
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 905

Design and Verification of Peripheral Component Interconnect Express

(PCIe) 3.0

K U Prasad Bhat1, Hrishikesh Ravish2, Anirudha V3, Prabhavathi P4, Kumaraswamy K V5

1,2,3Student, Department of Electronics and Communication Engineering, BNMIT, Bengaluru, India
4Associate Professor, Department of Electronics and Communication Engineering, BNMIT, Bengaluru, India

5Senior Technical Manager, Trident Techlabs Pvt. Ltd, Bengaluru, India
---***--
Abstract - PCIe (Peripheral Component Interconnect
Express), is a common motherboard interface standard for
hard drives, SSDs, Ethernet and Wi-Fi connections as well as
graphic cards with a computing system. PCIe provides multiple
direct links that allows multiple devices to communicate with
each other simultaneously. Many different versions of PCIe are
developed in order to increase speed, bandwidth and data
width. Hence, this project aims at developing a soft IP for PCIe
3.0 standard protocol. This had been modeled in Verilog HDL,
simulated in Questa Simulator and synthesized in Precision
RTL. PCIe 3.0 soft IP is developed as per FPGA design
methodology with a clock frequency of 100 MHz, for Xilinx
Vivado device. Equivalence Check was performed using
FormalPro. Finally, the proposed design was checked for DO-
254 standard.

Key Words: PCIe 3.0, Soft IP, Verilog HDL, FPGA,
Simulation, Synthesis, Equivalence Check, Gate-Level
Simulation, DO-254 Standard.

1. INTRODUCTION [1]

PCIe (Peripheral Component Interconnect Express), is a
high speed computer expansion bus standard, designed to
replace the older PCI, PCI-X and AGP bus standards. It is the
common motherboard interface for personal computers'
graphic cards, hard drives, SSDs, Ethernet and Wi-Fi
hardware connections. Conceptually, the PCI Express bus is a
high-speed serial replacement of the older PCI/PCI-X bus.
One of the key differences between the PCI Express bus and
the older PCI is the bus topology; PCI uses a shared parallel
bus architecture, in which the PCI host and all devices share
a common set of address, data and control lines. In contrast,
PCI Express is based on point-to-point topology, with
separate serial links connecting every device to the root
complex (host). PCIe has numerous improvements over the
older standards, including higher maximum system bus
throughput, lower I/O pin count and smaller physical
footprint, better performance scaling for bus devices, a more
detailed error detection and reporting mechanism

(Advanced Error Reporting, AER), and native hot-swap
functionality. More recent revisions of the PCIe standard
provide hardware support for I/O virtualization. Format
specifications are maintained and developed by the PCI-SIG
(PCI Special Interest Group), a group of more than 900
companies that also maintain the conventional PCI
specifications.

1.1 PCI EXPRESS LINK[1]

Fig-1: PCIe Link

Figure 1 represents the PCI Express link. A Link represents a
dual-simplex communications channel between two
components. The fundamental PCI Express Link consists of
two, low-voltage, differentially driven signal pairs: a
Transmit pair and a Receive pair.

1.2 PCIe 3.0 LAYERED TOPOLOGY[1][2]

PCI Express protocol communication mechanism consists of
three layers.

 Transaction Layer
 Data Link Layer
 Physical Layer

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 906

Fig-2: Overview of PCIe Protocol Layering

The communication between the target (Rx) and initiator
(Tx) happens as per the layers, shown in Figure 2. PCI
Express uses packets to communicate information between
components. Packets are formed in the Transaction and Data
Link Layers to carry the information from the transmitting
component to the receiving component. As the transmitted
packets flow through the other layers, they are extended
with additional information necessary to handle packets at
those layers. At the receiving side, the reverse process occurs
and packets get transformed from their Physical Layer
representation to the Data Link Layer representation and
finally (for Transaction Layer Packets) to the form that can
be processed by the Transaction Layer of the receiving
device.

