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Abstract - PCIe (Peripheral Component Interconnect 
Express), is a common motherboard interface standard for 
hard drives, SSDs, Ethernet and Wi-Fi connections as well as 
graphic cards with a computing system. PCIe provides multiple 
direct links that allows multiple devices to communicate with 
each other simultaneously. Many different versions of PCIe are 
developed in order to increase speed, bandwidth and data 
width. Hence, this project aims at developing a soft IP for PCIe 
3.0 standard protocol. This had been modeled in Verilog HDL, 
simulated in Questa Simulator and synthesized in Precision 
RTL. PCIe 3.0 soft IP is developed as per FPGA design 
methodology with a clock frequency of 100 MHz, for Xilinx 
Vivado device. Equivalence Check was performed using 
FormalPro. Finally, the proposed design was checked for DO-
254 standard. 
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1. INTRODUCTION [1] 

PCIe (Peripheral Component Interconnect Express), is a 
high speed computer expansion bus standard, designed to 
replace the older PCI, PCI-X and AGP bus standards. It is the 
common motherboard interface for personal computers' 
graphic cards, hard drives, SSDs, Ethernet and Wi-Fi 
hardware connections. Conceptually, the PCI Express bus is a 
high-speed serial replacement of the older PCI/PCI-X bus. 
One of the key differences between the PCI Express bus and 
the older PCI is the bus topology; PCI uses a shared parallel 
bus architecture, in which the PCI host and all devices share 
a common set of address, data and control lines. In contrast, 
PCI Express is based on point-to-point topology, with 
separate serial links connecting every device to the root 
complex (host). PCIe has numerous improvements over the 
older standards, including higher maximum system bus 
throughput, lower I/O pin count and smaller physical 
footprint, better performance scaling for bus devices, a more 
detailed error detection and reporting mechanism 

(Advanced Error Reporting, AER), and native hot-swap 
functionality. More recent revisions of the PCIe standard 
provide hardware support for I/O virtualization. Format 
specifications are maintained and developed by the PCI-SIG 
(PCI Special Interest Group), a group of more than 900 
companies that also maintain the conventional PCI 
specifications. 

1.1 PCI EXPRESS LINK[1] 

 
Fig-1: PCIe Link 

Figure 1 represents the PCI Express link. A Link represents a 
dual-simplex communications channel between two 
components. The fundamental PCI Express Link consists of 
two, low-voltage, differentially driven signal pairs: a 
Transmit pair and a Receive pair. 

1.2 PCIe 3.0 LAYERED TOPOLOGY[1][2] 

PCI Express protocol communication mechanism consists of 
three layers. 

 Transaction Layer 
 Data Link Layer 
 Physical Layer 
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Fig-2: Overview of PCIe Protocol Layering 

The communication between the target (Rx) and initiator 
(Tx) happens as per the layers, shown in Figure 2. PCI 
Express uses packets to communicate information between 
components. Packets are formed in the Transaction and Data 
Link Layers to carry the information from the transmitting 
component to the receiving component. As the transmitted 
packets flow through the other layers, they are extended 
with additional information necessary to handle packets at 
those layers. At the receiving side, the reverse process occurs 
and packets get transformed from their Physical Layer 
representation to the Data Link Layer representation and 
finally (for Transaction Layer Packets) to the form that can 
be processed by the Transaction Layer of the receiving 
device. 

1.3 FPGA DESIGN METHEDOLOGY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig -3: FPGA Design flow diagram 
 
 
 
 
 

 Specification & Requirements 

At First, the FPGA design functionality and 
power/area/speed specifications are decided. The 
design architecture is then created based on these 
specifications. The architecture would be normally 
partitioned into sub-modules that interact with each 
other to form the system level module. The FPGA 
development board on which the design will be 
uploaded should also be chosen in accordance with 
price budget. Table 1 gives a brief overview of the 
design specification considered for this project work 
under FPGA Design methodology. 

Table -1: FPGA Design Specification for implementing 
PCIe 3.0 

Design 
Implementation 
Methodology 

FPGA 

FPGA Board 
Specification 

Vendor Xilinx 

Family Spartan-6 

Device 6SLX16CSG324 

Speed Grade -3 

Frequency of 
Operation 

100 MHz 

Data Input 32-bit 

Reset Active Low 

Header 

FA(base-16) for Resource 
Request* 

AF(base-16) for Completion 
Request* 

Trailer 77(base-16)* 

[*Examples of headers and trailers are used and are for 
illustration purpose only] 

 Design Entry 

Design files could be uploaded to the FPGA CAD tool in 
either schematic format or in HDL (Hardware 
Description Language) format as indicated in Figure 3. 
In this project the design functionality and a testbench 
to verify it, has been written in Verilog language.  

