ Student, Dept. of Civil Engg \& U.B.D.T College of Engineering Davangere, Karnataka, India<br>${ }^{2}$ Professor, Dept. of Civil Engg \& U.B.D.T College of Engineering Davangere, Karnataka, India


#### Abstract

Water tank is a structure used to store water for supplying to households for drinking purpose, for industries as a coolant and irrigational water for agricultural farming in some areas. Water tanks are classified on the bases of their shapes and position of structure. In this project, we shall discuss about the design of circular overhead water tank which is analyzed designed and detailed using Staad pro. Due to enormous need by the public, water has to be stored and supplied according to their needs. Water demand is not constant throughout the day. It fluctuates hour to hour. In order to supply constant amount of water, we need to store water. Hence water tank needs to be constructed. Storage reservoirs and overhead tanks are used to store water. This project is giving a detailed procedure to model, analyse and design a circular overhead tank in a standard software. Results state that there is more threat of destruction to the tanks with higher capacities as compared to the tanks with lower capacities in a given zone.


Key Words: Intze Water Tank, Base Shear, Inter story drift, Mass participation Factors, for Full Tank Condition, Half Condition, Empty Condition, All zones, STAAD PRO software

## 1. INTRODUCTION

Water tank is a structure which is utilized for accumulate drinking water. In current scenario, there is a lot of importance for water storage projects throughout the globe. Water has a predominant role in day-to-day life. In the water tank design, the design aspects are to be kept in mind according to the codal provision and hydraulic and other loads have to be applied carefully. A water tanks are utilized to accumulate the water, in order to use the water for daily requirements. Imperviousness of cement concrete has a crucial part in the design and construction of any liquid retaining structure. Also the water cement ratio has the main role to play in getting a proper permeability in a consistent and properly compacted concert of any mix design. Permeability increases with the water cement ratio raises. Hence it is wise to decrease the water cement ration in order to achieve the desired permeability, however too much reduction in water cement ratio will also effects the workability, and reduced the quality of concrete in achieving its strength. Any liquid retaining structure design has to be carried out by bearing in mind the prevention of concrete cracks. By make increasing the thickness of the shuttering we can avoid the cracks development as thicker shuttering helps in reducing the escape of moisture from the concrete surface. Cracking of concrete can also be avoided by restricting the
liquid retaining structure's free contraction and expansion. An elevated tank is the one which is situated at a certain height which provides enough pressure to supplying the water.

## 2. OBJECTIVES

The object of this project is..

1. To make a0study about the analysis0of water tanks.
2. To0make a study about0the guidelines0for the design0of liquid retaining structure according0to IS Code.
3. Analysis of water tank to different zones of India with full, half, Emty condition.
4. To know about the design philosophy for the safe and economical design of water tank.
5. To increase the design life period and serviceability of the structure.

Table - 1 Dimensions of Tank

| Capacity | 1500 Cum |
| :--- | :--- |
| Diameter | 18.00 m |
| Staging height | 20.00 m |
| Top Dome Thickness | 0.15 m |
| Bottom Dome Thickness | 0.30 m |
| Top Walkway Thickness | 0.15 m |
| Bottom Walkway Thickness | 0.15 m |
| Ring Wall Thickness | 0.30 m |
| Shear wall thickness | 0.30 m |
| Tank height | 15.00 m |
| Wall thickness of tank | 0.3 m |
| Ring beam-1 | 0.6 X 0.9 m |
| Ring beam-2 | 0.9 X 0.75 m |
| Ring beam-3 | 0.6 X 0.45 m |
| Floor slab thickness | 250 mm |


| Grade of steel | Fe500 |
| :--- | :--- |
| Grade of concrete | M30 |

## 3. Plant Site Information:

- Location0of the Site : Bangalore, Agra, Chandigarh, Bhuj.
- Basic Wind speed : $33 \mathrm{~m} / \mathrm{s}, 47 \mathrm{~m} / \mathrm{s}$ and $50 \mathrm{~m} / \mathrm{s}$
- Seismic Zones : II, III, IV, V


Chart -1: Dimensional View of Tank

## 4. RESULTS

Table - 2 Base Shear in KN

| Base Shear in KN |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Seismic Zones | II | III | IV | V |  |
| Empty | 271.70 | 434.72 | 652.08 | 978.13 |  |
| Half Full | 339.59 | 543.34 | 815.00 | 1222.51 |  |
| Full | 686.50 | 1098.40 | 1647.60 | 2471.40 |  |



