
International Research Journal of Engineering and Technology (IRJET)

Real-Time Object Detection using TensorFlow

Priyal Jawale, Hitiksha Patel Chaudhary2, Nivedita Rajput3

1Priyal Jawale, SNDT Women’s University, Mumbai, India
2Hitiksha Patel Chaudhary, SNDT Women’s University, Mumbai, India

3Nivedita Rajput, SNDT Women’s University, Mumbai, India
4Prof. Sanjay Pawar, Senior IEEE Member, Usha Mittal Institute of Technology,

SNDT Women’s University, Mumbai, Maharashtra, India
---***---

Abstract - In recent years, deep learning has been used in

image classification, object tracking, action recognition and

scene labeling. Traditionally, Image Processing techniques

were used to solve any Computer Vision problems occurred in

an artificial intelligence system. However, in real-time

identification, image processing cannot be used. This is where

Deep Learning concepts are applied. We built a simple

Convolutional Neural Network for object detection. The model

is trained and multiple test cases are implemented in the

TensorFlow environment so as to obtain accurate results

Key Words: Image processing; artificial intelligence;
convolutional neural network; TensorFlow

1. INTRODUCTION

The applications and widespread use of machine learning

algorithms have made a significant change in the way we

perceive computer vision problems. With the introduction of

deep learning into the field of image classification, the

dynamics of real-time object detection have faced a great

impact.

In deep learning, the mapping is done by using

representation-learning algorithms. These representations

are expressed in terms of other, simpler representations. In

other words, a deep learning system can represent the

concept of an image for an object by combining simpler

concepts, such as points and lines, which are in turn defined

in terms of edges. By using a variety of algorithms, a

benchmarking dataset and correct labeling packages a

system can be trained to achieve the desired output. A

fundamental aspect of deep learning in image classification

is the use of Convolutional architectures.

The model is trained to detect objects in real-time. This can
be best achieved through a universal and open source

library-TensorFlow (TF). Within the TF environment,

multiple algorithms can be used for a wide range of datasets.
In this paper, we have made use of the CIFAR-10 dataset,

which comprises of 5 batches each containing common
objects seen on a daily basis.

2. BASIC CNN COMPONENTS

Convolutional neural network layer consists of three types

of layers, namely convolutional layer, pooling layer, and fully

connected layer.

2.1 Convolutional Layer

The aim of CNN is to learn feature representations of the
inputs. As shown in the below image (Fig. 1), Convolutional
layer has several feature maps and it is the first layer from

which features are extracted. Each neuron of the same
feature map is used to extract local characteristics of
different positions in the former layer. In order to obtain a
new feature, the input feature maps are first convolved with
a learned kernel (mask) and then the results are passed into

a nonlinear activation function. We will get different feature
maps by applying different filter masks. The typical
activation function is softmax, sigmoid, tanh and Relu.

2.2 Pooling Layer

Secondary feature extraction can be done within the pooling
layer of a CNN. It essentially reduces the dimensions of the
feature maps and increases the robustness of feature
extraction. Usually placed between two Convolutional layers,
the size of feature maps in the pooling layer is determined
according to the moving step of the masks. Also referred to
as stride of masks. The two major pooling operations are
average pooling and max pooling. We can also extract the
high-level characteristics of inputs by stacking several
Convolutional layers and pooling layers.

2.3 Fully connected Layer

We flatten our matrix in vector form and feed it into the fully
connected layer. In a fully connected layer, all the neurons in
the previous layer are connected to every single neuron of
the current layer. No spatial information is preserved in the
fully connected layers. An output layer follows the last fully
connected layer. After combining all the neurons, we can see

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET)

the entire neural network. For classification tasks, softmax
regression is commonly used because it generates a well-
performed probability distribution of the outputs to classify
as dog, cat, car, truck, etc.

Fig -1: CNN Architecture

3. OUR SIMPLE CNN

In order for the machine to identify objects accurately, we
need to train it. We adopted the CNN model to do so. The
first layer is the input layer wherein the entire dataset(in

batches) is fed into the network model. The process of
feature extraction begins from the second layer until it
reaches the last image in the last batch. A different feature is
extracted in each layer as the construction of the neural

network progresses. For example, first it extracts a point,
then a line and then a curve. All the features are combined at
the end (fully-connected layer) resulting in an output layer.