 RTL Simulation with Code Coverage 

It is performed before synthesis. A simulator tool will 
take a Verilog source code and a testbench as inputs. 
Input files are compiled, optimized for all coverages and 

Encloses operations performed in this project 
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simulated. Waveform, schematics and percentage of 
coverage reports are the outputs of simulation process. 

 Logic Synthesis 

Synthesis is the transformation of RTL Design to 
Technology specific gate level netlist considering all 
design and library constructs. Input to the synthesis files 
would be source code along with constraint file in .sdc 
(Synopsis Design Constraints) format. At this stage an 
FPGA device on which the design will be implemented is 
chosen and synthesis is carried out for the same device 
specification. Outputs of synthesis process are gate-level 
netlist, Technology schematic, SDC (Synopsis Design 
Constraints), SDF (Standard Delay Format), synthesis 
reports (Timing and area). 

 Equivalence Check 

Here the functional equivalence is checked between RTL 
and gate-level netlist. 

 Gate-Level Simulation 

Here the gate-level netlist is considered instead of RTL 
for verification. The same testbench is used as that was 
used during RTL simulation. Further, the simulated 
waveforms of RTL and gate-level simulation are 
compared to identify difference points. 

 Design Implementation 

The Design Implementation process involves three 
steps: Translate, Map, Place&route. 

 Static Timing Analysis (STA) 

Static Timing Analysis is carried out after the design 
implementation to check that the design follows the 
timing constraints. It checks all the possible signal 
propagation paths for delays. 

 Bit stream file generation 

The implemented design must then be converted into a 
Bit stream, using a bit-generation tool, so that the FPGA 
platform can understand the design. The Bit stream file 
is then stored on the FPGA memory card, so it can be 
uploaded by the board. 

 Downloading onto FPGA  

Now the design must be loaded onto the FPGA. After the 
Bit stream file is uploaded on the FPGA, in-circuit 
verification is carried out to ensure that correct circuit 
implementation has taken place. This is done using the 
hardware debugging IPs integrated in the FPGA board. 

In this project operations till gate-level simulation have 
been carried out. 
 
 

1.4 Requirement Tracing and DO-254 Standard 
rule Checks[11] 

DO-254 is defined as a requirements-driven process-
oriented safety standard used on commercial electronics 
that go into aircraft. (Conceptually speaking, this standard 
applies to all electronics in anything that flies or could crash 
and pose a hazard to the public.) 

Based on their safety criticality, different parts of the aircraft 
are designated different Design Assurance Levels (DALs) as 
shown in Table 2. A system that is highly critical will receive 
a higher DAL, with DAL A reserved for the most critical 
systems. This criticality is determined by a safety assessment 
of the aircraft and interacting systems to determine the 
required target failure rate. For DO-254, the difference 
between meeting DAL A and DAL B is minimal, so they are 
frequently referred to as “DAL A/B”. 

Table -2: Design Assurance Levels (DALs) 

Design 
Assurance 

Level (DAL) 
Description 

Target 
System 
Failure 

Rate 

Example 
System 

Level-A 
(Catastrophic) 

Failure causes 
crash, deaths 

<1 x 10-9 
chance of 
failure/flig
ht-hr 

Flight 
Controls 

Level-B 
(Hazardous) 

Failure may 
cause crash, 
deaths 

<1 x 10-7 
chance of 
failure/flig
ht-hr 

Braking 
systems 

Level-C 
(Major) 

Failure may 
cause stress, 
injuries 

<1 x 10-5 
chance of 
failure/flig
ht-hr 

Backup 
systems 

Level-D 
(Minor) 

Failure may 
cause 
inconvenience 

No safety 
metric 

Ground 
navigation 
systems 

Level-E (No 
Effect) 

No safety 
effect on 
passengers/cr
ew 

No safety 
metric 

Passenger 
entertainme
nt 

As DO-254 is a process-oriented standard, it is important to 
understand the overall flow, shown in Figure 4. 
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Fig -4: DO-254 Flow diagram 

 Planning  

Planning is a critical piece of the DO-254 certification. It 
is important to document project flow up-front and 
approach the certification official to gain their approval 
early in the project. Typically the high-level plans are 
documented in the Plan for Hardware Aspects of 
Certification (PHAC commonly pronounced as “pea-
hack”). This plan should include all aspects of the project 
and how designer will meet the DO-254 requirements. 