Fig -1: Base Shear with Empty, Half Full \& Full Conditions in Zone II, III, IV \& V

Table -3 Interstory Drift in mm

| INTERSTORY DRIFT IN MM (CUMULATIVE) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Storey level in $m$ | Condition | II | III | IV | V |
| 19.05 | Empty | 13.381 | 14.548 | 20.456 | 28.6533 |
|  | Half Full | 13.5862 | 14.686 | 20.588 | 32.9 |
|  | Full | 15.569 | 21.649 | 29.9348 | 44.9957 |
| 17.4 | Empty | 13.3135 | 13.451 | 18.853 | 28.462 |
|  | Half Full | 13.527 | 13.686 | 19.153 | 30.747 |
|  | Full | 13.58 | 20.042 | 27.5438 | 41.4087 |
| 16.76 | Empty | 11.1035 | 12.592 | 18.388 | 27.583 |
|  | Half Full | 11.509 | 12.732 | 18.627 | 29.957 |
|  | Full | 11.936 | 19.483 | 26.7098 | 40.0637 |
| 15.43 | Empty | 6.6535 | 11.786 | 17.222 | 25.834 |
|  | Half Full | 7.609 | 11.825 | 17.575 | 28.38 |
|  | Full | 11.248 | 18.278 | 24.9168 | 37.3747 |
| 9.95 | Empty | 4.1935 | 7.788 | 11.403 | 17.105 |
|  | Half Full | 5.485 | 7.87 | 11.437 | 17.775 |
|  | Full | 7.58 | 12.318 | 16.0528 | 24.0787 |
| 7.65 | Empty | 4.127 | 6.707 | 9.822 | 14.733 |
|  | Half Full | 4.869 | 6.87 | 9.949 | 14.025 |
|  | Full | 6.538 | 10.625 | 15.801 | 23.701 |

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 07 Issue: 09 | Sep 2020
www.irjet.net
p-ISSN: 2395-0072


Fig-2: Interstory Drift in Mm (Cumulative)
Table -3 Support Reaction

| Support Reaction at Foundation Level in KN |  |
| :--- | :--- |
| Water Level | Support Reaction, KN |
| Empty | 19653.4 |
| Half | 20091.4 |
| Full | 20867.7 |



Fig -3: Support Reactions for Empty, Half and Full Condition

Table -4 Mass Participation Factor C Q C Method

| Mass Participation Factor CQC Method |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Zones | II | III | IV | V |
| Empty | 513.52 | 834.47 | 1227.42 | 1841.13 |
| Half |  |  |  |  |
| Full | 630.46 | 1024.49 | 1523.6 | 2285.4 |
| Full | 1060.46 | 1723.25 | 2562.78 | 3844.17 |



Fig-4: Mass Participation Factor CQC Method

## 5. CONCLUSIONS

Following are the conclusions based on the Seismic Analysis of Elevated Water Tank are as follows:

1. Base shear of zone II, III, IV and V for Empty water tank has increased by by an average of $37.5 \%$, For Half water tank it is $33.33 \%$ and for Full water tank are increased with $33.33 \%$ because of zone factor, response reduction factor etc. while considering seismic analysis.
2. Base shear in full condition tank is slightly higher than Half and empty tank due to absence of water or hydro static pressure.
3. Inter story drift for zone II,III,IV and V for empty condition tank has increased by an average of $28.4 \%$. For half full condition it is $29.4 \%$ and full condition it is 32.2 \%.
4. Peak shear for zone II,III,IV and V for empty condition tank has increased by an average of $33.9 \%$. For half full condition it is $34.8 \%$ and full condition it is $36.8 \%$.
5. Total Support reaction with respect to empty tank has increased by $2.18 \%$ for half filled condition and with respect to half filled condition it has increased by $3.72 \%$ for full condition.
6. Mass participation factor with respect to CQC method for empty condition there is an increase of an average $34.6 \%$, for half-filled and full condition it is $34.85 \%$.
7. Mass participation factor with respect to ABS method for empty condition there is an increase of an average 37.5\%, for half-filled and full condition it is $34.85 \%$.
8. Mass participation factor with respect to SRSS method for empty condition there is an increase of an average $31.2 \%$, for half-filled and full condition it is $34.85 \%$.
9. For zone II,III,IV \& V frequency has increased between $0.8 \% 1.1 \% \%$ when compared the tank in empty condition with that of half-filled condition and increased
between $5.4 \%$ to $5.7 \%$ when compared half-filled tank with full tank.
10.Similarly period has increased between $2.9 \%$ \& 3.05\% when an empty tank is compared with half-filled tank and between $4.79 \%$ \& $4.9 \%$ when compared half-filled tank with full tank.

