USES OF VARIOUS PLASTIC MATERIALS IN BITUMINOUS CONCRETE (FLEXIBLE PAVEMENT)

Harsh Sankhla¹, Hemant Agrawal², Dr. Bharat Nagar³

¹M.Tech Student ²Assistant Professor ³Professor
1-3Department of Civil Engineering, Jagannath University, Jaipur

Abstract - The waste plastic and its disposal is a major threat to the environment, which results in pollution and global warming. The utilization of plastic waste in bituminous mixes enhances its properties and also its strength. In addition it will also be a solution to plastic disposal & various defects in pavement viz., pot holes, corragation, ruts, etc. the waste plastic used are poly-ethylene, poly-styrene, poly-propylene. The waste plastic is shredded & coated over aggregate & mixed with hot bitumen and resulted mix is used for pavement construction. This will not only strengthen the pavement and also increases its durability. The titanium-di-oxide is used as a smoke absorbent material, which will absorb the smoke from the vehicles. This innovative technology will be boon for Indian hot-humid climate. It’s economical and eco-friendly. In this paper, we have discussed about the soil properties to be considered in design of pavement, pavement design, process of construction flexible and plastic-smoke absorbent pavement

Key Words: : GSB (Granular Sub Base), WMM (Wet mix macadam), Recycled Aggregate, Road Demolition Wastes, Road Dismantling Materials, Road Granular Waste.

1. INTRODUCTION

The demand for roads is increasing year after year. Sometimes there is an increase in the number of commercial vehicles with increased axle load and it is clear that this trend will continue in the future as well. Numerous research works in several countries have confirmed the beneficial effects of polymer other than bitumen. However, the main restriction in such modifications is the incompatibility of the polymer and bitumen matrix. Recently waste plastics have been used with beneficial effects in paving.

1.1 Scope of the study

There are many types/forms of waste plastic pure and recycled forms of polymer but all of them are not compatible with bitumen and could not be used as a modifier if it is not properly blended. A mechanically and thermostatically controlled blender would be used for blending waste plastic. The selection of compatible waste plastic, production of blend, process of test and evaluation etc. require huge laboratory work. The investigation would be performed mainly on waste polythene and waste PET bottle. Finally field demonstrations would also be carried out to assess the field performances of waste blended bituminous road

1.2 Plastics Roads - General Introduction

Plastic use in road construction is not new. It is already in use as PVC or HDPE pipe mat crossings built by cabling together PVC (polyvinyl chloride) or HDPE (high-density poly-ethylene) pipes to form plastic mats. The plastic roads include transition mats to ease the passage of tyres up to and down from the crossing. Both options help protect wetland haul roads from rutting by distributing the load across the surface. But the use of plastic-waste has been a concern for scientists and engineers for a quite long time. Recent studies in this direction have shown some hope in terms of using plastic-waste in road construction i.e., Plastic roads. A Bangalore-based firm and a team of engineers from R. V. College of Engineering, Bangalore, have developed a way of using plastic waste for road construction. An initial study was conducted in 1997 by the team to test for strength and durability. Plastic roads mainly use plastic carry-bags, disposable cups and PET bottles that are collected from garbage dumps as an important ingredient of the construction material. When mixed with hot bitumen, plastics melt to form an oily coat over the aggregate and the mixture is laid on the road surface like a normal tar road.

2. Literature Review

1. Dr.R.Vasudevan,(2007) - stated that the polymer bitumen blend is a better binder compared to plain bitumen. Blend has increased softening point and decreased Penetration value with a suitable ductility.

2. Zahra Nilooofar Kalantar,(2012) - Many researches on PMA mixture have been conducted for the past two decades. Although addition of virgin polymers to asphalt for the purpose of enhancing the properties of asphalt over a wide temperature range in paving applications was contemplated quite some time ago, recycled polymer added to asphalt have also shown almost the same result in improving the road pavement performance as compared to virgin polymers. This paper is a review of the use of polymers in asphalt pavement. In this study, a critical review on the history and benefits of using waste and virgin polymer in asphalt is presented followed by a
3. Comparative Study

3.1 Central Mixing Plant (CMP)

The dry process can also be carried out using central mixing plant. The shredded plastic is added along with the aggregate in the conveyor belt. This is transferred into the hot cylinder. There aggregate is coated with plastic first and then with the bitumen. The mixer so prepared is then loaded in the dipper lorry and transported for road laying. CMP helps to have better control of temperature and better mixing of this material thus helping to have a uniform coating. This is adopted in our project.

4. Result and Discussion

Test on aggregates

i. Aggregate crushing test
ii. Los Angeles abrasion test
iii. Impact test

Test on bitumen

i. Penetration test
ii. Softening point test
iii. Viscosity test

4.1 Aggregate Crushing Test

The strength of the coarse aggregate may be assessed by aggregate crushing test. The aggregate crushing value provides a relative measure of resistance to crushing under gradually applied compressive load. To achieve a high quality of pavement, aggregates possessing high resistance to crushing or low aggregate crushing value are preferred.

