
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5287

AN ECOSYSTEM FOR VULNERABLE TRAFFIC ANALYSIS AND

MITIGATION SERVICES IN SOFTWARE DEFINED NETWORKING

Ponmanikandan V1, Ramprasath J2, Rakunanthan K S3, Santhosh Kumar M4

1U.G. Student, Department of Information Technology, Dr. Mahalingam College of Engineering and Technology,
Pollachi, Tamil Nadu, India

2Assistant Professor, Department of Information Technology, Dr. Mahalingam College of Engineering and
Technology, Pollachi, Tamil Nadu, India

3U.G. Student, Department of Information Technology, Dr. Mahalingam College of Engineering and Technology,
Pollachi, Tamil Nadu, India

4U.G. Student, Department of Information Technology, Dr. Mahalingam College of Engineering and Technology,
Pollachi, Tamil Nadu, India

---***---
Abstract - Software Defined Networking (SDN) is an
architecture that aims to make networks agile and
flexible. The goal of SDN is to improve network control
by enabling enterprises and service providers to
respond quickly to changing business requirements.
SDN consists of three layers, they are Application,
Control, and Infrastructure. The application layer
consists of Business Applications. The Control layer
consist of the SDN Controller which can be
programmed based on user needs and the
Infrastructure layer consists of Switches and Gateway
machines. To communicate between these layers, SDN
uses northbound and southbound application program
interfaces (APIs) where the northbound API
communicates between the infrastructure and control
layers and the southbound API communicates between
the application and the control layers. The distinct
advantage of Software Defined Networking is the
separation of the control plane and the data plane. In
this project we manage the control plane to mitigate
Denial of Service (DoS) attacks by making a set of
rules. These rules are obtained by passing data packets
into K-Means algorithm to preprocess it and into a
user defined algorithm. Denial of Service is an attack
meant to shut down a machine or network, making it
inaccessible to its intended users. DoS attacks
accomplish this by flooding the target with traffic or
sending it information that triggers a crash. In both
instances, the DoS attack deprives legitimate users (i.e.
employees, members, or account holders) of the service
or resource they expected. K-Means clustering is a
method of vector quantization, originally from signal
processing, that aims to partition n observations into k
clusters in which each observation belongs to the
cluster with the nearest mean (cluster centers or
cluster centroid), serving as a prototype of the cluster.
The user defined algorithm makes use of the
preprocessed packets from the K-Means algorithm to

analyze and detect any abnormal data traffic. The
algorithm also updates the firewall of SDN to provide
mitigation services.

Key Words: Software Defined Networking, DoS
Attacks, Traffic Analysis, K-Means Clustering,
Internet Protocol.

1.INTRODUCTION

SDN is an emerging architecture that is
dynamic, manageable, cost-effective, and adaptable,
making it ideal for the high-bandwidth, dynamic
nature of today’s applications. This architecture
decouples the network control and forwarding
functions enabling the network control to become
directly programmable and the underlying
infrastructure to be abstracted for applications and
network services. The OpenFlow® protocol is a
foundational element for building SDN solutions. The
SDN Architecture is directly programmable, agile,
centrally managed, programmatically configured and
is open standard based and vendor neutral.

SDN consists of three layers namely
Application layer, Control layer and Infrastructure
layer. Application layer is open area to develop as
much innovative application as possible by
leveraging all the network information about
network topology, network state, network statistics,
etc. There can be several types of applications which
can be developed like those related to network
automation, network configuration and management,
network monitoring, network troubleshooting,
network policies and security. Such SDN applications
can provide various end-to-end solutions for real
world enterprise and data centre networks. Network
vendors are coming up with their set of SDN
applications. Control layer is the land of control plane

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5288

where intelligent logic in SDN controllers would
reside to control network infrastructure. This is the
area where every network vendor is working to
come up with their own products for SDN controller
and framework. Here in this layer, a lot of business
logic is being written in controller to fetch and
maintain different types of network information,
state details, topology details, statistics details, and
more. Infrastructure layer is composed of various
networking equipment which forms underlying
network to forward network traffic. It could be a set
of network switches and routers in the data centre.
This layer would be the physical one over which
network virtualization would be laid down through
the control layer (where SDN controllers would sit
and manage underlying physical network).