1.3 FPGA DESIGN METHEDOLOGY

Fig -3: FPGA Design flow diagram

 Specification & Requirements

At First, the FPGA design functionality and
power/area/speed specifications are decided. The
design architecture is then created based on these
specifications. The architecture would be normally
partitioned into sub-modules that interact with each
other to form the system level module. The FPGA
development board on which the design will be
uploaded should also be chosen in accordance with
price budget. Table 1 gives a brief overview of the
design specification considered for this project work
under FPGA Design methodology.

Table -1: FPGA Design Specification for implementing
PCIe 3.0

Design
Implementation
Methodology

FPGA

FPGA Board
Specification

Vendor Xilinx

Family Spartan-6

Device 6SLX16CSG324

Speed Grade -3

Frequency of
Operation

100 MHz

Data Input 32-bit

Reset Active Low

Header

FA(base-16) for Resource
Request*

AF(base-16) for Completion
Request*

Trailer 77(base-16)*

[*Examples of headers and trailers are used and are for
illustration purpose only]

 Design Entry

Design files could be uploaded to the FPGA CAD tool in
either schematic format or in HDL (Hardware
Description Language) format as indicated in Figure 3.
In this project the design functionality and a testbench
to verify it, has been written in Verilog language.

 RTL Simulation with Code Coverage

It is performed before synthesis. A simulator tool will
take a Verilog source code and a testbench as inputs.
Input files are compiled, optimized for all coverages and

Encloses operations performed in this project

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 907

simulated. Waveform, schematics and percentage of
coverage reports are the outputs of simulation process.

 Logic Synthesis

Synthesis is the transformation of RTL Design to
Technology specific gate level netlist considering all
design and library constructs. Input to the synthesis files
would be source code along with constraint file in .sdc
(Synopsis Design Constraints) format. At this stage an
FPGA device on which the design will be implemented is
chosen and synthesis is carried out for the same device
specification. Outputs of synthesis process are gate-level
netlist, Technology schematic, SDC (Synopsis Design
Constraints), SDF (Standard Delay Format), synthesis
reports (Timing and area).

 Equivalence Check

Here the functional equivalence is checked between RTL
and gate-level netlist.

 Gate-Level Simulation

Here the gate-level netlist is considered instead of RTL
for verification. The same testbench is used as that was
used during RTL simulation. Further, the simulated
waveforms of RTL and gate-level simulation are
compared to identify difference points.

 Design Implementation

The Design Implementation process involves three
steps: Translate, Map, Place&route.

 Static Timing Analysis (STA)

Static Timing Analysis is carried out after the design
implementation to check that the design follows the
timing constraints. It checks all the possible signal
propagation paths for delays.

 Bit stream file generation

The implemented design must then be converted into a
Bit stream, using a bit-generation tool, so that the FPGA
platform can understand the design. The Bit stream file
is then stored on the FPGA memory card, so it can be
uploaded by the board.

 Downloading onto FPGA

Now the design must be loaded onto the FPGA. After the
Bit stream file is uploaded on the FPGA, in-circuit
verification is carried out to ensure that correct circuit
implementation has taken place. This is done using the
hardware debugging IPs integrated in the FPGA board.

In this project operations till gate-level simulation have
been carried out.

1.4 Requirement Tracing and DO-254 Standard
rule Checks[11]

DO-254 is defined as a requirements-driven process-
oriented safety standard used on commercial electronics
that go into aircraft. (Conceptually speaking, this standard
applies to all electronics in anything that flies or could crash
and pose a hazard to the public.)

Based on their safety criticality, different parts of the aircraft
are designated different Design Assurance Levels (DALs) as
shown in Table 2. A system that is highly critical will receive
a higher DAL, with DAL A reserved for the most critical
systems. This criticality is determined by a safety assessment
of the aircraft and interacting systems to determine the
required target failure rate. For DO-254, the difference
between meeting DAL A and DAL B is minimal, so they are
frequently referred to as “DAL A/B”.

