
 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 08 | AUG 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4129

A Study of Available Process Scheduling Algorithms and Their

Improved Substitutes

Sameer Mahajan1, Adwait Patil2, Nahush Kulkarni3

1,2,3
Student, Department of Computer Engineering, TEC, University of Mumbai, Mumbai, India

--***--
Abstract: Process scheduling is an essential part for any
modern operating system to ensure efficient utilization of the
CPU. Several scheduling algorithms have been in use for
decades and are being enhanced actively to increase their
efficiency. To contribute to this development, we have studied
the fundamentals of process scheduling in Real-Time and
Distributed systems. We have discussed the algorithms
currently being used by various operating systems, and have
examined their improved substitutes.

Index Terms: First-Come-First-Serve, Highest Response
Ratio Next, Multilevel Feedback, O (1) Scheduler,
Process Scheduling, Real-Time, Round Robin.

1. INTRODUCTION

An operating system, being an interface between the user
and hardware, has several responsibilities. It has to
manage processes, storage, network, devices and a lot
more. In this paper we are going to discuss about the
management of processes, also known as Process
Scheduling.

System resources such as bandwidth, communication,
processor cycles and many more are made accessible to
the processes on a system through process scheduling.
Almost every modern system is capable of running several
processes at the same time. This is called multitasking.
There are several ways to run these processes on while
performing efficient utilization of resources. Most common
of which have been mentioned in section 2. [1]

1.1 Types of System

Depending upon the use cases, there can be several types
of computer systems. Here, we are going to discuss about
the following types:
1. Real-Time systems: In real-time systems, time is the

most important factor to be considered. These systems
have to respond within the given time constraints and
deadlines.
a. Soft Real-Time Systems: In these systems,

deadlines can be missed occasionally.
b. Hard Real-Time Systems: In these systems,

deadlines cannot be missed. Missing of deadlines
can have disastrous consequences. [2]

2. Distributed Systems: In Distributed Systems, a set of
computers is connected to each other by a network.
Scheduling problems of these systems can be solved
using several proposed methods.
These methods can be classified as:
a. Mathematical Models
b. Graph-Theory Based Methods
c. Heuristic Methods

i) Constructive
ii) Iterative
iii) Probabilistic [3]

1.2 Scheduling paradigms for Real-Time Systems:

Several approaches can satisfy the needs of a real-time
system. Most common of which are:
1. Static Priority Driven Preemptive Approach: In this

approach, static scalability is analysed but
construction of explicit schedule do not occur.

2. Static Table-Driven Approach: Just like the above
method, static scalability is analysed but, the resulting
schedule is considered explicit.

3. Dynamic Best Effort Approach: In this approach,
feasibility is not checked and the deadlines are met by
the best tries of the system. A task might be stopped
during its execution as no guarantees are provided.

4. Dynamic Planning-Based Approach: Unlike the above
static approaches, a feasibility check is done at
runtime. [4]

1.3 Role of Machine Learning:

How a process runs depends a lot on how it has been
coded. Hence, prediction of time required to run a process
can be very helpful. For example, if a process has some of
its part left to be executed, it should not be pre-empted as
this can increase the number of context switches.
Advancements in the field of machine learning has played
an important role in the improvement for these
predictions. Scheduling behaviours can now be very much
predicted. However, it is important to note that the results
from these techniques depend upon the dataset on which
the ML technique was trained. [5]

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 08 | AUG 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4130

1.4 Designing Scheduling Algorithms:

Designing and selection of proper scheduler is an
important task. Better utilization of resources is always
good. This is also a problem most developers face. A
programmer has to take some factors into consideration
while developing a scheduler.

Following are key parameters for any scheduler:
1. Turnaround Time (TAT): It is the time taken for the

completion of a job after its submission.
2. Waiting Time (WT): It is the time a process has to wait

in ready queue before its execution.
3. Context Switch: In a preemptive multitasking system, a

job is stored in memory to allocate CPU resources to
another process. This stored job can then be restored
at a further point in time so resume its execution.

4. Throughput: It is the number of jobs a system
completes per unit time.

5. CPU Utilization: It is the amount of work the CPU is
doing. [1]

A good scheduler is the one which has:
1. Less Turnaround Time,
2. Less Waiting Time,
3. Less Context Switches,
4. High Throughput,
5. High CPU Utilization. [1]

2. AVAILABLE SCHEDULING ALGORITHMS

1. Round Robin (RR): Mainly implemented in time-

shared systems, this is the most basic algorithm for
scheduling. A time-slice or quantum, being the time for
which a CPU is allocated to a process is used.
Processes are added to queue in FCFS manner. Every
process is kept in a circular queue and executed when
the ones prior to it have completed their quantum.
This method is best suited for processes with a short
burst time.