 Requirements Capture and Validation  

The DO-254 specification utilizes a requirements-based 
design and verification approach. This means that the 
entire hardware project revolves around a formal set of 
high-level requirements. Before any RTL is written, each 
of these requirements must be written down, given a 
unique reference name, and reviewed for a variety of 
criteria including understandability, testability, 
verifiability, etc.  

 Conceptual Design  

A larger design is chunked down into a smaller and 
more manageable sub-blocks. This might be thought of 
as a high-level block diagram. (Note: For a sufficiently 
simple system, the conceptual design step may be 
skipped or merged with the Detailed Design step).  

 Detailed Design  

This step is where the real design work takes place. For 
each component detailed in the conceptual design, the 
RTL hardware design should implement each and every 
requirement for that component. Each high-level 
requirement should be “traced” to the top-level RTL 
module implementing that requirement. This 
traceability can happen in a variety of ways, and it is up 
to the implementation team to determine the desired 
approach. On the other hand, the verification team 
should create verification tests to verify that each 
requirement has been met by the RTL, including a 
message to the log file showing the expected result, the 
actual result seen in the simulation and the result 
(pass/fail). Each test must also be linked to the high-

level requirement, including the pass/fail criteria (all 
must pass).  

 Implementation  
The implementation process is technology specific. For 
an RTL-based design (such as an FPGA or ASIC), the 
implementation step includes the synthesis process of 
converting RTL into actual technology-specific gates. For 
an FPGA, this also includes creating the programming 
file to load into the FPGA. For an ASIC, this step includes 
the backend design/verification steps. Here, the main 
point is to follow the process detailed in PHAC 
document up-front. This is due to the fact that there will 
be significant testing performed on the final design. 
Traceability analysis for all the above steps is performed 
as shown in Figure 5. 

Fig -5: Requirement-driven flow, including traceability 

 Production Transition  

This is the final stage, where design is transferred to 
manufacturing unit. This stage ensures aspects such as:  

 Use of correct version of the programming file 
during the manufacturing process. 

 Use the of correct design methodology (ASIC 
and FPGA).  

 Handling of errata for the device used.  

 Process Assurance  

Along with DO-254-compliant plan, designer should also 
document to meet plan, typically documented in a 
Process Assurance or Quality Assurance plan. This plan 
documents who will be designated as the process 
assurance person or organization to double check that 
the PHAC and other plans are followed, and how this 
checking will be performed. 
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 Configuration Management  

In addition to the Process Assurance plan, designer 
should also create a Configuration Management (CM) 
plan. In this plan, documentation of how to ensure the 
development process and artifact generation process is 
repeatable. This typically includes a revision control and 
bug tracking systems for all design/verification files, as 
well as all documentation and artifact documents. The 
DO-254 specification refers to the importance of 
tracking all design artifacts throughout the design 
process. Certification officials understand that design 
and verification files will go through much iteration. 
However, once they are stable, designers are expected to 
“baseline” the design. In typical commercial electronics, 
this is analogous to a design freeze a point in a schedule 
when subsequent changes are closely controlled and 
documented, as shown in Figure 6. 

Fig -6: Example for Design process and baselines 

 Certification Liaison  

Typically, a single person is selected as the main 
communication point for the certification officials. This 
single point of contact enables clean communication, 
and ensures that the certification official obtains a clear 
view of the overall design process. Typically, this 
certification liaison has previous DO-254 experience, 
with the skill to communicate the details in a way that 
the certification official can understand.  

 In-Target Testing  

In-target testing is a critical component of the DO-254 
specification, and is a required part of the overall flow. 
From a DO-254 perspective, all verification done in a 
simulator was performed on a model of the design. 
There is no guarantee that the model used in simulation 
matches the actual device as it sits on the target board 
that will be installed in the aircraft.  

 DO-254 Standard Rule sets[12] 

For a design to obtain DO-254 Certificate it should 
satisfy all the rules mentioned in Table 3. 