Table -2: Design Assurance Levels (DALs)

Design
Assurance

Level (DAL)
Description

Target
System
Failure

Rate

Example
System

Level-A
(Catastrophic)

Failure causes
crash, deaths

<1 x 10-9
chance of
failure/flig
ht-hr

Flight
Controls

Level-B
(Hazardous)

Failure may
cause crash,
deaths

<1 x 10-7
chance of
failure/flig
ht-hr

Braking
systems

Level-C
(Major)

Failure may
cause stress,
injuries

<1 x 10-5
chance of
failure/flig
ht-hr

Backup
systems

Level-D
(Minor)

Failure may
cause
inconvenience

No safety
metric

Ground
navigation
systems

Level-E (No
Effect)

No safety
effect on
passengers/cr
ew

No safety
metric

Passenger
entertainme
nt

As DO-254 is a process-oriented standard, it is important to
understand the overall flow, shown in Figure 4.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 908

Fig -4: DO-254 Flow diagram

 Planning

Planning is a critical piece of the DO-254 certification. It
is important to document project flow up-front and
approach the certification official to gain their approval
early in the project. Typically the high-level plans are
documented in the Plan for Hardware Aspects of
Certification (PHAC commonly pronounced as “pea-
hack”). This plan should include all aspects of the project
and how designer will meet the DO-254 requirements.

 Requirements Capture and Validation

The DO-254 specification utilizes a requirements-based
design and verification approach. This means that the
entire hardware project revolves around a formal set of
high-level requirements. Before any RTL is written, each
of these requirements must be written down, given a
unique reference name, and reviewed for a variety of
criteria including understandability, testability,
verifiability, etc.

 Conceptual Design

A larger design is chunked down into a smaller and
more manageable sub-blocks. This might be thought of
as a high-level block diagram. (Note: For a sufficiently
simple system, the conceptual design step may be
skipped or merged with the Detailed Design step).

 Detailed Design

This step is where the real design work takes place. For
each component detailed in the conceptual design, the
RTL hardware design should implement each and every
requirement for that component. Each high-level
requirement should be “traced” to the top-level RTL
module implementing that requirement. This
traceability can happen in a variety of ways, and it is up
to the implementation team to determine the desired
approach. On the other hand, the verification team
should create verification tests to verify that each
requirement has been met by the RTL, including a
message to the log file showing the expected result, the
actual result seen in the simulation and the result
(pass/fail). Each test must also be linked to the high-

level requirement, including the pass/fail criteria (all
must pass).

 Implementation
The implementation process is technology specific. For
an RTL-based design (such as an FPGA or ASIC), the
implementation step includes the synthesis process of
converting RTL into actual technology-specific gates. For
an FPGA, this also includes creating the programming
file to load into the FPGA. For an ASIC, this step includes
the backend design/verification steps. Here, the main
point is to follow the process detailed in PHAC
document up-front. This is due to the fact that there will
be significant testing performed on the final design.
Traceability analysis for all the above steps is performed
as shown in Figure 5.

Fig -5: Requirement-driven flow, including traceability

 Production Transition

This is the final stage, where design is transferred to
manufacturing unit. This stage ensures aspects such as:

 Use of correct version of the programming file
during the manufacturing process.

 Use the of correct design methodology (ASIC
and FPGA).

 Handling of errata for the device used.

 Process Assurance

Along with DO-254-compliant plan, designer should also
document to meet plan, typically documented in a
Process Assurance or Quality Assurance plan. This plan
documents who will be designated as the process
assurance person or organization to double check that
the PHAC and other plans are followed, and how this
checking will be performed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 909

 Configuration Management

In addition to the Process Assurance plan, designer
should also create a Configuration Management (CM)
plan. In this plan, documentation of how to ensure the
development process and artifact generation process is
repeatable. This typically includes a revision control and
bug tracking systems for all design/verification files, as
well as all documentation and artifact documents. The
DO-254 specification refers to the importance of
tracking all design artifacts throughout the design
process. Certification officials understand that design
and verification files will go through much iteration.
However, once they are stable, designers are expected to
“baseline” the design. In typical commercial electronics,
this is analogous to a design freeze a point in a schedule
when subsequent changes are closely controlled and
documented, as shown in Figure 6.

Fig -6: Example for Design process and baselines

 Certification Liaison

Typically, a single person is selected as the main
communication point for the certification officials. This
single point of contact enables clean communication,
and ensures that the certification official obtains a clear
view of the overall design process. Typically, this
certification liaison has previous DO-254 experience,
with the skill to communicate the details in a way that
the certification official can understand.