2. First Come First Serve (FCFS): In this approach, the

process that enters the ready queue first gets executed
first.

3. Shortest Job First (SJF): As the name suggests, jobs

with shortest burst or remaining time are executed
first. In SJF Non-Preemptive, ascending order of burst
times is followed for execution on processes. In SJF
Preemptive, burst time of processes is checked after
every unit in time. This is also called, Shortest
Remaining Time First.

4. Longest Job First (LJF): Just opposite to SJF, larger

burst time processes are executed first.

5. Highest Response Ratio Next (HRRN): Waiting time of
a process is used to boost the priority of the process.
This is also known as the “aging priority” schema.
Below is the formula used to calculate the priority of a
process. Here, s is the expected time of service and W
is the time spent waiting by the process.

6. Priority-Based: In this approach, processes are put to

the ready queue based on the priority number
provided to the process by the operating system.

7. Multilevel Queue: In this approach, loads are divided

into different queues. Different scheduling criterions
are used for different processes. Priority of a process is
used to determine where process will be added in the
ready queue. Since higher priority processes are
placed at the top of the queue, starvation might be
experienced by processes with lower priorities.

8. Multilevel Feedback: To solve the problem of

starvation from Multilevel Queue Scheduler, processes
are placed to the next level if their execution has not
finished at a particular level.

9. Job Mix: Unlike any other approach, processes with

shorter burst times are executed first while using a
different queue for keeping processes with higher
burst times. This method can solve problems of
starvation but at the cost of increased overhead due.
This method is very easy to implement.

10. Standard Deviation (SD): Using the formula mentioned

below, the processes with burst time nearer to the
standard deviation value are placed into the queue.
This process is continued until all the processes have
been placed into the queue. In the below formula, N is
the number of processes, X is the burst time, and ̅
denotes the average burst time of all processes. [1]

 √
∑ ̅̅ ̅

3. PROCESS SCHEDULING ALGORITHMS
CURRENTLY USED BY OPERATING SYSTEMS

1. Round-robin algorithm with multilevel feedback

queue (used by Windows)
2. O (1) scheduler algorithm (used by Android)

3.1 Round Robin algorithm

As described in section 2, Round robin is a preemptive
process scheduling algorithm. Here the quantum should

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 08 | AUG 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4131

not be too small as it leads to wastage of CPU time in
process switching. Process Scheduling of Round Robin is as
follows:
1. To schedule process fairly round-robin scheduler

employs time-sharing, that is it assigns quantum to
each job, and it stops the execution of the job if it’s not
completed in that quantum

2. If the process under execution terminates or changes
its state to waiting then the algorithm stops execution
of this process and allots time to the first process in
the ready queue.

3. Round robin is called preemptive as it forces a process
to stop once it has used its quantum.

4. Example: If there is a job J which requires 350 ms to
complete and the algorithm has a quantum=100 ms
then
a. First allocation = 100ms (algorithm preempts the

job)
b. Second allocation = 100ms
c. Third allocation = 100ms
d. Fourth allocation = 50ms (job terminates itself)
e. Total time for J = 350ms

Table -1: Details of Processes for Example
Process name Arrival time Execution

time(ms)
P0 0 120

P1 25 270

P2 130 80

P3 210 190

P4 260 100

Consider table 1 with arrival time and execution time of
various processes. Quantum = 100ms.

Table -2: Round Robin Execution Example
Time Executing Waitin

g
Comments

0 P0 - P0 arrives and gets
processed

25 P0 P1 P1 arrives and waits as
P0 is still executing

100 P1 P0 Quantum time for P0
expires so its
terminated and P1 is
processed

130 P1 P0, P2 P2 arrives and waits

200 P0 P2, P1 P1 is terminated and
P0 starts executing

210 P0 P2, P1,
P3

P3 waits

220 P2 P1, P3 P0 self terminates as its
execution time ends
(120ms)

260 P2 P1, P3,
P4

P4 arrives and waits

280 P1 P3, P4 P2 terminates itself as
its execution time ends
(80 ms)

380 P3 P4, P1 P1 terminates, P3 is
processed

480 P4 P1, P3 P3 terminates as its
quantum is exhausted
and P4 is processed

580 P1 P3 P4 terminates as its
execution time
ends(100ms)

650 P3 - P1 terminates itself as
its execution time
ends(100+100+70=27
0ms)

740 - - P3 terminates itself as
its execution time
ends(100+90=190ms)

Table 2 shows how these process are handled by round
robin scheduling with quantum 100ms.