## ACKNOWLEDGEMENT

The author wish to thank the authorities of VTU and University B.D.T College of engineering, for giving an opportunity to carry out research work in field of CAD structures. The support from Dept. of studies in civil engineering, UBDT College of engineering Davangere is gratefully acknowledges.

## REFERENCES

1. I.S 456:2000, "Code of Practice for Plain and Reinforced Concrete", I.S.I., New Delhi
2. I.S 875 (Part II): 1987, "Code of Practice for Imposed Load", I.S.I., New Delhi
3. I.S 875 (Part II): 1987, "Code of Practice for Wind Load", I.S.I., New Delhi
4. I.S 1893: 1984," Criteria for Earthquake Resistant Design of Structures", I.S.I., New Delhi
5. I.S 3370 (Part I): 2009, "Code of Practice for Concrete Structures for Storage of Liquid",
6. I.S 3370 (Part IV): 1967, "Code of Practice for Concrete Structures for Storage of Liquid",
7. SP 16 (1980), "Design Aids for Reinforced Concrete to IS 456: 1978"
8. 2010 17th edition of S . Ramamrutham, "Design of Reinforced concrete structures", Dhanpat Rai Publications.
9. 2008 edition of M.L Gambhir "Design of Reinforced concrete structures", PHI Learning Pvt. Ltd., New Delhi.
10. Ranjit Singh Lodhi \& Dr.Vivek Garg., (2014). -Design of Intze Tank in Perspective of Revision of IS: 3370, Vol.-03 Issue No.9, pp: 1193-1197.
11. Sushil Kumar., (2014), -Treasure of RCC Design Vol-IX||, Rajsons Publication Pvt. Ltd., New Delhi, India.
12. Irwin P, Kilpatrick J and Frisque A (2008) —Friend or Foe, Wind Height||. CTBHU 8th World Congress Aatish Kumar., R.K.Pandey., 2013, —Wind Effects on Overhead Tank under Different Soil Parameters|| IJEAT Vol.- 2, No.6.
13. Asari Falguni, Prof.M.G.Vanza,(2012), "Structural control system for Elevated water tank", International Journal of Advanced engineering research and studies, IJAERS/Vol-I/April-June,2012
14.Ayazhussain M.Jabar \& H.S.Patel,(2012), "Seismic behavior of RC elevated water tank under different staging pattern and earthquake characteristics", International journal of advanced engineering research and studies, IJAERS/Vol-I,April-June,2012.
14. Dutta, S.C., Jain, S.K. and Murty, C.V.R., (2000). "Assessing the Seismic torsional Vulnerability of Elevated Tanks with RC Frame Type staging", Soil Dynamics and Earthquake Engineering.
15. Hasan Jasim Mohammed (2011), "Economical design of water concrete tanks", European Journal of scientific research", ISSN, Vol.49.no. 4 (2011).
16. Manish N. Gandhi, Prof.A.Rajan, "Necessity of Dynamic Analysis of Elevated Water Storage Structure Using Different Bracing in Staging", International Journal of Research in Advent Technology, Vol.2, No.2, February 2014.
17. Suchita Hirde Dr., Ms. Asmita Bajare, Dr. Manoj Hedaoo, "Seismic performance of elevated water tanks", International Journal of Advanced Engineering Research and Studies (2011).
19.Ekbote, Pavan S., Kori, Jagadish G., (2013) "Seismic Behavior of RC Elevated Water Tankunder Different Types of Staging Pattern" , Haveri, Karnataka, India. Journal of Engineering, Computers \& Applied Sciences (JEC\&AS) ISSN No: 2319-5606 Volume 2, No.8.
20.Bhattacharyya, Soumi., and Ghosh, Aparna (Dey)., (2012)"Seismic Vibration Control Of Elevated Water Tankes By Multiple Tuned Liquid Dampers". IIT Roorkee, Roorkee , Paper No. E009.