 In-Target Testing

In-target testing is a critical component of the DO-254
specification, and is a required part of the overall flow.
From a DO-254 perspective, all verification done in a
simulator was performed on a model of the design.
There is no guarantee that the model used in simulation
matches the actual device as it sits on the target board
that will be installed in the aircraft.

 DO-254 Standard Rule sets[12]

For a design to obtain DO-254 Certificate it should
satisfy all the rules mentioned in Table 3.

Table -3: DO-254 standard rule sets

Coding Practices Design Reviews Safe Synthesis

Assign Value Before

Using

Avoid Large Design

Files
Asynchronous Block

Assignment Style

(Verilog) -

Combinatorial Blocks

Inferring Latches

Avoid Mixed Case

Naming (for

Differentiation)

Avoid

Asynchronous Reset

Release

Assignment Style

(Verilog) - Pure

Combinatorial Blocks

Avoid Using Tab
Avoid Clock Used As

Data

Assignment Style

(Verilog) - Sequential

Blocks

Ensure Consistent

File Header

Avoid

Combinational

Feedback

Avoid Duplicate Signal

Assignments

Ensure Consistent

Indentation
Avoid Feed troughs

Avoid Hard-Coded

Numeric Values

Ensure Proper

Placement of

Comments

Avoid Gated Clocks

Avoid Hard-Coded

Vector Assignments

Ensure Sufficient

Comment Density
Avoid Implied Logic

Avoid Incorrect VHDL

Type Usage

Ensure Unique Name

Spaces

Avoid Initialization

Assignments

Avoid Mismatching

Ranges

Use Separate

Declaration Style

Avoid Internally

Generated Clocks

Avoid Unconnected

Input Ports

Use Separate

Statement Style

Avoid Internally

Generated Resets

Avoid Unconnected

Output Ports
Use Statement Labels

Avoid Latch

Inference

Avoid Unused

Declarations

Avoid Mixed

Polarity Reset

Define All Design

Units

Avoid Multiple

Drivers

Ensure Complete

Sensitivity List

Avoid Multiple

Waveforms

Ensure Consistent

FSM State Encoding

Style

Avoid Shared Clock

and Reset Signal

Ensure Proper Sub-

Program Body
 Avoid Snake Paths

Ensure Safe FSM

Transitions

Avoid Undriven &

Unused Logic

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 910

Mixed Variable

Assignments

Avoid Uninitialized

Deferred Constants

Avoid Unresettable

Register

Continuous

Assignments

Ensure Consistent

Vector Order

Ensure Nesting

Limits

Ensure Proper Case

Statement

Specification

Ensure Register

Controllability

Unsynthesizable

Event Controls

2. PROPOSED DESIGN

The proposed design will take a 32-bit data as input from the
user. Then the input data flows through all the three layers
of PCIe naming transaction, data-link and physical layers and
is processed at each of the above three layers present at
transmitter and receiver respectively, according to their
functionalities. At receiver, received data will be verified at
each of the layer to ensure data integrity, data reliability and
error free transmission through the physical links. Proper
handshake mechanism will be used by receiver to notify the
transmitter about the status of the data. Block diagram
emphasizing the input and output ports of the PCIe 3.0
design is as shown in Figure 7.

Fig -7: PCIe 3.0 Top Module Block diagram

The flow chart representing a 32-bit input data passing
through all the layers and components present in PCIe 3.0
has been indicated in Figure 8.

Fig -8: Data processing across all three layers of PCIe 3.0

Components present in each of the three layers are
explained in sub-sections below.

2.1 TRANSACTION LAYER[1][3]

 Header-Trailer Block[1]

At transmitter, when user inputs a 32-bit data, it is
broken and stored in a FIFO buffer of 8-bit width and 6
stacks as shown in Figure 8. 8-bit Header and trailer
values assumed in Table 1 are used only for illustration
purpose.

 32-bit ECRC (End-to-End Cyclic Redundancy Check)
block[3]

At transmitter, for every 8-bit data a 32-bit ECRC value
is computed and stored in CRC field of Transaction
Layer Packet (TLP).