In computing, a DoS attack is a cyber-attack
in which the perpetrator seeks to make a machine or
network resource unavailable to its intended users
by temporarily or indefinitely disrupting services of a
host connected to the Internet. DoS is typically
accomplished by flooding the targeted machine or
resource with superfluous requests in an attempt to
overload systems and prevent some or all legitimate
requests from being fulfilled. The two common DoS
attacks are Smurf attack and SYN flood.

In a Smurf Attack, the attacker sends ICMP
broadcast packets to a number of hosts with a
spoofed source IP address that belongs to the target
machine. The recipients of these spoofed packets will
then respond, and the targeted host will be flooded
with those responses. A SYN flood occurs when an
attacker sends a request to connect to the target
server but does not complete the connection through
what is known as a three-way handshake—a method
used in a TCP/IP network to create a connection
between a local host/client and server. The
incomplete handshake leaves the connected port in
an occupied status and unavailable for further
requests. An attacker will continue to send requests,
saturating all open ports, so that legitimate users
cannot connect.

2. LITERATURE SURVEY

Although Software-defined Networking (SDN)
enables new network applications and more flexible
control in dynamic network environments, security is
still an important concern as it is not yet a built-in
feature in the SDN architecture. Due to this reason
more and more research work is done on SDN
security to this demand. These works focus on

dealing with various networking attacks. Increasingly,
it is expected that current security schemes will
operate in near real time to face a spectrum of
threats, inspecting large volumes of traffic, and
providing efficient identification of various network
anomalies. We present some previous SDN-related
anomaly detection efforts to meet this demand.

Aleroud and Alsmadi (2016) made the

anomalous events that compromise the SDN
architecture to fall into three categories: (i) attacks on
the control plane, (ii) compromising of
communication between the control and data planes,
and (iii) threats designed to attack the data plane
equipment. A flood attack can directly or indirectly
cover these three categories because of the volume of
traffic and the increasing number of connection
requests. Excessive use of these network resources
can overload the controller as well as occupy all the
forwarding table entries of the devices in the data
plane with flows from illegitimate connections. In this
manner, despite the extensive work in SDN security,
most of the approaches have been designed to
contain flood attacks (e.g., DDoS attacks). Early work
on DDoS detection in the SDN environment was
reported by Braga, Mota, and Passito (2010). The
presented system continuously observed the
statistical features of the flows to identify any
anomalous activity. The authors used Self Organizing
Maps (SOM) with the topological neighborhood
described by a Gaussian function to classify each
packet as benign or abnormal.

Ha et al. (2016) stated that identifying flood

attacks requires detailed processing and inspection of
a large volume of traffic. In that light, the authors
presented a traffic sampling strategy for SDN
networks that maintains the total aggregate volume
sampled below the processing capacity of an
Intrusion Detection System (IDS). Mousavi and St-
Hilaire (2015) proposed an entropy-based
mechanism to detect a DDoS attack. In case of an
attack, the entropy decreases by evaluating the
randomness of incoming packets’ destination IP
addresses. In Xiao, Qu, Qi, and Li (2015) an effective
detection approach based on traffic classification with
correlation analysis (CKNN) was proposed. Although
the detection rate of known anomalous events is high,
such methods become incapable of recognizing
variations of the same attack, because signature-
based detection is used. For this same reason, the
techniques must/should be trained with a large
labeled dataset, which is not always possible to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5289