 

 

Table -3: DO-254 standard rule sets 
 

Coding Practices Design Reviews Safe Synthesis 

Assign Value Before 

Using 

Avoid Large Design 

Files  
Asynchronous Block  

Assignment Style 

(Verilog) - 

Combinatorial Blocks 

Inferring Latches  

Avoid Mixed Case 

Naming (for 

Differentiation)  

Avoid 

Asynchronous Reset 

Release  

Assignment Style 

(Verilog) - Pure 

Combinatorial Blocks  

Avoid Using Tab  
Avoid Clock Used As 

Data  

Assignment Style 

(Verilog) - Sequential 

Blocks  

Ensure Consistent 

File Header  

Avoid 

Combinational 

Feedback  

Avoid Duplicate Signal 

Assignments  

Ensure Consistent 

Indentation  
Avoid Feed troughs  

Avoid Hard-Coded 

Numeric Values  

Ensure Proper 

Placement of 

Comments  

Avoid Gated Clocks  

Avoid Hard-Coded 

Vector Assignments  

Ensure Sufficient 

Comment Density  
Avoid Implied Logic  

Avoid Incorrect VHDL 

Type Usage  

Ensure Unique Name 

Spaces  

Avoid Initialization 

Assignments  

Avoid Mismatching 

Ranges  

Use Separate 

Declaration Style  

Avoid Internally 

Generated Clocks  

Avoid Unconnected 

Input Ports  

Use Separate 

Statement Style  

Avoid Internally 

Generated Resets  

Avoid Unconnected 

Output Ports  
Use Statement Labels  

Avoid Latch 

Inference  

Avoid Unused 

Declarations  
  

Avoid Mixed 

Polarity Reset  

Define All Design 

Units  
  

Avoid Multiple 

Drivers  

Ensure Complete 

Sensitivity List  
  

Avoid Multiple 

Waveforms  

Ensure Consistent 

FSM State Encoding 

Style  

  
Avoid Shared Clock 

and Reset Signal  

Ensure Proper Sub-

Program Body  
  Avoid Snake Paths  

Ensure Safe FSM 

Transitions  
  

Avoid Undriven & 

Unused Logic  
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Mixed Variable 

Assignments  
  

Avoid Uninitialized 

Deferred Constants 

    
Avoid Unresettable 

Register  

    
Continuous 

Assignments  

    
Ensure Consistent 

Vector Order  

    
Ensure Nesting 

Limits  

    

Ensure Proper Case 

Statement 

Specification  

    
Ensure Register 

Controllability 

    
Unsynthesizable 

Event Controls  

2. PROPOSED DESIGN 

The proposed design will take a 32-bit data as input from the 
user. Then the input data flows through all the three layers 
of PCIe naming transaction, data-link and physical layers and 
is processed at each of the above three layers present at 
transmitter and receiver respectively, according to their 
functionalities. At receiver, received data will be verified at 
each of the layer to ensure data integrity, data reliability and 
error free transmission through the physical links. Proper 
handshake mechanism will be used by receiver to notify the 
transmitter about the status of the data. Block diagram 
emphasizing the input and output ports of the PCIe 3.0 
design is as shown in Figure 7. 

 
Fig -7: PCIe 3.0 Top Module Block diagram  

The flow chart representing a 32-bit input data passing 
through all the layers and components present in PCIe 3.0 
has been indicated in Figure 8. 
 

Fig -8: Data processing across all three layers of PCIe 3.0 

Components present in each of the three layers are 
explained in sub-sections below. 

2.1 TRANSACTION LAYER[1][3] 

 Header-Trailer Block[1] 

At transmitter, when user inputs a 32-bit data, it is 
broken and stored in a FIFO buffer of 8-bit width and 6 
stacks as shown in Figure 8. 8-bit Header and trailer 
values assumed in Table 1 are used only for illustration 
purpose. 

 32-bit ECRC (End-to-End Cyclic Redundancy Check) 
block[3] 

At transmitter, for every 8-bit data a 32-bit ECRC value 
is computed and stored in CRC field of Transaction 
Layer Packet (TLP). 

Again at receiver a 32-bit ECRC value is computed for 
each received TLP. The received ECRC value is 
compared with ECRC value transmitted. If they are 
equal, then an ACK[5] (Acknowledge) signal is sent to the 
transmitter notifying data has been received with no 
corruption; else a NACK[5] (No Acknowledge) signal is 
sent to the transmitter notifying a corrupted data has 
been received and request to retransmit the same TLP. 
From this end-to-end data reliability is ensured. 
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2.2 DATA-LINK LAYER[1] 

At Data-link layer the data packet is called Data-Link Layer 
Packet (DLLP). Important component present in this layer is 
32-LCRC block. 