Again at receiver a 32-bit ECRC value is computed for
each received TLP. The received ECRC value is
compared with ECRC value transmitted. If they are
equal, then an ACK[5] (Acknowledge) signal is sent to the
transmitter notifying data has been received with no
corruption; else a NACK[5] (No Acknowledge) signal is
sent to the transmitter notifying a corrupted data has
been received and request to retransmit the same TLP.
From this end-to-end data reliability is ensured.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 911

2.2 DATA-LINK LAYER[1]

At Data-link layer the data packet is called Data-Link Layer
Packet (DLLP). Important component present in this layer is
32-LCRC block.

32-bit LCRC (Link Cyclic Redundancy Check) block

At transmitter, for every 8-bit data a 32-bit LCRC value is
computed and stored in CRC field of Transaction Layer
Packet (TLP).

Again at receiver a 32-bit ECRC value is computed for each
received TLP. The received LCRC value is compared with
LCRC value transmitted. If they are equal, then an ACK[5]
(Acknowledge) signal is sent to the transmitter notifying
data has been received with no corruption; else a NACK[5]
(No Acknowledge) signal is sent to the transmitter notifying
a corrupted data has been received and request to
retransmit the same TLP. From this, whether an error is
inserted at the physical link or not can be verified and data
security can be ensured.

2.3 PHYSICAL LAYER[1]

The following components are present in physical layer.

 Scrambler and Descrambler

At transmitter, the input 8-bit data is scrambled with the
help of LFSR and a scrambled data is produced.
Similarly, at receiver, the received data is descrambled
to retrieve original DLLP.

 8b/10b Encoder and 10b/8b Decoder

At transmitter, input data is encoded using 8b/10b
Encoder. At receiver, received data is decoded using
10b/8b Decoding mechanism.

 Parity Generator and Checker

At transmitter, the parity of encoded data is found and
appended with the data itself, to make data always
possess even parity. At receiver, the parity of received
data is found and it is checked for even parity. If the
received data has even parity, then the data is sent for
data-link layer for further processing; else, phy_err
signal goes high indicating data has been corrupted and
discard the data and request sender to retransmit the
data.

 Serializer and Deserializer (SERDES)[4]

At transmitter end the parallel data needs to be
serialized for speedy transmission through the link.

Hence a PISO (Parallel In Serial Out) converter is used to
convert parallel data to serial data.

At receiver end the serial data needs to be converted to
parallel data for further processing at receiver. Hence a
SIPO (Serial In Parallel Out) converter is used to convert
serial data from the physical link to parallel data.

All the components are integrated at transmitter and
receiver to obtain the top-level module of PCIe 3.0. Block
diagram representing the top module of PCIe 3.0 is
shown in Figure 8.

3. RESULTS AND INFERENCES

The design of PCIe 3.0 was carried out in Verilog HDL. As
mentioned in section 2 a modular architecture was
incorporated with layering. Verilog version 2001 was used
for developing the source code.

3.1 MODULE WISE SIMULATION RESULTS OF PCIe 3.0

This section consists of the simulation results of each of
the module present in design hierarchy as explained in
section 2.

 32-bit ECRC module

It takes 32-bit data as input and computes a 32-bit ECRC
(End-to-End Cyclic Redundancy Check) value as
indicated in Figure 9. For example in the Figure 10 input
to the ECRC block is (fofofofo)16 and the generated ECRC
value is (6b6ec559)16.

Fig -9: RTL schematic of 32-bit ECRC computation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 912

Fig -10: Simulation waveform of 32-bit ECRC computation

 32-bit LCRC module

It takes 32-bit data as input and computes a 32-bit LCRC
(Link Cyclic Redundancy Check) value as indicated in
Figure 11. For example in the Figure 12 input to the
LCRC block is (00000003)16 and the generated LCRC
value is (000000c0)16.

Fig -11: RTL Schematic of 32-bit LCRC

Fig -12: Simulation waveform of 32-bit LCRC computation

 8 bit Scrambler and Descrambler

Scrambler and Descrambler take 8 bit data as input and

produce an 8-bit scrambled output as shown in Figure

13. In the waveform indicated in Figure 14, input is

(01010101)2 and the scrambled value is (11100111)2.