3.1 Tensor reshaping and transpose

Original one batch of data is 10000 x 3072 matrix in the form

of an array. As mentioned in CIFAR-10/CIFAR-100 dataset,
the number of columns represents the number of sample
data and the row vector indicates a color image of 32 x 32
pixels. Since the dimension of the input vector must be either
(width x height x num_channel) or (num_channel x width x

height) to feed an image data into a CNN model, we have to
reshape and transpose the input vector of CIFAR-10. An
image of the row vector consists of 32x32x3(width x height x
num_channels) = 3072 elements. The logical concept of

reshaping an image is described below:

1. Divide the row vector into 3 frames, where each

frame is denoted as color channel resulting in
(10000x3x1024) tensors.

2. Further, divide 3 frames by 32, 32 is the width and
height of an image which results into

(10000x3x32x32) tensors.

This shape (num_channels x width x height) is not accepted
in TensorFlow; therefore transpose of the reshaped image is
taken.

3.2 Normalize

Each batch within the dataset is broadly divided into two

parts. The first part being the training data. This is the
largest part and forms 80% of the total data residing in each
batch. The remaining 20% is known as the validation data
and it used to validate the data once it is trained. After
training and validation of each batch, the entire dataset is

tested as a whole. There is a separate testing dataset for this

purpose.

Fig -2: Division of dataset

3.3 One hot encoding

The process by which categorical variables are transformed

into a format that could be provided to machine learning

algorithms to do a better job in prediction is known as one

hot encoding. The label data consists of a list of 10000

numbers ranging from 0 - 9 which corresponds to each of the

10 classes in CIFAR-10. We create N new features, where N is

the number of unique values. One hot encode function, takes

the input as a list of labels. The total number of elements in

the list is the total number of samples in the batch. One hot

encode function returns two-dimensional tensor- row

vector that represents the size of the batch and the number

of columns that represents a number of image classes.

Fig -3: One hot encoding

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET)

4. IMPLEMENTATION

4.1 TensorFlow workflow

Fig -4: TensorFlow dataflow

The model is provided with two kinds of data for training the
model. The image data is fed into the model, which learns

and predicts the output accordingly. The other kind of data is
label data, which is provided at the end of the model to be
compared with the predicted output.

1. Convolution with 64 different filters in size of 3 x3.
2. Max pooling by 2 (Batch Normalization)

3. Convolution with 128 different filters in size of 3 x

3.
4. Max pooling by 2.
5. Convolution with 256 different filters in size 3 x 3
6. Max pooling by 2.
7. Flatten the 3D output of the convolving operations.

8. Fully connected layer with 128 units

 Dropout

 Batch Normalization
9. Fully connected with 256 units

 Dropout

 Batch Normalization
10. Fully connected layers of 10 units

4.1.1 Hyperparameters

The parameters in any deep learning algorithm should be

initialized before training a model. ‘keep_probability’ is a

parameter, which defines the probability of how many units

of each layer, should be kept and specifies the dropout

technique.

4.1.2 Cost function and Optimizer

The input tensor gets reduced which results in loss of

function between the predicted output and label data.

CIFAR-10 has to measure loss over 10 classes and it uses

softmax cross entropy function to do so. While training the

network, in order to minimize the cost, apply Adam

Optimizer algorithm.

4.2 Application snapshots

Fig -5.1: Training of the data

Fig -5.2: Output

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET)

Fig -5.3: Bounding box around detected objects

5. CHALLENGES AND FUTURE WORK

The computational cost and time in a neural network is

higher as compared to any other network models (R-CNN,

Boltzmann machines, etc.) The most crucial requirement

necessary to train CNN is a GPU (graphical processing unit).

If the desktop/laptop used for training does not contain a
GPU, the processing required for training a model increases

which affects the performance. Therefore, it is imperative

that the computer we use for training must have a GPU.

The more, the model is trained the accurate it is. Hence, a

huge amount of training data is required. This sometimes

leads to the slow processing speed of the computer. Despite

the shortcomings there is no limit to where a CNN can be

used. From developing a Facial recognition software to using

it in the advancement of Self Driving Cars. A voice-over

interface along with the object detection model can prove to

be a boon in the everyday lives of visually impaired people.