32-bit LCRC (Link Cyclic Redundancy Check) block 

At transmitter, for every 8-bit data a 32-bit LCRC value is 
computed and stored in CRC field of Transaction Layer 
Packet (TLP). 

Again at receiver a 32-bit ECRC value is computed for each 
received TLP. The received LCRC value is compared with 
LCRC value transmitted. If they are equal, then an ACK[5] 
(Acknowledge) signal is sent to the transmitter notifying 
data has been received with no corruption; else a NACK[5] 
(No Acknowledge) signal is sent to the transmitter notifying 
a corrupted data has been received and request to 
retransmit the same TLP. From this, whether an error is 
inserted at the physical link or not can be verified and data 
security can be ensured. 

2.3 PHYSICAL LAYER[1] 

The following components are present in physical layer. 

 Scrambler and Descrambler 

At transmitter, the input 8-bit data is scrambled with the 
help of LFSR and a scrambled data is produced. 
Similarly, at receiver, the received data is descrambled 
to retrieve original DLLP. 

 8b/10b Encoder and 10b/8b Decoder 

At transmitter, input data is encoded using 8b/10b 
Encoder. At receiver, received data is decoded using 
10b/8b Decoding mechanism. 

 Parity Generator and Checker  

At transmitter, the parity of encoded data is found and 
appended with the data itself, to make data always 
possess even parity. At receiver, the parity of received 
data is found and it is checked for even parity. If the 
received data has even parity, then the data is sent for 
data-link layer for further processing; else, phy_err 
signal goes high indicating data has been corrupted and 
discard the data and request sender to retransmit the 
data. 

 Serializer and Deserializer (SERDES)[4] 

At transmitter end the parallel data needs to be 
serialized for speedy transmission through the link. 

Hence a PISO (Parallel In Serial Out) converter is used to 
convert parallel data to serial data.  

At receiver end the serial data needs to be converted to 
parallel data for further processing at receiver. Hence a 
SIPO (Serial In Parallel Out) converter is used to convert 
serial data from the physical link to parallel data.  

All the components are integrated at transmitter and 
receiver to obtain the top-level module of PCIe 3.0. Block 
diagram representing the top module of PCIe 3.0 is 
shown in Figure 8. 

3. RESULTS AND INFERENCES 

The design of PCIe 3.0 was carried out in Verilog HDL. As 
mentioned in section 2 a modular architecture was 
incorporated with layering. Verilog version 2001 was used 
for developing the source code. 

3.1 MODULE WISE SIMULATION RESULTS OF PCIe 3.0 

This section consists of the simulation results of each of 
the module present in design hierarchy as explained in 
section 2. 

 32-bit ECRC module 

It takes 32-bit data as input and computes a 32-bit ECRC 
(End-to-End Cyclic Redundancy Check) value as 
indicated in Figure 9. For example in the Figure 10 input 
to the ECRC block is (fofofofo)16 and the generated ECRC 
value is (6b6ec559)16. 

 

Fig -9: RTL schematic of 32-bit ECRC computation 
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Fig -10: Simulation waveform of 32-bit ECRC computation 

 32-bit LCRC module 

It takes 32-bit data as input and computes a 32-bit LCRC 
(Link Cyclic Redundancy Check) value as indicated in 
Figure 11. For example in the Figure 12 input to the 
LCRC block is (00000003)16 and the generated LCRC 
value is (000000c0)16. 

 
Fig -11: RTL Schematic of 32-bit LCRC  

 

Fig -12: Simulation waveform of 32-bit LCRC computation 

 

 8 bit Scrambler and Descrambler 

Scrambler and Descrambler take 8 bit data as input and 

produce an 8-bit scrambled output as shown in Figure 

13. In the waveform indicated in Figure 14, input is 

(01010101)2 and the scrambled value is (11100111)2. 

Similarly Figure 15 indicates the simulation waveform 

of Descrambler module.  

 

 
Fig -13: RTL Schematic of 8-bit Scrambler (Left) and 

Descrambler (Right) 

Fig -14: Simulation waveform of 8-bit Scrambler 

Fig -15: Simulation waveform of 8-bit Descrambler 

 8b/10b Encoder 

Figure 16 and Figure 17 indicates RTL schematic and 
output waveform of 8b/10b encoder respectively. An 8 
bit data (000)16 is encoded as (0B9)16 as shown. 