Similarly Figure 15 indicates the simulation waveform

of Descrambler module.

Fig -13: RTL Schematic of 8-bit Scrambler (Left) and

Descrambler (Right)

Fig -14: Simulation waveform of 8-bit Scrambler

Fig -15: Simulation waveform of 8-bit Descrambler

 8b/10b Encoder

Figure 16 and Figure 17 indicates RTL schematic and
output waveform of 8b/10b encoder respectively. An 8
bit data (000)16 is encoded as (0B9)16 as shown.

Fig -16: RTL Schematic of 8b/10b Encoder

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 913

Fig -17: Simulation waveform of 8b/10b Encoder

 10b/8b Decoder

Figure 18 and Figure 19 indicates RTL schematic and
output waveform of 10b/8b decoder. A 10 bit data
(0B9)16 is decoded as (000)16 as shown.

Fig -18: RTL Schematic of 10b/8b Decoder

Fig -19: Simulation waveform of 10b/8b Decoder

 Parity Generator and Checker

Figure 20 and Figure 21 indicates RTL schematic and
output waveform of Parity generator and checker block
respectively. An 8 bit data (11100101)2 has an odd
parity which is indicated by parity_bit as shown. As
parity bit is high, which indicates the data is of odd
parity and hence reject data is high as shown.

Fig -20: RTL Schematic of Parity generator and checker

Fig -21: Simulation waveform of Parity generator and
checker

 16 bit Serializer

Figure 22 and Figure 23 indicates RTL schematic and
output waveform of 16 bit serializer respectively. It
converts parallel data into serial data as shown.

Fig -22: RTL Schematic of Serializer

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 914

Fig -23: Simulation waveform of 16 bit Serializer

 16 bit Deserializer

Figure 24 and Figure 25 indicates RTL schematic and
output waveform of 16 bit Deserializer respectively. It
converts serial data into parallel data as shown.

Fig -24: RTL Schematic of Deserializer

Fig -25: Simulation waveform of 16 bit Deserializer

3.2 RTL SIMULATION RESULTS OF INTEGRATED DESIGN

OF PCIe 3.0 USING QUESTASIM

In this project QuestaSim[6] Tool has been used to simulate
the design using a testbench and verify the same through
code coverage. Figure 26 represents simulation waveform of
design PCIe 3.0. It signifies the flow of data through 32-bit
data input and output ports along with 8-bit header
(FA(base-16) for Resource Request and AF(base-16) for
Resource Completion) and trailer frames (77(base-16)) (FA,
AF and 77 are used only for illustration purpose as shown in
Table 1). An I/O delay of 165ns was inferred from the
waveform.

Fig -26: Simulation waveform of PCIe 3.0

The testbench was able to cover 80.43% of entire Verilog
module of PCIe 3.0 as indicated by the coverage analysis
report shown in Figure 27.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 915

Fig -27: Overall Coverage report after modifying the test
bench

3.3 SYNTHESIS RESULTS USING PRECISION RTL PLUS

Precision RTL Plus [7] tool was used for synthesizing PCIe 3.0
design. The FPGA device 6SLX16CSG324 belonging to Xilinx
vendor, Spartan-6 family with speed grade -3 was selected
for the PCIe 3.0 design implementation. Synthesis was
carried out with a device clock frequency of 100 MHz and
5ns I/O delay (As per the specifications listed in Table 1).

RTL Schematic and Technology Schematic of the PCIe 3.0 are
represented by Figure 28 and Figure 29 respectively as
shown. The D Flip flop present at the output terminal ecrc_tx
of RTL schematic shown in Figure 28 has been mapped to a
technology specific entity named FDE by the synthesis tool
as shown in Figure 29.

Fig -28: RTL Schematic of PCIe 3.0

Fig -29: Technology Schematic of PCIe 3.0

Synthesis tool will also dump the timing and area reports.
The summary of synthesis reports is tabulated in Table 4 as
shown below.