3.2 O(1) scheduler algorithm

The O(1) scheduler was introduced in 2.6 Linux kernel.
The scheduling done after implementing O(1) scheduler
always completes in a constant time and hence its aptly
named O(1) scheduler indicating the constant time. This
approach helps in reducing the total system time and thus
makes processing more efficient. The O(1) scheduler was
created in order to achieve some specific objectives which
are as follows
1. Implement an algorithm that always completes in

constant time independent of the number of tasks it is
working on.

2. The algorithm should provide a consistent
performance for interactive tasks even if the system is
under load.

3. To be fair to all the running processes irrespective of
arrival time or execution time and thus preventing
starvation.

4. Provide optimum or consistent processing for few
number of processes but also maintain the
performance in a multiprocessor system.

The data structures used are designed to assist the
algorithm in achieving the above mentioned goals. The
data structures are as follows:
1. Runqueues: This is one of the basic data structures in

O(1) scheduler defined as struct runqueue. It gives the
count of processes waiting for execution on a given
processor, every processor has a runqueue. The
runqueue also contains pre-scheduling information.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 08 | AUG 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4132

2. Priority arrays: There are 2 priority arrays present in
each runqueue, one array for keeping count of active
processes called active array and another for keeping
count of terminated processes called expired array.
This data structure is the one that provides O(1)
scheduling also called constant time scheduling. Each
priority array contains one queue which contains the
number of runnable processes ordered according to
their priority. Priority arrays also contain a bitmap
which can be used to track down the process which
has the highest priority in the queue.

3. Process descriptor: A process descriptor has several
fields that play a key role in scheduling, such as:
a. need_reshed: This is actually a flag which is used

to decide whether the scheduling() function
should be invoked or not depending on the value
of this flag.

b. rt_priority: This function returns the static priority
of a process. The default value for static priority of
any process in the system is zero but it can be
changed.

c. counter: The CPU-time left before a quantum
expires is tracked using counter. When a new
process begins it holds the time-quantum of that
process.

d. nice: This is a crucial function present in the
process descriptors as it is used to change the
static priority of a process. This function can set
the static priority in a range (-19,+20) the more
the value of static priority tends to negative higher
the priority of that process.

Calculating priority and time slice in O(1):
1. Static task prioritization using nice(): All processes

have a default static priority of 0 but this priority can
be changed using the nice() function mentioned above
in process descriptors. The nice() function can be used
to change this default value to any value ranging
between -20 and +19.

2. Prioritizing tasks dynamically: The O(1) scheduler is
biased towards I/O bound tasks and rewards them
whereas it punishes CPU bound tasks by adding or
subtracting static task priority using nice(). This new
priority is called the dynamic priority of a task and can
be found in a task’s priority variable. In O(1)
scheduler, the maximum reward and the maximum
penalty is equal to 5.

3. I/O bound vs CPU bound processes: The processes are
awarded or penalised depending upon the value of a
variable called sleep_avg. The value of this variable
depends on the sleep time of a process. When a task
comes out of sleep, the total time for which the task
was sleeping is calculated and this time is appended
on to the sleep_avg variable. When a task gets CPU
time then the time for which it runs is subtracted from

sleep_avg. The higher the value of sleep_avg higher is
the dynamic priority.

4. The effective_prio() function: The effective_prio()
function is used for calculating the dynamic priority of
a process. This function takes a task’s sleep_avg as a
parameter to calculate its dynamic priority.

bonus = CURRENT_BONUS(p) – MAX_BONUS / 2;
prio = p->static_prio – bonus;
//CURRENT_BONUS is defined as:
#define CURRENT_BONUS(p)
NS_TO_JIFFIES((p)->sleep_avg)* MAX_BONUS /
MAX_SLEEP_AVG;

CURRENT_AVG maps a task’s sleep_avg onto the range
0 to MAX_BONUS. And as MAX_BONUS is twice that of
the maximum possible reward or penalty it is divided
by two before subtracting from CURRENT_BONUS.
Example: 1. If a process has high sleep average and
CURRENT_BONUS returns 10 then according to the
formula mentioned above bonus = 10 – 10/2. (As
sleep_avg is high MAX_BONUS=10). bonus = 5. And
thus prio gets reduced by 5 which is the maximum
reward (priority increases as prio tends to negative
values) [6]