 
Fig -16: RTL Schematic of 8b/10b Encoder 
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Fig -17: Simulation waveform of 8b/10b Encoder 

 10b/8b Decoder 

Figure 18 and Figure 19 indicates RTL schematic and 
output waveform of 10b/8b decoder. A 10 bit data 
(0B9)16 is decoded as (000)16 as shown. 

 
Fig -18: RTL Schematic of 10b/8b Decoder 

 

Fig -19: Simulation waveform of 10b/8b Decoder 

 Parity Generator and Checker 

Figure 20 and Figure 21 indicates RTL schematic and 
output waveform of Parity generator and checker block 
respectively. An 8 bit data (11100101)2 has an odd 
parity which is indicated by parity_bit as shown. As 
parity bit is high, which indicates the data is of odd 
parity and hence reject data is high as shown. 

 
 
 
 

 

Fig -20: RTL Schematic of Parity generator and checker 

 

Fig -21: Simulation waveform of Parity generator and 
checker 

 16 bit Serializer 

Figure 22 and Figure 23 indicates RTL schematic and 
output waveform of 16 bit serializer respectively. It 
converts parallel data into serial data as shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig -22: RTL Schematic of Serializer 
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Fig -23: Simulation waveform of 16 bit Serializer 

 16 bit Deserializer 

Figure 24 and Figure 25 indicates RTL schematic and 
output waveform of 16 bit Deserializer respectively. It 
converts serial data into parallel data as shown. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig -24: RTL Schematic of Deserializer 

 

 

 

 

 

 

 

 

 

 

 

Fig -25: Simulation waveform of 16 bit Deserializer 

 
3.2 RTL SIMULATION RESULTS OF INTEGRATED DESIGN 

OF PCIe 3.0 USING QUESTASIM 
 
In this project QuestaSim[6] Tool has been used to simulate 
the design using a testbench and verify the same through 
code coverage. Figure 26 represents simulation waveform of 
design PCIe 3.0. It signifies the flow of data through 32-bit 
data input and output ports along with 8-bit header 
(FA(base-16) for Resource Request and AF(base-16) for 
Resource Completion) and trailer frames (77(base-16)) (FA, 
AF and 77 are used only for illustration purpose as shown in 
Table 1). An I/O delay of 165ns was inferred from the 
waveform. 
 

Fig -26: Simulation waveform of PCIe 3.0 

 
The testbench was able to cover 80.43% of entire Verilog 
module of PCIe 3.0 as indicated by the coverage analysis 
report shown in Figure 27. 
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Fig -27: Overall Coverage report after modifying the test 
bench 

3.3 SYNTHESIS RESULTS USING PRECISION RTL PLUS 

Precision RTL Plus [7] tool was used for synthesizing PCIe 3.0 
design. The FPGA device 6SLX16CSG324 belonging to Xilinx 
vendor, Spartan-6 family with speed grade -3 was selected 
for the PCIe 3.0 design implementation. Synthesis was 
carried out with a device clock frequency of 100 MHz and 
5ns I/O delay (As per the specifications listed in Table 1). 

RTL Schematic and Technology Schematic of the PCIe 3.0 are 
represented by Figure 28 and Figure 29 respectively as 
shown. The D Flip flop present at the output terminal ecrc_tx 
of RTL schematic shown in Figure 28 has been mapped to a 
technology specific entity named FDE by the synthesis tool 
as shown in Figure 29. 

 
 

Fig -28: RTL Schematic of PCIe 3.0 
 
 
 
 
 
 
 

Fig -29: Technology Schematic of PCIe 3.0 

Synthesis tool will also dump the timing and area reports. 
The summary of synthesis reports is tabulated in Table 4 as 
shown below. 

Table -4: Summary of Synthesis Reports 

Synthesis 
Reports 

Output Values 

Timing Cell delay 79.42% 

Net delay 20.58% 

Slack 0.538 ns 

Area Total number of DFFs 68 

Total number of LUTs 53 

Total number of 
accumulated Instances 

131 

3.4 EQUIVALENCE-CHECK RESULT USING FORMALPRO 

FormalPro[8] tool has been used to check the functional 
equivalence between RTL and gate-level netlist. Design A is 
chosen as RTL and Design B is chosen as gate-level netlist. 
Common section is loaded with FPGA reference libraries 
(same as that of used during synthesis).  