Table -4: Summary of Synthesis Reports

Synthesis
Reports

Output Values

Timing Cell delay 79.42%

Net delay 20.58%

Slack 0.538 ns

Area Total number of DFFs 68

Total number of LUTs 53

Total number of
accumulated Instances

131

3.4 EQUIVALENCE-CHECK RESULT USING FORMALPRO

FormalPro[8] tool has been used to check the functional
equivalence between RTL and gate-level netlist. Design A is
chosen as RTL and Design B is chosen as gate-level netlist.
Common section is loaded with FPGA reference libraries
(same as that of used during synthesis).

The synthesis tool will dump a constraint file as an output.
This constraint file is fed to FormalPro as input along with
RTL and gate-level netlist. After performing Equivalence
Check both the designs were found to be equivalent as
shown in Figure 30.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 916

Fig -30: Formal Equivalence Check result after
constraining the design

3.5 GATE-LEVEL SIMULATION RESULT USING QUESTA
SIMULATOR

Again Questa Simulator [6] was used for performing gate-
level simulation. Here instead of RTL, gate-level netlist was
simulated using testbench. The output waveform of PCIe 3.0
gate-level netlist is as shown in Figure 31.

Fig -31: Simulation waveform of gate-level netlist

Comparison between RTL simulation waveform and gate-
level simulation waveform was carried out with the help of
Questa Simulator. Both the waveforms were fed to the tool
and a waveform showing comparison points was generated
as shown in Figure 32. It is inferred from the waveform that,
there were 1001 comparison points in total.

Fig -32: Output of Comparison between RTL and Gate-

Level Simulation Results

3.6 REQUIREMENT TRACEABILITY ANALYSIS RESULTS
USING REQTRACER

Design specification, Product specification and Test plan
related to PCIe 3.0 were written in a word document(.doc)
and kept in a directory. These three documents were fed to
ReqTracer[9] as inputs. A logical link was created between
Test plan and Design specification, and Design specification
and Product specification. Traceability analysis showed 100
percent mapping among all the three as shown in Figure 33.
Figure 34 represents graphical overview of the mapping
among all three files.

Fig -33: 100 percent mapping among Design specification,
Product specification and Test plan

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 917

Fig -34: Graphical View of ReqTracer output

3.7 DO-254 STANDARD RULE CHECK RESULTS USING
HDS

HDL Designer Series (HDS) [10] tool was used to cleanup the
Verilog source code of PCIe 3.0 design. As per the DO-254
standard rule sets mentioned in Table 3. The verilog code
was modified without hampering the functionality of the
design. Figure 35 represents HDS environment where design
file is loaded and tested for DO-254 Standard.

Fig -35: HDS Project Environment along with Design
Checker

Design Checker application is supported by HDS which
checks and validates DO-254 standard for the given design.
The design checker gave a 98 percent pass result for the
developed Verilog code of PCIe 3.0 as shown in Figure 36.

Fig -36(a): Exclusion parameters - DO-254 Rule check

Fig -36(b): Design Quality under DO-254 Rule check

Fig -36(c): DO-254 Rule check

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 918

Fig -36(d): DO-254 Rule Check Violations

Fig -36(e): Failed design units - DO-254 Rule check

After this the DO-254 Standard validated code is simulated
using Questa simulator, synthesized using Precision RTL. All
the tools were invoked within HDS. Figure 37 represents
simulation waveform, Figure 38 and Figure 39 represents
RTL schematic and Technology schematic after synthesis
respectively. Table 5 gives a summary of synthesis reports.

Fig -37: Simulation waveform of DO-254 Standard PCIe
3.0

Fig -38: RTL Schematic of DO-254 Standard PCIe 3.0

Fig -39: Technology Schematic of DO-254 Standard PCIe
3.0

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 919

Table -5: Synthesis Reports summary of DO-254 standard
design

Synthesis

Reports
Output Values

Timing

Cell delay 79.42%

Net delay 20.58%

Slack 0.538 ns

Area

Total number of DFFs 68

Total number of LUTs 53

Total number of

accumulated Instances
131

4. CONCLUSION

PCIe 3.0 was designed, verified and synthesized successfully
with technology library and FPGA as per the standard
protocol. Requirement tracing of project components such as
Design specification, Product specification and Test plan was
achieved. PCIe 3.0 design has validated all the rule sets
present in DO-254 Standard. The soft IP of PCIe 3.0 thus
developed can be taken for physical design.