3.3 Multilevel Feedback queue algorithm

As described in section 2, in a multilevel queue scheduling
algorithm, processes are permanently assigned to one of
the queues on entry to the system. Processes cannot be
transferred from one queue to another. This approach
gives it an advantage of low scheduling combinations that
is it has no excess combinations which can reduce
efficiency of the algorithm but also has a disadvantage that
this makes it inflexible. These drawbacks can be nullified
using a multilevel feedback queue which enables the
processes present in the queues transfer from higher-level
queue to lower-level or vice versa depending upon the
method used by the algorithm. It relies on a basic idea of
separating processes based on the CPU-time they use
during execution. If a process is using high amount of CPU
time then that process is demoted to a lower-level queue
with larger time quantum. Tantamount to this if a process
has a high waiting time then there is a possibility that it
can be promoted to a higher level queue which has a
smaller time quantum so the process gets CPU time faster.

The multilevel feedback queue’s efficiency depends upon
the following factors:
1. The total number of queues(top-level to base-level)

present in the algorithm.
2. The algorithm used for scheduling each individual

queue.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 08 | AUG 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4133

3. The logic that is implemented while promoting a
queue to higher-priority.

4. The logic that is implemented when a process is
demoted to lower-priority.

Thus as we can make a multilevel feedback queue to work
efficiently for any system by altering the factors it depends
on which makes it one of the most general CPU scheduling
algorithm. But it also needs some means to select ideal
values of the factors for creating the most efficient
scheduler for a particular system. This makes the
multilevel feedback queue one of the most general as well
as the most complex scheduling algorithm.

It uses multiple FIFO (First In First Out) queues to place
the processes entering the system. The operations done by
the algorithm are:
1. Whenever a new process enters into the system it is

always appended at the end of the top-level queue.
2. After that when the process gradually reaches the

head of the top-level queue it is allotted CPU time and
gets executed for the time quantum of that queue.

3. If the process either terminates or goes to sleep during
execution then it leaves the queue it was inserted into.

4. If the process terminates itself amidst the time
quantum of the given queue, then it leaves the queue
network and when it again becomes active and is
ready to get executed it is again appended at the end of
the same queue which it belonged to.

5. If the process exhausts its given time quantum then it
is pre-empted and appended at the end of a lower-
level queue in the network. Any lower-level queue
always has a time quantum exceeding the time
quantum of the queue which has higher priority. Thus
following this structure a process keeps getting
demoted every time it exhausts the time quantum of
its present queue until it reaches the base level queue.

6. After reaching the base level queue the processes
undergo round robin algorithm until the time they get
terminated. Optionally processes at base level queue
may also undergo FCFS (First Come First Serve)
depending on the time quantum or if required for
efficiency of certain system.

7. If a process is I/O bound or waiting for I/O device it is
given higher priority and is promoted to the preceding
higher level queue. Thus the algorithm is biased for
I/O bound processes and lets them avoid staying in
base level queue.

8. The algorithm always allots CPU time to the task
present in the head of the top-level queue. And only
after the top-level queue becomes empty it shifts to
the next lower-level queue and this pattern keeps
repeating until it reaches base level.

A new process is always appended at end of top-level
queue assuming it will end in short time-quantum or else

its pushed to lower level queue. Thus every process gets
just one chance to get executed in a given queue.

4. ADVANTAGES AND DISADVANTAGES OF
PROCESS SCHEDULING ALGORITHMS

The process scheduling algorithms currently used are
powerful and nearly flawless but still there are some
limitations faced even by these powerful algorithms and
those are as follows:

4.1 Round Robin algorithm

Advantages:
1. The round robin algorithm executes or allots CPU time

to each process for a particular quantum of time thus
all processes get same priority.

2. In a round robin cycle all processes get execution time
and hence this prevents the processes from starving
for CPU time.

Disadvantages:
1. The efficiency of round robin highly depends on the

size of the time quantum if the time quantum is
comparatively large then it acts similar to FCFS thus
including all its drawbacks.

2. If a time quantum is comparatively very short it sure
does prevent starvation but the context switching
increases in frequency leading to reduced efficiency of
the CPU.

3. Average waiting time is often longer in Round Robin.

4.2 Multilevel feedback queue algorithm

Advantages:
1. As the quantum of time increases as we go down from

top-level queue to base-level queue processes with
large execution time gets executed in a single quantum
in lower-level queue thus reducing context switching
time of the CPU.

