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Abstract - In this paper the analytical formulations and 
solutions using Generalized Shear Deformation Theory with 
five degrees of freedom for the buckling analysis of simply 
supported Sandwich Functionally Graded plates under 
various types of thermal loads are presented. Variation of 
material properties along the plate thickness is assumed to 
follow the Power Law function (Poisson's ratio is assumed to 
be constant for both the materials (metal and ceramic)). The 
Principle of Minimum Potential Energy (PMPE) is used to 
derive the equations of equilibrium. The analytical solutions 
in closed-form are obtained by solving the boundary value 
problem using Navier's Solution technique. For the analysis 
of plate problems, the simply supported boundary condition 
is considered. The numerical outcomes are acquired from a 
code created in MATLAB software.  
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1. INTRODUCTION  
 
Sandwich structures are broadly utilized in territories of 
aircraft, aerospace, naval/marine, construction, 
transportation, and wind energy systems because of their 
outstanding properties, such as high stiffness and low weight 
for a long time. These sandwich structures offer advantages 
over other types of structures. But the sudden change in 
material properties over the interfaces between the face 
sheets and the core can bring about huge inter-laminar 
stresses which may cause delamination and this is a main 
problem of conventional sandwich structures. Also the 
difference in thermal coefficients of the materials may cause 
residual stresses. To overcome this problem the functionally 
graded materials (FGM) were introduced. FGM is 
heterogeneous composite material in which material 
properties vary continually from one surface to the other. 
This may be achieved by gradual change in the volume 
fraction of the constituent materials, mainly in the thickness 
direction and thus eliminating the sudden changes of thermo 
mechanical properties. This removes interfacial problems of 
composite materials; hence the stress distributions become 
smooth. 

Two distinct material components were changed gradually 
from one another in simplest FGM form. Stepwise variation 
of the constituent materials resulting in discontinuity can 
also be treated as FGM. The most common FGM is ceramic to 

a metal gradation. Generally, FGMs are made from a metal 
and ceramic mixture or a combination of various materials. 
The ceramic part provides heat shield effects and protects 
the metal from oxidation and corrosion, and the metallic part 
toughens and strengthens the composition.  Generally FGMs 
are used as composite structures exposed to high 
temperature conditions and various applications. FGM 
materials are having certain characteristic property changes 
continuously in space either in thickness or in- plane 
direction. Thus it is overcoming the shortcoming of 
traditional composite materials. 

1.1 Material Property Idealization 

FGM is formed by gradually varying the material 
composition. This can be achieved by varying the volume 
fraction distribution of component materials continuously 
and varying the mechanical and thermal properties 
simultaneously. The mathematical idealization of this non-
homogeneous material property is done by assuming the 
FGM specimen as homogeneous, and defining the mechanical 
property variation according to corresponding relations.  
The material properties and volume fraction variations are 
calculated by different methods. 

1.1.1 Power law function (P-FGM) 

This method is the simplest and the one which is extensively 
used in literature. In this method, material properties and 
volume fraction vary across the thickness. The variation of 
material properties across the thickness (from metal surface 
to ceramic surface) is given by, 
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Figure 1.1 : Representation of Plate geometry 
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Where, 
z is the axis in thickness direction. 
E and  are Young’s modulus and coefficient of  thermal 
expansion.   
h is the total thickness of the plate. 

 
Figure 1.2 : Variation of Volume fraction Vf 

 

Vf is the volume fraction of the ceramic surface, and p is 
power law index or material property gradient index. The 
subscripts c and m represent the components of ceramic and 
metal, respectively. 
At bottom layer, z = -h/2, Ez = Em 

At top layer, z = h/2, Ez = Ec 

1.2 Temperature Dependent Property 
FGM are new composite materials which have been 
researched and developed for the parts that need to be 
temperature resistant. The temperature effect has significant 
influence on behaviour of FGM. A new method for evaluating 
the temperature dependency of FGM was proposed by 
Touloukian (1967)  
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Where  
P(T) is the relevant material property at temperature T. 
P-1, P0, P1, P2 and P3 are constants in the cubic fit of the 
material property and temperature. 
The effective property that depends on both temperature 
and position is expressed as, 

      (z, )eff m c m fp T P T P T P T V    

Where Vf is the volume fraction using power-law function 
and independent of temperature.  

1.3 Thermal Considerations 
Mechanical stress analysis alone is not sufficient for analysis 
of laminates that have been used at temperature different 
from the design operating temperature. In such cases, 
thermal stresses arise and must be accounted for. Variations 

in temperature results in two effects which are to be 
considered. First is, most material expands on heating and 
contracts on cooling, and this expansion is proportional to 
temperature change in most cases. Strain due to temperature 
change is added to the strains due to mechanical loading. 
Thermal strain can be expressed as 

   T T    

Where, 
  is the coefficient of thermal expansion. 

T  is the temperature difference from reference state. 
The second relates to strength and stiffness. On heating most 
materials become soft, weak and ductile. For stress analysis, 
the strength and the modulus of elasticity of the material at a 
temperature at which the structure is anticipated to perform 
in acquiring the natural frequency, or determining the 
buckling load of a cooled or heated structure is used. In an 
orthotropic material like composite, three different 
coefficients of thermal expansion and thermal strains can 
occur in all the orthogonal direction. There are no thermal 
effects in shear. 