The synthesis tool will dump a constraint file as an output. 
This constraint file is fed to FormalPro as input along with 
RTL and gate-level netlist. After performing Equivalence 
Check both the designs were found to be equivalent as 
shown in Figure 30. 
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Fig -30: Formal Equivalence Check result after 
constraining the design 

3.5 GATE-LEVEL SIMULATION RESULT USING QUESTA 
SIMULATOR 

Again Questa Simulator [6] was used for performing gate-
level simulation. Here instead of RTL, gate-level netlist was 
simulated using testbench. The output waveform of PCIe 3.0 
gate-level netlist is as shown in Figure 31. 

Fig -31: Simulation waveform of gate-level netlist 

Comparison between RTL simulation waveform and gate-
level simulation waveform was carried out with the help of 
Questa Simulator. Both the waveforms were fed to the tool 
and a waveform showing comparison points was generated 
as shown in Figure 32. It is inferred from the waveform that, 
there were 1001 comparison points in total.  

 

 

 

 

 

 
 

 
Fig -32: Output of Comparison between RTL and Gate-

Level Simulation Results 

3.6 REQUIREMENT TRACEABILITY ANALYSIS RESULTS 
USING REQTRACER 

Design specification, Product specification and Test plan 
related to PCIe 3.0 were written in a word document(.doc) 
and kept in a directory. These three documents were fed to 
ReqTracer[9] as inputs. A logical link was created between 
Test plan and Design specification, and Design specification 
and Product specification. Traceability analysis showed 100 
percent mapping among all the three as shown in Figure 33. 
Figure 34 represents graphical overview of the mapping 
among all three files.  

 

Fig -33: 100 percent mapping among Design specification, 
Product specification and Test plan 
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Fig -34: Graphical View of ReqTracer output 

3.7 DO-254 STANDARD RULE CHECK RESULTS USING 
HDS 

HDL Designer Series (HDS) [10] tool was used to cleanup the 
Verilog source code of PCIe 3.0 design. As per the DO-254 
standard rule sets mentioned in Table 3. The verilog code 
was modified without hampering the functionality of the 
design. Figure 35 represents HDS environment where design 
file is loaded and tested for DO-254 Standard. 

Fig -35: HDS Project Environment along with Design 
Checker 

Design Checker application is supported by HDS which 
checks and validates DO-254 standard for the given design. 
The design checker gave a 98 percent pass result for the 
developed Verilog code of PCIe 3.0 as shown in Figure 36. 

 

Fig -36(a): Exclusion parameters - DO-254 Rule check  

 

Fig -36(b): Design Quality under DO-254 Rule check  

Fig -36(c): DO-254 Rule check  
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Fig -36(d): DO-254 Rule Check Violations  

 
Fig -36(e): Failed design units - DO-254 Rule check  

 
After this the DO-254 Standard validated code is simulated 
using Questa simulator, synthesized using Precision RTL. All 
the tools were invoked within HDS. Figure 37 represents 
simulation waveform, Figure 38 and Figure 39 represents 
RTL schematic and Technology schematic after synthesis 
respectively. Table 5 gives a summary of synthesis reports.  

 

Fig -37: Simulation waveform of DO-254 Standard PCIe 
3.0 

Fig -38: RTL Schematic of DO-254 Standard PCIe 3.0 

 

 
 

Fig -39: Technology Schematic of DO-254 Standard PCIe 
3.0 
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Table -5: Synthesis Reports summary of DO-254 standard 
design 

Synthesis 

Reports 
Output Values 

Timing 

Cell delay 79.42% 

Net delay 20.58% 

Slack 0.538 ns 

Area 

Total number of DFFs 68 

Total number of LUTs 53 

Total number of 

accumulated Instances 
131 

4. CONCLUSION 

PCIe 3.0 was designed, verified and synthesized successfully 
with technology library and FPGA as per the standard 
protocol. Requirement tracing of project components such as 
Design specification, Product specification and Test plan was 
achieved. PCIe 3.0 design has validated all the rule sets 
present in DO-254 Standard. The soft IP of PCIe 3.0 thus 
developed can be taken for physical design. 

5. FUTURE SCOPE 

Soft IP of PCI e 3.0 can be taken through Physical Design and 
Physical Verification. A hard IP can then be integrated with 
many platforms and applications. 
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