obtain. The ecosystem proposed in this paper
overcomes these limitations because the detection
adapts automatically to changing traffic patterns.
Several studies employ alterations in the SDN
infrastructure to conduct anomaly detection. Wang,
Zhang, Singh, Lumezanu, and Jiang (2013) proposed
NetFuse as a mechanism to protect against traffic
overload in OpenFlow-based data center networks. In
order to guard the network against the effects of
malicious traffic, NetFuse sits between network
devices and network controller as an additional layer.
Joldzic, Djuric, and Vuletic (2016) presented an
alternative solution based on an SDN network
topology consisting of three layers to place the IDS.
The outermost, located at the network gateway,
contains an OpenFlow switch responsible for dividing
the incoming traffic and forwarding the generated
parts to the intermediate layer. The second layer is
composed of several devices called processors, which
perform the detection of an attack. In the third layer,
the traffic generated by the processors is aggregated
and sent to the interior of the network through an
OpenFlow switch. Two disadvantages are observed in
this approach. First, it assumes that the network is
anomaly free, which can become a problem when
anomalies are launched by the internal network itself
that make the SDN controller unavailable. The second
disadvantage is the division of traffic among the
processors, which might lead to the masking of
attacks, as due to load balancing, each processor can
analyze disconnected parts of the same anomaly.
Chen, Junuthula, Siddhrau, Xu, and Chao (2016)
applied specialized software boxes to improve the
scalability of ingress SDN switches to adjust the
control plane’s workload during DDoS attacks.

In this paper, we focus specifically on the SDN

environment, in which the controller is able to collect
and analyze traffic statistics reports from switches.
Our proposed ecosystem is different from previous
work because it does not require any change to the
SDN infrastructure. There is also no need of human
intervention to stop the attack. The efficiency of the
ecosystem is also increased because of dynamic
grouping using K-Means algorithm.

3. PROPOSED SYSTEM

The aim of the project is to create an SDN
ecosystem which has the capabilities of identifying
and mitigating DoS attacks using various features of
SDN and user defined algorithm. The proposed
system can be classified into five steps for clear

understanding. They are creation of a virtual
environment using Mininet, capture the packets that
flow through the virtual environment using pyshark
library, pre-process the captured data packets using
K-Means algorithm, input the pre-processed packets
into the user-defined algorithm to check for any
kinds of anomaly, if any anomaly is detected update
the firewall rules of the Mininet environment to
block the corresponding user to prevent further
attack.

3.1 Creation of virtual environment

Mininet is a network emulator, or perhaps
more precisely a network emulation orchestration
system. It runs a collection of end-hosts, switches,
routers, and links on a single Linux kernel. It uses
lightweight virtualization to make a single system
look like a complete network, running the same
kernel, system, and user code. A Mininet host
behaves just like a real machine; you can ssh into it
(if you start up sshd and bridge the network to your
host) and run arbitrary programs (including
anything that is installed on the underlying Linux
system.) The programs you run can send packets
through what seems like a real Ethernet interface,
with a given link speed and delay. Packets get
processed by what looks like a real Ethernet switch,
router, or middlebox, with a given amount of
queueing. When two programs, like an iperf client
and server, communicate through Mininet, the
measured performance should match that of two
(slower) native machines. In short, Mininet's virtual
hosts, switches, links, and controllers are the real
thing – they are just created using software rather
than hardware – and for the most part their behavior
is similar to discrete hardware elements. It is usually
possible to create a Mininet network that resembles
a hardware network, or a hardware network that
resembles a Mininet network, and to run the same
binary code and applications on either platform.

For this project we create an environment

with four host machines and a switch. This is known
as single topology in which all the host machines are
connected to a single switch. The switch is directly
connected to the controller. In this case we are using
a remote controller known as the POX controller.
POX is a networking software platform written in
Python. We can now test the created environment by
using various simple commands such as ifconfig,
ping, nodes, links. This marks the end of the creation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5290

of virtual environment. The Fig 1 shows the created
virtual environment.
Code: sudo mn - - mac - - topo single, 4 - - controller
remote