2. If a process is I/O bound or waiting for I/O device it is
given higher priority and is promoted to the preceding
higher level queue thus it is allotted CPU time faster
preventing starvation.

Disadvantages:
1. Moving the processes around the queue increases CPU

overhead.
2. It needs some means to select ideal values for all the

factors in order to define the most efficient scheduler
for that particular system. Thus making it one of the
most complex scheduling algorithm.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 08 | AUG 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4134

4.3 O (1) Scheduling algorithm

Advantages:
1. The O(1) scheduler executes in constant time

regardless of the number of tasks running
2. It provides a consistent interactive performance even

when system is under load.

Disadvantages:
1. The O(1)n scheduler is bias towards I/O bound tasks

and assigns rewards to them while they sleep for
longer time thus they gain higher priority and execute
first ,thus the lower priority CPU bound tasks starve
for CPU time.

5. REFERENCED ALGORITHMS

5.1 Introduction

Tahhan et. al [7] proposed a priority algorithm using the
knapsack algorithm. The Knapsack problem consists of
number of elements, the weight and value of the elements,
the problem is to determine the number of elements with a
total weight less than or equal to the knapsack capacity,
with a condition that the total value is as high as possible.
The proposed NOPSACK algorithm was as follows [7]:
Input:

a. No. Of Processes(n)
b. CPU execution time(exet)
c. Priority(P)

1. Calculate ratio (P/exect) for each process.
2. Arrange processes in descending order of the ratio.
3. Calculate initial (ß) value (sum of execution time of all

the processes(ɑ)/No. of processes(n) in the system).
4. Apply knapsack algorithm:

Knapsack elements = No. Of Elements(n)
Weight = CPU execution time(exet)
Cost = Priority(P)

5. Invert the priority for the process in the current
iteration, ((Pri) value * (-1)). Also cancel the processes
which are completed.

6. Go-to step 3 (continue until all processes got CPU and
completed execution).

7. Display and Print result of each process

The results were that the Average Turnaround Time (TAT)
and Avg Waiting (WT) obtained by NOPSACK Algorithm
were better than Round Robin Algorithm, Priority Based
Algorithm, and Neelsack Algorithm. [8]

Nie et. al [9] compared various algorithms such as
Shortest-Job (process)-First, First-Come, First-Served,
Highest Response Ratio Next. They proposed median-time
slice-Highest Response Ratio Next algorithm. The
proposed algorithm is as follows [9]:

1. Sort all the processes according to their respective
execution time (exet)

2. Calculate Median of the processes.
3. Scan all the process execution time, if the process

execution time larger than the median, then divide it
into several parts according to median, each integer
multiples as a time slice, the mod as a time slice.

4. Each part of the PETLM and the PETSM as the new
process queue, carry out HRRN.

5. Calculate the RR
6. Sort to the RR, the largest allocate the CPU; mark the

process or the sub process had holder.
7. Go to step 1, till all process or the sub-process have

holder.

The proposed algorithm was compared with various
algorithms like FCFS, SJ (P) F, HRRN and was observed
feasible and effective against them.

Kolipakula et. al [1] proposed a hybrid scheduling
algorithm using Standard Deviation and Highest Response
Ratio Next (HRRN). The following is the proposed
algorithm [1]:
1. Read process Id, Arrival time and Burst time for all the

processes
2. Calculate Standard Deviation using formula:

 √
∑ ̅̅ ̅

3. Calculate Highest Response Ratio First using the
formula:

4. Calculate Hybrid Priority using formula:

5. If two processes having same hybrid priority value?
If true, did processes having same hybrid priority
value arrives at a particular time?
If true, the process with lower process id will be
executed first.
Else, did processes having same hybrid priority value
arrives at different time?
If true, the process with less arrival time will be
executed first.

6. Execute process according to its Hybrid Priority
7. Process leaves queue if its burst time is zero. Calculate

waiting time and turnaround time of the process.
8. If queue is empty, then calculate average waiting time,

average turnaround time and average response time of
all the processes.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 08 | AUG 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4135

It was observed that the proposed Hybrid Scheduling
algorithm is very efficient over the other rescheduling
algorithms in parameters of average turnaround time and
average waiting time.