Figure 1 – Aggregate crushing value

4.2 Abrasion Tests

Due to the movements of traffic, the road stones used in the surface course are subjected to wearing action at the top. Hence road stones should be hard enough to resist the abrasion due to traffic. Abrasion tests are carried out...
to test the hardness property of stones and to decide whether they are suitable for the different road construction works. The abrasion test on aggregate may be carried out using any one of the following three tests.

- Los Angeles abrasion test
- Deval abrasion test
- Dory abrasion test

4.3 Los Angeles Abrasion Test

The principle of Los Angeles abrasion test is to find the percentage of wear due to the relative rubbing action between the aggregate and steel balls used as abrasive charge. Pounding action of these balls also exists during the test and hence the resistance to wear and impact is evaluated by this test.

4.4 Impact Test

The test is designed to evaluate the toughness of stone or the resistance of the aggregates to fracture under repeated impacts is called impact test. The aggregate impact test is commonly carried out to evaluate the resistance to impact of aggregates and has been standardised by ISI.

4.5 Tests on Bitumen penetration Test

Penetration test is to determine the hardness of the bitumen. The penetration of a bitumen is the distance in tenths of millimetre that a standard needle will penetrate into the bitumen under a load of gm applied for seconds at c. penetration value indicates the softness of bitumen higher the penetration softer is the bitumen).

Table 1 – test result of penetration value of bitumen vs Penetration Value (mm) modified Bitumen

<table>
<thead>
<tr>
<th>S. No</th>
<th>Penetration Value (mm) Plain Bitumen</th>
<th>Penetration Value (mm) Modified Bitumen (10% Plastic Replaced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>49</td>
</tr>
</tbody>
</table>

4.6 Softening Point Test

The principle behind this test is that softening point is the temperature at which the substance attains a particular degree of softening under specified condition of the test. Softening point denotes the temperature at which the bitumen attains a particular degree of softening under the specifications of this test.

Table 2 – test result of softening point of bitumen and modified bitumen (bitumen replaced by plastic)

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Softening point(°C) (plain bitumen)</th>
<th>Softening point(°C) 10% bitumen replaced by plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69.2</td>
<td>80.7</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>81.2</td>
</tr>
</tbody>
</table>

4.7 Marshall Stability Test

Table 3 – Percentage of bitumen content

<table>
<thead>
<tr>
<th>S. No</th>
<th>Bitumen content (%)</th>
<th>Modified bitumen(gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.5</td>
<td>5.9</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>5.5</td>
<td>6.6</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Result and Discussion

The crushing value reduces from 23.32 to 14.22 for normal and plastic coated aggregate. The value was reduced by 40%. Lower the aggregate crushing value higher is the strength.

- The aggregate impact value of plastic coated aggregate was reduced by 9% than the normal aggregate. It’s the higher toughness of plastic coated aggregates.

- Los Angeles abrasion value indicates the hardness of the aggregates. The abrasion value plastic coated aggregates were 21% less than the normal aggregates.

- The penetration value of bitumen is higher than the bitumen mixed with the plastic.

- The bitumen softens 10°C less than the bitumen replaced with plastic.

The stability of modified bitumen (10% bitumen replaced by plastic) is higher than the normal

5. Conclusion

The plastic mixed with bitumen and aggregates is used for the better performance of the roads. The polymer coated on aggregates reduces the voids and moisture absorption. This
results in the reduction of ruts and there is no pothole formation. The plastic pavement can withstand heavy traffic and are durable than flexible pavement. The use of plastic mix will reduce the bitumen content by 10% and increases the strength and performance of the road. This new technology is eco-friendly.

REFERENCES

1. MORTH (Ministry of Road Transport and Highway), Fifth Revision, 2013, specification for road and bridge works, Indian Roads Congress, New Delhi.

2. Highway engineering by KHANNA and JUSTO

3. Soil mechanic by K.R. ARORA


11. Properties and performance of recycled aggregates by Dr M Mulheron and M M O’Mahony


14. Use of Recycled material in Sub base Layer by O’Mahony, M M Milligan, GWE – issue on 1991


19. Properties and performance of recycled aggregates by Dr M Mulheron and M M O’Mahony


22. Use of Recycled material in Sub base Layer by O’Mahony, M M Milligan, GWE – issue on 1991


International Journal of Advances in Engineering and Technology (IJAET) ISSN: 22311963 Vol. 9, Issue 1, pp. 25-31


BIOGRAPHIES

1. Harsh Sankhla is a Research Scholar of M.Tech, Department of Civil Engineering, Jagannath University Jaipur.

2. Hemant Agrawal is working as an Assistant Professor in Department of Civil Engineering Jagannath University Jaipur. Graduated from Rajasthan Technical University, Kota with honor's in 2014. He is honored with a gold medal in M. tech and has published 6 papers in International and National Journals & 3 in National Conference. He has more than 5 years of teaching experience. His area of interest is Structure analysis, Concrete application etc.

3. Professor (Dr.) Bharat Nagar is working as a HOD and M. Tech Coordinator in Department of Civil Engineering, Jagannath University Jaipur since last 11 years. He has worked in various engineering colleges and industries in Rajasthan & has total experience of more than 17 years. He has written 4 books and more than 50 research papers in various reputed International and National Journals. His area of interest is Environmental Assessment, Concrete application, and Earthquake Engineering etc.