Fig -1: SDN Environment

3.2 Capturing the data packets

For the capture purpose we make use of the
python environment along with pyshark library.
Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with
dynamic typing and dynamic binding, make it very
attractive for Rapid Application Development, as well
as for use as a scripting or glue language to connect
existing components together. Python's simple, easy
to learn syntax emphasizes readability and therefore
reduces the cost of program maintenance. Python
supports modules and packages, which encourages
program modularity and code reuse. The Python
interpreter and the extensive standard library are
available in source or binary form without charge for
all major platforms and can be freely distributed.
Often, programmers fall in love with Python because
of the increased productivity it provides. Since there
is no compilation step, the edit-test-debug cycle is
incredibly fast. Debugging Python programs is easy: a
bug or bad input will never cause a segmentation
fault. Instead, when the interpreter discovers an
error, it raises an exception. When the program
doesn't catch the exception, the interpreter prints a
stack trace. A source level debugger allows
inspection of local and global variables, evaluation of

arbitrary expressions, setting breakpoints, stepping
through the code a line at a time, and so on. The
debugger is written in Python itself, testifying to
Python's introspective power. On the other hand,
often the quickest way to debug a program is to add a
few print statements to the source: the fast edit-test-
debug cycle makes this simple approach very
effective.

PyShark is a wrapper for the Wireshark CLI

(TShark), so we can have all Wireshark decoders in
the PyShark. We can use PyShark to sniff an interface
or we can analyze the pcap files. PyShark allows two
types of packet analysis. They are file capture and
live capture. The file capture mechanism requires a
pcap file as an input to start the analysis process
whereas the live capture is an advanced mechanism
that allows real time capturing of data packets. The
live capture requires the interface as an input and
supports multiple filters for analysis. We now
connect the Mininet interface to the PyShark to start
the capture of data packets. The fig __ shows a
captured data packet.

Code: Live_Capture = pyshark,LiveCapture(interface
= ‘any’) for packet in
Live_Capture.sniff_continuously() : print(packet)

Fig -2: Live Capture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5291

3.3 K-Means Clustering

The K-Means algorithm clusters data by
trying to separate samples in n groups of equal
variances, minimizing a criterion known as the
inertia or within-cluster sum-of-squares (see below).
This algorithm requires the number of clusters to be
specified. It scales well to large number of samples
and has been used across a large range of application
areas in many different fields. The k-means algorithm
divides a set of N samples into K disjoint clusters C,
each described by the mean of the samples in the
cluster. The means are commonly called the cluster
“centroids”; note that they are not, in general, points
from X, although they live in the same space. The K-
means algorithm aims to choose centroids that
minimize the inertia, or within-cluster sum-of-
squares criterion:

We can make use of the SCIKIT K-Means

library for doing the packet pre-processing. The
library is very easy to import and implement and
provides the cluster label for each entry. This data is
then loaded from a CSV file using pandas library. The
CSV file only contains the required packet details for
faster processing. The fields include Source IP,
Destination IP, Source PORT, Destination PORT,
Timestamp. The K-Means algorithm makes use of the
Port values and the timestamp values for clustering
because IP addresses cannot be used for k-means
clustering. The final CSV is created with the above
columns along with a new column cluster. The
cluster column consists of the cluster label for each
data packet. The fig 3 shows the final CSV output.

Fig -3: K-Means Output

3. 4 User Defined Algorithm

The output of the K-Means algorithm is given
as the input to the user defined algorithm. This
algorithm is a complex IF condition which makes use
of K-Means label for faster processing. The algorithm
only takes up the cluster with maximum number of

packets for processing because if an attack happens,
all the packets will originate from the same user
which intern increase a cluster size many folds. Now
the large cluster is taken as input and processed with
the help of Source IP, Destination IP and the
Timestamp. If there are unreasonable number of data
packets from a source to destination during a short
time window, then the algorithm notes the IP
address of both the source and destination. This is
cross referenced with the MAC index to know their
respective hardware addresses.

Fig -4: Firewall Rules

3. 5 POX Firewall

The hardware address that is obtained by the
previous step is stored in a CSV file. This CSV file is
given as input to the POX controller during
‘ConnectionUp’ and ‘PacketIN’ event. The POX
controller reads the CSV file which contains the MAC
address and sends it to all the switches. This is stored
in the flow table of the switches. Every packet is
cross checked with the flow table before exiting the
switch. If the switch identifies a packet from the flow
table it will block the packets, preventing attacks. fig
__ shows the CSV and fig 5 shows the POX controller
blocking a packet.

