
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3472

Phoenix Gaming Assistant App - an Assistant App for the Physically

Disabled

Anjali E. Chaudhari1, Sharvai Patil2, Shivam Mahajan3, Siddharth Umachandar4, Prof. Rohini

Nair5

1-4Student, K. J. Somaiya College of Engineering, Maharashtra, India
5Professor, K. J. Somaiya College of Engineering, Maharashtra, India

---***--

Abstract - In this paper, we shall be laying out the

process for the development of an Android application that
uses Android accessibility events and Speech-to-Text
technology to allow users to play Android games using only
their voice. For the Speech-to-Text technology we shall be
using the Porcupine framework developed by Picovoice. The
Android accessibility services are used to execute touch
events on the device’s screen at a location called the
‘Pressure Point’. The user chooses where to place the
pressure point and thus, where to carry out the touch event
when the trigger word ‘porcupine’ is said by the user. We
also analysed the time between the utterance of ‘porcupine’
and the execution of the touch event for various Android
devices.

Key Words: Android Development, Android
Accessibility Services, Porcupine, Pressure Point,
Speech-to-Text

1. INTRODUCTION

With the advent of mobile technology, most desktop
applications have been adapted to be used on mobile
devices, especially smartphones. Games are a big chunk of
these applications. From idle tap-tap simulators to fast
paced first person shooters, games have become a part
and parcel of the “Mobile Experience.”

Unfortunately, today, people that are missing a limb or
both, are devoid of the enjoyable experience of playing
mobile games. There are hardly any games on the app
store that are made to accommodate the needs of these
people. Besides, games that are speech driven also exist in
miniature numbers. Plus, there is no application that
enables physically handicapped persons to play any game
using their voice.

Our project aims at allowing users to play android games
using only their speech. We will be using speech-to-text
technology to achieve this task. First, the user will place a
‘pressure point’ that is, a point on the screen whose
coordinates are saved by the app. When the player speaks
the word ‘porcupine’, a touch event will be executed at the

pressure points location thus, making the game deal as if
someone is playing with their fingers.

Our aim is to help specially-abled players, get an equally
immersive experience as that of normal players. Also, we
plan to release this app on the Google Playstore in the
coming future to allow anyone with an android device to
play.

2. LITERATURE SURVEY

Reference [1] makes a comparative analysis of the feature
extraction techniques LPC and MFCC on the basis of noise
analysis. LPC shows more deviation for similar kinds of
noise than MFCC does.

Reference [2] essentially lays down an overview of the
entire speech to text process. It identifies the steps that
need to be carried out for speech recognition.

Reference [3] gives an in-depth view of the MFCC Feature
Extraction technique that we are going to use for our
project.

3. OBJECTIVES OF THE STUDY

Our objective is to propose a model for an Android
application that shall use the porcupine framework
provided by Picovoice and Android accessibility services
that shall be used to execute touch events on other
android applications efficiently.

4. PROPOSED SYSTEM

4.1 System Architecture

We are proposing an app that shall behave as an overlay
over the games that the user wishes to play. Our app can
then be used to control these games using the Speech-To-
Text technology. The app will allow players to set a
‘Pressure Point’ on any part of their device’s screen which
can then be controlled with their speech, allowing the
players to play most single-tap Android games available
today (eg. Tap-Tap Dash, Stack, etc.)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3473

Fig -1: System Architecture

● Pressure Point: The pressure point is a
coordinate which is mapped to a label ‘porcupine’. When
the label is said by the player, a touch event shall be
executed at the spot of the coordinate.
● Porcupine Framework: This is a Speech-To-Text
framework for android developed by the company
PicoVoice. The framework constantly listens to the voice
input from the mobile device’s microphone. These voice
samples from the user are analyzed and using speech to
text recognition, and it is determined if the user said the
word ‘Porcupine’ or not.
● Touch Event: Once the user says the word
porcupine, a touch-event is executed at the location given
by the coordinates on the screen thus allowing the user to
play the game using only their voice.

5. IMPLEMENTATION DETAILS

5.1 Placing of Pressure Point on the Screen

Before the app can begin executing touch events, a
pressure point needs to be placed anywhere on the
display. This is done by loading a screen where the user
needs to long press at the location where he wishes to
have a pressure point. The steps involved in this process
are:
● The user has to long press to place a pressure
point. This long press is detected using the onLongPress()
function which is provided under the GestureDetector
class.
● Using getX() and getY() functions, we get the x
and y coordinates of the point where the user does the
long press.
● The coordinates that we fetched are sent to the
PorcupineService class using an Intent using the function
putExtra().
● In the PorcupineService class, using the intent, we
get the coordinates that we sent from the MainActivity
class using getIntentExtra() function.
The packages used for this to be carried out are:
● GestureDetector: this is used to detect the long
press

● Intent: this is used to transfer data to the
PorcupineService class
The functions used are:
● getX()
● getY()
● putExtra()
● getIntentExtra()