Fig -1: Performance of SD-HRRN

Nikravan et. al [3] proposed a genetic scheduling algorithm
for Distributed Computing System (DCS). The algorithm is
[3]:
1. Generate initialize population
2. Evaluate all individuals in that population.
3. For i=1 to 2*POPSIZE do

Select two chromosomes from the population.
(Parent 1 and Parent 2)
and parent 2 from population;
Child 1 and Child 2 Crossover (parent1,
parent2);
 Child 1 Mutation (Child 1);
 Child 2 Mutation (Child 2);
Add (new temporary population, Child 1, Child 2

4. End For;
Make (new population, new temporary population,
population);
Population = new population;

5. While (not termination condition);
6. Select Best chromosome in population as solution and

return it;
7. End

5.2 Comparison of Performance:

Table -3: Performances of Referenced Algorithms
Paper Algorithms Avg. TAT Avg.

WT

Kolipakula
et. al
[1]

Round Robin 30.66 22.5

FCFS 22.67 14.5

SJF 20.33 12.33

HRRN 24.33 16.16

Priority-Based 26.33 18.16

Hybrid
Algorithm

21.16 13

Tahhan et.
al [7]

Round Robin 15.7 10.1

Priority-Based 15.8 10.1

NOPSACK 11.98 6.8

Nie et. al
[9]

FCFS 2.84 4.92

SJF 1.92 2.23

HRRN 2.5 2.11

MTSHRRN 2.9 2.52

Observing the results in Table 3, Hybrid algorithm[1] is
surely better based upon the Turnaround Time and
Waiting Time of Round Robin and Priority-Based
algorithms when compared to NOPSACK[7] and also, than
MTSHRRN[9] based on the results of FCFS, SJF and HRRN.

6. CONCLUSION

From the study conducted, we can conclude that process
scheduling being an important part of any modern
operating system can be implemented in several ways.
Several methods have been in use for decades with each
having their own implications and shortcomings. These
have been tried to solve by the use of newer approaches
with their implications and shortcomings. Therefore,
improvement in scheduling algorithms being a chain of
betterments. We expect this study to be helpful for further
development of newer algorithms, which might enhance
the efficiency of computers.

7. REFERENCES

[1] K. Venkata Manishankar, "A New Hybrid Scheduling

Algorithm for Enhancement of CPU Performance",
International Journal for Research in Applied Science
and Engineering Technology, vol. 8, no. 6, pp. 2483-
2490, 2020. Available: 10.22214/ijraset.2020.6400.

[2] "Real Time Systems - GeeksforGeeks", GeeksforGeeks,
2020. [Online]. Available:
https://www.geeksforgeeks.org/real-time-systems/.

[3] M. Nikravan and M. Kashani, "A genetic Algorithm for
Process Scheduling in Distributed Operating Systems
considering Load Balancing", 21st European
Conference on Modelling and Simulation, 2007.

[4] K. Ramamritham and J. Stankovic, "Scheduling
algorithms and operating systems support for real-time
systems", Proceedings of the IEEE, vol. 82, no. 1, pp. 55-
67, 1994. Available: 10.1109/5.259426.

[5] A. Negi and K. Pusukuri, "Applying Machine Learning
Techniques to improve Linux Process Scheduling",
TENCON 2005 2005 IEEE Region 10, 2005.

[6] J. Jose, O. Sujisha, M. Gilesh and T. Bindima, "On the
Fairness of Linux O(1) Scheduler", International

0

10

20

30

40

50

F
C

F
S

S
J
F

S
R

T
F

R
R

L
R

T
F

L
J
F

P
ri
o
ri
ty

H
y
b
ri
d

S
D

J
o
b
 M

ix

H
R

R
N

S
D

 -
 H

R
R

N

Avg. TAT

Avg. WT

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 07 ISSUE: 08 | AUG 2020 WWW.IRJET.NET P-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4136

Conference on Intelligent Systems Modelling and
Simulations, pp. 668-674, 2014.

[7] N. Tahhan and M. Alasaady, "New Optimized Priority
CPU Scheduling Algorithm by using Knapsack
(NOPSACK)", Global Research and Development Journal
for Engineering, vol. 5, no. 6, pp. 24-31, 2020.

[8] Neelakantagouda Patil,"A Knapsack Based CPU Process
Scheduling Using Neelsack Algorithm", (IJSEAS)
International Journal of Scientific Engineering and
Applied Science, Volume-1, Issue-7, pp. 138-144, 2015.

[9] B. Nie, J. Du and G. Xu, "A New Operating System
Scheduling Algorithm", Springer-Verlag Berlin
Heidelberg 2011, pp. 92–96, 2011.