5. FUTURE SCOPE

Soft IP of PCI e 3.0 can be taken through Physical Design and
Physical Verification. A hard IP can then be integrated with
many platforms and applications.

REFERENCES

[1] “PCI Express® Base Specification Revision 3.0”, by PCI-
SIG, November 2010.

[2] Hiroki Nakamura, Hirotaka Takayama, Yoshiki
Yamaguchi and Taisuke Boku, “Thorough analysis of
PCIe Gen3 Communication”, (IEEE).

[3] Shoeb Mohammed Balabatti, Radha R, April 2014,
“Calculation of ECRC FOR TLP-Packets of PCIe Protocol”,
(IJAREEIE).

[4] Chandana K N, Karunavathi R K, 2015, “Link
Initialization and Training in MAC Layer of PCIe 3.0”,
(IJCSIT).

[5] Gokulakrishnan, Radhakrishnan, December 2016,
“Design and Verification of ACK/ NAK Protocol of PCI
Express Data Link Layer in System Verilog”, (IJRASET).

[6] The Questa Verification Solution by Mentor Graphics

http://www.edmd-solutions.com/wp-
content/uploads/2017/12/Questa_Datasheet.pdf

[7] Precision RTL Plus by Mentor Graphics

http://www.europractice.stfc.ac.uk/vendors/mg_rtl_plu
s_datasheet.pdf

[8] FormalPro by Mentor Graphics

http://www.europractice.stfc.ac.uk/vendors/mg_Forma
lPro_DS.pdf

[9] ReqTracer by Mentor Graphics

http://www.europractice.stfc.ac.uk/vendors/mg_reqtra
cer_datasheet.pdf

[10] HDL Designer Series by Mentor Graphics

https://hornad.fei.tuke.sk/predmety/ncs/FPGA_Advant
age_Documentation/hds_user.pdf

[11] DO-254 Explained by Cadence

https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/solutions/aerospace-
and-defense/do-254-explained-wp.pdf

[12] Graeme Jessiman, May 2016, DO-254 Coding Checks for
RTL Code

https://nmi.org.uk/wp-
content/uploads/2016/05/Mentor-
Graphics_NMI_UK_Seminar_GraemeJ_May2016.pdf

http://www.edmd-solutions.com/wp-content/uploads/2017/12/Questa_Datasheet.pdf
http://www.edmd-solutions.com/wp-content/uploads/2017/12/Questa_Datasheet.pdf
http://www.europractice.stfc.ac.uk/vendors/mg_rtl_plus_datasheet.pdf
http://www.europractice.stfc.ac.uk/vendors/mg_rtl_plus_datasheet.pdf
http://www.europractice.stfc.ac.uk/vendors/mg_FormalPro_DS.pdf
http://www.europractice.stfc.ac.uk/vendors/mg_FormalPro_DS.pdf
http://www.europractice.stfc.ac.uk/vendors/mg_reqtracer_datasheet.pdf
http://www.europractice.stfc.ac.uk/vendors/mg_reqtracer_datasheet.pdf
https://hornad.fei.tuke.sk/predmety/ncs/FPGA_Advantage_Documentation/hds_user.pdf
https://hornad.fei.tuke.sk/predmety/ncs/FPGA_Advantage_Documentation/hds_user.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/solutions/aerospace-and-defense/do-254-explained-wp.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/solutions/aerospace-and-defense/do-254-explained-wp.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/solutions/aerospace-and-defense/do-254-explained-wp.pdf
https://nmi.org.uk/wp-content/uploads/2016/05/Mentor-Graphics_NMI_UK_Seminar_GraemeJ_May2016.pdf
https://nmi.org.uk/wp-content/uploads/2016/05/Mentor-Graphics_NMI_UK_Seminar_GraemeJ_May2016.pdf
https://nmi.org.uk/wp-content/uploads/2016/05/Mentor-Graphics_NMI_UK_Seminar_GraemeJ_May2016.pdf