6. CONCLUSION

This paper presents a comprehensive review of deep
learning and convolutional neural network architecture. For

the applications in the computer vision domain, the paper

mainly explains how the advancements of CNN based

schemes have made it most suitable for images. Despite the

assuring results recorded so far, there is significant room for

further advances. For example, the theoretical foundation

does not yet explain under what conditions they will

perform in the desired manner or outperform other

approaches. TensorFlow is used to achieve object detection

with maximum accuracy for a live scene. A bounding box is

created around each object detected which displays the class

label and the percentage of accuracy.

REFERENCES

1. Fu-lian Yin, Xing-Yi Oan, Xian-Wei Liu, Hui-Xin Liu,
“Deep Neural Network Model Research and Application
Overview” , Department of Information and Engineering,
faculty of Science and Technology, communication
University of China, Beijing.

2. Shin-Jye, Tonglin Chen, Lun Yu, Chin-Hui Lai, “Image

Classification based on Boost Convolution neural
Network”, Institute of Technology Management,
National Chiao Tung University, Hsinchu, Taiwan;
National Pilot Scool of Software, Yunnan university,
Kunming, China; Department of Information
Management, Chung Yuan Christian University, Chungli,
Taiwan.

3. “Image Classification using Deep Neural Networks- A
beginner friendly approach using TensorFlow”,
Medium

4. “Real-Time Object detection API using TensorFlow

and OpenCV”, Towards Data Science

5. Ladikos, A., Benhimane, S., and Navab, N. (2007). A real-

time tracking system combining template-based and
feature-based approaches. In VISAPP.

6. Boffy, A., Tsin, Y., and Genc, Y. (2006). Real-time feature
matching using adaptive and spatially distributed
classification trees. In BMVC.

7. Krizhevsky A, Sutskever I, Hinton G E. ImageNet
Classification with Deep Convolutional Neural Networks
[J]. Advances in Neural Information Processing Systems,
2012, 25(2): 2012. !

8. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D.Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with Convolutionals,” Co RR, vol.
abs/1409.4842, 2014.

9. Michael A. Nielson, “Neural Networks and Deep
learning”

10. “TensorFlow Tutorial 2: image classifier using

convolutional neural network”, CV Trick Bay, H.,
Tuytelaars, T., and Van Gool, L. J. (2006). Surf: Speeded
up robust features. In ECCV, pages 404–417.

11. Lowe, D. (2004). Distinctive image features from scale-

invariant keypoints. IJCV, 60(2): 91–110.

12. Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Ro-
bust wide baseline stereo from maximally stable ex-
tremal regions. In BMVC.

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET)

13. Matthews, I., Ishikawa, T., and Baker, S. (2003). The tem- plate update problem. In BMVC.

14. Mikolajczyk, K. and Schmid, C. (2004). Scale and affine invariant interest point detectors. IJCV, 60(1):63–86.

15. Sepp, W. and Hirzinger, G. (2003). Real-time texture- based 3-d tracking. In DAGM Symposium, pages 330– 337.
16. Najafi, H., Genc, Y., and Navab, N. (2006). Fusion of 3D and appearance models for fast object detection and pose

estimation. In ACCV, pages 415–426.

17. Vijayalaxmi, K.Anjali, B.Srujana, P.Rohith Kumar "OBJECT DETECTION AND TRACKING USING IMAGE
18. PROCESSING” Global Journal of Advanced Engineering Technologies, ISSN (Online): 2277-6370 & ISSN (Print):

2394-0921-2014.

19. “Automated Driving Vehicle Using Digital Image Processing” IJISET - International Journal of Innovative Science,

Engineering & Technology, Vol. 2 Issue 9, September 2015, ISSN 2348 – 7968.

20. Prof. D. S. Pipalia, Ravi D. Simaria “ Real Time Object Detection Tracking System (locally and remotely) With
Rotating Camera”, International Journal on Recent and Innovation Trends in Computing and Communication ISSN:
2321-8169 Volume: 3 Issue: 5 3058 – 3063

21. Prof. D. S. Pipalia, Ravi D. Simaria “ Real Time Object Detection Tracking System

22. “Working with Advanced Views in Android-Edureka”, Edureka

23. “Real Object Detection with TensorFlow Detection Model”, Towards Data Science

24. CIFAR 10 and CIFAR-100 datasets, Canadian Institute for Advanced Research, Toronto University

http://www.irjet.net/