5.2 Speech-to-Text Recognition

The speech to text recognition ability is provided by the
Porcupine framework for android. We provide a path to
the model and the keywords along with the sensitivity to
the framework. It fetches audio input from the device
microphone and analyses it in real-time. The steps
involved in this process are:
● We use the PorcupineService class for Speech-to-
text recognition.
● We create an object of the PorcupineManager
class inside the PorcupineService class.
● We pass the modelFilePath, keywordFilePath and
the sensitivity to the PorcupineManager constructor. The
modelFilePath is the path to the speech-to-text recognition
neural network model and the keywordFilePath is the
path to the trigger word file (.ppn) which is included with
the porcupine framework.
● We then call the star() function in the
PorcupineManager class to begin the speech-to-text
recognition.
● To send a notification about the number of times
the keyword was recognized successfully, we use the
NotificationManager class and create its object and pass
the contentTitle, contentText, appIcon and the
contentIntent to its constructor and then call its build
function.
The packages used for this to be implemented are:
● PorcupineManager: this is used for providing the
speech-to-text detection
● PorcupineManagerException: this is used to
handle any exceptions that might arise during the speech-
to-text detection
● NotificationManager: this is used to provide the
ability of sending notifications through the app.
The functions used are:
● start(): to start the PorcupineService
● build(): this is used to build a notification

5.3 Touch Event Execution

Touch events are executed using Accessibility services.
These need to be enabled for the app from the device
settings menu. The steps involved to execute touch events
are:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3474

● We create a function called createClick() which
takes the x and y coordinates of the pressure point and
returns a GestureDescription.
● A path to the location where the touch event is to
be executed is found by creating an object called clickPath
of the class Path. We then call the function moveTo() and
pass the x and y coordinates of the Pressure Point.
● Then, using the clickstroke and clickbuilder
objects of GestureDescription.StrokeDescription and
GestureDescription.Builder classes, we execute the touch
event at location specified by x and y.
● When executing the touch event, the
onCompleted() function is called and overrides its base
class function.
● Once the touch event has been executed, the
onCancelled() function is called and overrides its base
class function.
The packages involved in the execution of touch events
are:
● AccessibilityService
● GestureDescription
● Path
The functions involved in this are:
● dispatchGesture()
● createClick()
● moveTo()
● addStroke()
● build()
● onCompleted()
● onCancelled()

6. RESULTS AND DISCUSSION

6.1 User Interface Screens

In the following screenshots we have displayed the
implementation for our proposed application for two
games: Tap-Tap Dash and Stack.

Fig -2: Opening the Gaming Assistant App

Fig -3: Placing the Pressure Point at (494, 1232)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3475

Fig -4: Start the app

Fig -5: Open the Game Tap-Tap Dash!

Fig -6: Before the Touch Event

Fig -7: “Porcupine” detected

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3476

Fig -8: Touch Event executed

Fig -9: Testing the game “Stack”

Fig -10: “Porcupine” detected and block placed

6.2 Response Time Analysis

The helper can load the overlay app and can place the
overlay anywhere on the screen. There is an “X” icon on
top of the overlay that can be used to close this
application.

The following are the observed response times that were
calculated using an external hand-held timer.

Table -1: Response Time for the game ‘Tap Tap Dash!’

Sr. No. Mobile Device RAM Process
ing
Speed

Response
Time

1 OnePlus 3T 6GB 1.6 GHz < 1sec

2 Redmi Note 4 4GB 2 GHz < 1sec

3 Redmi 7A 2GB 2 GHz < 1sec

4 RealMe C3 3GB 2 GHz < 1sec

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3477

Table -2: Response Time for the game ‘Stack’

Sr. No. Mobile Device RAM Process
ing
Speed

Response
Time

1 OnePlus 3T 6GB 1.6 GHz < 1sec

2 Redmi Note 4 4GB 2 GHz < 1sec

3 Redmi 7A 2GB 2 GHz < 1sec

4 RealMe C3 3GB 2 GHz < 1sec

Since there is no way to calculate the response time
internally without increasing the complexity of the code
such that the response time in-turn gets affected.
Therefore, as observed all response times are noted to be
less than 1 second.

7. CONCLUSION

We have developed an application that we hope shall help
specially abled people to play mobile games that they
usually can’t enjoy otherwise. In order to achieve this, we
have used speech-to-text conversion technology to allow
the players to use voice commands in order to execute
touch events on their device’s screen. Our main aim was to
provide small response times so as to guarantee an
immersive gameplay. We have selected 2 games in order
to analyze and compare the response times on 4 mobile
devices and games. The result of this study is that for all
the tested devices and games, the app gives a response
time that is less than one second. Thus, we can extrapolate
this conclusion to claim with confidence that the app gives
a response time in this range for most mobile devices and
games.

As per our aim to provide an immersive experience, we
are satisfied with our proof of concept and are confident
that this shall bring a positive impact in the lives of
specially abled people.

8. FUTURE SCOPE

● Including custom trigger words that act as labels
for pressure points.
● Ability to add more than one pressure point.
● Adding swipe and long hold events.
● Release to the google play store.

ACKNOWLEDGEMENT

We would like to extend our thanks to K. J. Somaiya
College of Engineering, for giving us the opportunity to
engage in this project.

We would also like to thank our mentor Prof. Rohini Nair
for her constant help and support throughout the project.
We could count on her help in rectifying our mistakes and
steering us in the right direction every step of the way.

Finally, we would like to thank everyone that assisted us
directly as well as indirectly through the process of the
development of the project.

REFERENCES

[1] A comparative Performance Analysis of LPC and MFCC
for Noise Estimation in Speech Recognition Task by Syed
Sibtain Khalid, Safdar Tanweer, Dr. Abdul Mobin, Dr.
Afshar Alam (2017)

[2] Speech Feature Extraction Techniques: A Review by
Shreya Narang, Ms. Divya Gupta (2015)

[3] An Approach to Extract Feature using MFCC by
Parwinder Pal Singh, Pushpa Rani (2014)

[4] Picovoice Porcupine framework:

https://github.com/Picovoice/porcupine

https://github.com/Picovoice/porcupine