Fig -5: Firewall Blocking

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5292

 The process from step 2 to step 5 is repeated every
10 second window to effectively capture and analyze
packets. Thus, DoS attacks are identified and
mitigated in an SDN environment using various SDN
features, K-Means Algorithm, and a User Defined
Algorithm.

Fig -6: DoS Mitigator workflow

4. ALGORITHMS AND PSEUDOCODE

4.1 K-Means algorithm

Step 1: Initialize cluster centers
Step 2: Assign observations to the closest cluster

center
Step 3: Revise cluster centers as mean of assigned

observations
Step 4: Repeat step 2 and step 3 until convergence

4.2 K-Means pseudo code

Input: k (number of clusters)
 D (a set of lift ratios)
Output: a set of k clusters
Method:
Arbitrarily choose k objects from D as initial cluster
centers;
Repeat:

1.(re)assign each object to the cluster to
which object is the most similar, based on mean
value of the objects in the cluster;

2.Update the cluster means, i.e., calculate the
mean value of the objects for each cluster
Until no change

4.3 User defined algorithm

Step 1: Input the K-Means pre-processed CSV
Step 2: Select the packets of cluster with maximum

length
Step 3: Order the packets with timestamp
Step 4: For each timestamp group the SRC and DST IP

to find its size
Step 5: If the size is above a normal value (10 in this

case) report the IP
Step 6: Find the MAC address from the MAC index

using reported IP
Step 7: Output the abnormal MAC address into the

Firewall rules CSV

4.4 User defined pseudo code

Input: CSV (K-Means pre-processed)
Output: CSV (updated mininet firewall rules)
Method:
Select the cluster with maximum packets
Order the packets in that cluster
Repeat:

1.Group the source and destination IP and
find its count
2.Check if the count is above a normal value

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5293

3.If yes, add the IP in an array
Until no more timestamp
Update the values in the array into the mininet
firewall CSV

5. RESULT

5. 1 I/O Graph Analysis

Wireshark IO Graphs will show you the
overall traffic seen in a capture file which is usually
measured in rate per second in bytes or packets
(which you can always change if you prefer
bits/bytes per second). In default the x-axis is the
tick interval per second, and y-axis is the packets per
tick (per second). It’s mostly useful for
troubleshooting seeing spikes and dips in your
traffic, btw, to look into the traffic closer you can
click on any point on the graph and it will focus on
that packet and display the information in the
background packet list window.

Fig -7: MK1 I/O Graph

The above figure shows that packet traffic of

MK1 is more because there were not any mitigation
services available to analyze the traffic. The large
traffic also makes the recipient machine
unresponsive for an indefinite time.

Fig -8: MK2 I/O Graph

The above figure shows that packet traffic of

MK2 is normal irrespective of the DoS attack initiated
by the host h1.

5.2 CPU Load Analysis

Fig -9: Normal CPU Load

The CPU load is a measure of the amount of

computational work that a computer system
performs. The load average represents the average
system load over a period of time. It conventionally
appears in the form of three numbers which
represent the system load during the last one-, five-,
and fifteen-minute periods.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5294

Fig -10: MK1 CPU Load during attack

The above figure shows that the CPU load is

directly proportional to the packet traffic. This
causes usage of multiple processors to read and ACK
the upcoming traffic. This in turn causes the system
to slow down and unresponsive for other legit users.

Fig -11: MK2 CPU Load during attack

The above figure shows that like the MK2’s

I/O Graph the CPU load is low when compared to
MK1 due to the availability of mitigation services.
The single core (CPU 2) is high because it is used for
the attacking purpose.

5. 3 Packet Length

Network packet is a formatted unit of data

carried by a packet-switched network. A packet
consists of control information and user data, which
is also known as the payload. Control information
provides data for delivering the payload, for
example: source and destination network addresses,
error detection codes, and sequencing information.
Typically, control information is found in packet
headers and trailers. By using Wireshark, we can find

the packet size of the attacking packets, in this case it
is 40 – 79 bytes.

Fig -12: Packet Length

5.4 Protocol Hierarchy

The communication between the computers
in the Internet is defined by different protocols. The
protocols TCP and IP build the basis of the
communication in the Internet. The combination of
the TCP and the IP protocol is known as TCP/IP
protocol that represents the standard system used in
most large networks. In this case all the attacking
packets follow TCP protocol.

Fig -13: Protocol Hierarchy

6. CONCLUSIONS

SDN is built on logically centralized network
topologies, which enable intelligent control and
management of network resources. DoS is an attack
meant to shut down a machine or network, making it
inaccessible to its intended users. DoS attacks

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5295

accomplish this by flooding the target with traffic or
sending it information that triggers a crash. Thus,
DoS attack can prevent the users from accessing
various network resources of SDN. By using this
project, we introduced a system that can identify DoS
attack and mitigate its effects by dynamic packet
grouping and analysis. The effectiveness of this
project can be analyzed by using various method
listed in the result. This project can be improved in
future by extending its mitigation services for other
malicious network attacks such as Spoof, Distributed
Denial of Service, Man in the Middle.

REFERENCES

[1] Aleroud, A., & Alsmadi, I. (2016). Identifying dos

attacks on software defined networks: A relation
context approach.

[2] Braga, R., Mota, E., & Passito, A. (2010).
Lightweight DDoS flooding attack detection using
NOX/OpenFlow.

[3] Celyn Birkinshaw, Elpida Rouka, Vassilios G.
Vassilakis, implementing an intrusion detection
and prevention system using software-defined
networking: Defending against port-scanning and
denial-of-service attacks (2019).

[4] Ha, T., Kim, S., An, N., Narantuya, J., Jeong, C., Kim,
J., & Lim, H. (2016). Suspicious traffic sampling
for intrusion detection in software-defined
networks.

[5] Joldzic, O., Djuric, Z., & Vuletic, P. (2016). A
transparent and scalable anomaly-based dos
detection method.

[6] Luiz Fernando Carvalhoa, Taufik Abrão b,
Leonardo de Souza Mendes c , Mario Lemes
Proença Jr, An ecosystem for anomaly detection
and mitigation in software-defined networking
(2018).

[7] Mousavi, S. M., & St-Hilaire, M. (2015). Early
detection of DDoS attacks against SDN
controllers.

[8] Rishikesh Sahay a,b , Gregory Blanc a,b , Zonghua
Zhang b,c, Hervé Debar, ArOMA: An SDN based
autonomic DDoS mitigation framework (2017).

[9] Thuy Vinh Tran, Heejune Ahn, Challenges of and
solution to the control load of stateful firewall in
software defined networks (2017).

[10] Xiao, P., Qu, W., Qi, H., & Li, Z. (2015). Detecting
DDoS attacks against data center with correlation
analysis.

[11] Mininet: http://mininet.org/walkthrough/

[12] PyShark: https://github.com/KimiNewt/pyshark

[13] Hping3: https://linux.die.net/man/8/hping3

[14] Pandas: https://pandas.pydata.org/docs/

[15] Scikit-learn: https://scikit-
learn.org/stable/modules/clustering.html#cluste
ring

[16] J Ramprasath, M Aswin Yegappan, Dinesh Ravi, N
Balakrishnan, S Kaarthi, Assigning Static Ip Using
DHCP In Accordance With MAC, International
Journal for Trends in Engineering & Technology,
Volume 20, Issue 1, (Feb 2017).

BIOGRAPHIES

Ponmanikandan V, perusing
bachelor’s degree in Dr. Mahalingam
College of Engineering and
Technology, India. My areas of
specialization are Software
Networking and .NET Programming.

Ramprasath J, working as an
Assistant Professor in the Department
of Information Technology at Dr.
Mahalingam College of Engineering
and Technology, India He pursues
Ph.D. in Information and
Communication Engineering from
Anna University, Chennai, India. He
has presented 6 papers in conferences
and he published 3 papers in the
international journal.

Rakunanthan K S, perusing
bachelor’s degree in Dr. Mahalingam
College of Engineering and
Technology, India. His areas of
specialization are Cloud Database and
Software Networking.

Santhosh Kumar M, perusing
bachelor’s degree in Dr. Mahalingam
College of Engineering and
Technology, India. His areas of
specialization are Database
Management, Web Development.