2. THEORETICAL FORMULATION 
An all-side simply supported configuration is selected for the 
analysis. The displacement field assumed in sinusoidal shear 
deformation theory proposed by Zenkour is adopted. For 
buckling analysis, equilibrium equations are obtained using 
Principle of minimum potential energy. For simplicity, 
material properties; Poisson’s ratio, coefficient of thermal 
expansion and Young’s modulus are assumed to be 
temperature independent. 

2.1 Geometry of sandwich plates 
The sandwich plate is made of three isotropic layers of 
thickness h, width of band length a . 

 

Figure 2.1 : Geometry of the FGM sandwich plate 

The four edges of the FGM sandwich plate are simply 
supported. It is defined in the (x,y,z) coordinate system with 
x- and y-axes located in the middle plane (z= 0) with origin p 
at the corner of the plate. The external boundaries of the 

plate are defined by  / 2z h  . The vertical positions of 

the bottom plane, both the interfaces between core and faces 
parts, and top plane are respectively denoted 
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by 0 1 2 3/ 2,  ,   / 2h h h h and h h   . The face layers are 

composed of FGM in which material properties vary evenly 
in the thickness direction (z) only. The FGM are made of 
metal and ceramic mixture and the core is completely 
ceramic. It is assumed that the gradation is varied from the 
interfaces to the bottom and top planes, i.e. bottom 

 / 2z h   & top  / 2z h  surfaces are metal-rich 

and the interfaces (h1, h2) are ceramic-rich. The thermal and 
mechanical properties of FGMs are computed from the 
volume fraction of the material composition. Poisson’s ratio 
m is assumed to be constant, and the other material 

properties for every layer n, like the Young’s modulus 
 n

E  

and coefficient of thermal expansion 
 n

  at a point are 

generally assumed according to power law.  
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where subscripts m and c represent metal and ceramic 

respectively, and 
 n

V  represents volume fraction of nth 

layer and its value is equal to unity in the core (i.e.
 2

1V  at 

1 2h z h  )while it follows a simple power law through-

the-thickness of the bottom and top layers that takes the 
form; 
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Where p refers to the parameter which indicates the power-
law index whose values are greater than or equal to zero. 
The core is independent of p value as it is fully ceramic. The 
p value with zero indicates a homogeneous isotropic ceramic 
plate and the value with infinity indicates a metal–ceramic–
metal (m–c–m) sandwich plate. 

2.2 Strain Displacement Relations 
The relation of the strains at whichever point within the 
plate and the corresponding deformations are functions of 
the assumed displacement fields with the definitions of 
strains for the linear theory of elasticity. The general linear 
strain-displacements relations are given as follows 
[Timoshenko and Goodier 1982] 
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The six quantities, i.e. three unit elongations in x, y, z 

directions ),,( zyx  , and three unit shear 

strains ),,( xzyzxy   in three orthogonal planes, are called 

components of strain at a point. 

The stress-strain relations according to the general theory of 
elasticity are: 
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…(5.13) 

For FGM the ijQ matrix is given as follows, 
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…(5.14) 
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In which  is the effective thermal coefficient and  T z  is 

the temperature change which is given by     iT z T z T   , 

where Ti and T(z) are the initial and the current 
temperatures respectively. And E(z) is determined by 
power-law function. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 06 | June 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 5255 

The stress resultant components for the FGM plate with 
thickness ‘h’ are given as: 
 

*

2
*

*

2

2

2

* 2

*

2

1 sin

1 cos

h
x x x

y y y

h

xy xy xy

h
x x

y y

h

xy xy

h

xzx x

yzhy y

N N
h z

N N dz
h

N N

M

M z dz

M

Q Q z
dz

Q Q h















 









   
      

      
     

  

   
   

   
   
   

      
      

      







 

 

 

0

0

0

0

2
*

1 2 32

2

2
*

1 2 32

2

2
*

2 4 52

2

2
*

2 4 52

2

1 ( ) ( )

1 1

1 ( ) ( )

1 1

1 ( ) ( )

1 1

1 ( ) ( )

1 1

x

y

h

x x x

h

h

y y y

h

h

x x x x

h

h

y y y y

h

x

z E z Tdz
N D D k D k

z E z Tdz
N D D k D k

z z E z Tdz
M D D k D k

z z E z Tdz
M D D k D k

N




 




 




 




 









    
  

    
  

    
  

    
  









0

0

2
* *

3 5 62

2

2
* *

3 5 62

2

1 ( ) ( ) ( )

1 1

1 ( ) ( ) ( )

1 1

h

x x x

h

h

y y y y

h

z z E z Tdz
D D k D k

z z E z Tdz
N D D k D k

 


 

 


 





    
  

    
  





 

 

 

 

 

 

0

0

0

*

1 2 3

*

2 4 5

* *

3 5 6

* 7

* 7

1

2 1

1

2 1

1

2 1

2 1

2 1

xy xy xy xy

xy xy xy xy

xy xy xy xy

x x

y y

N D D k D k

M D D k D k

N D D k D k

D
Q

D
Q
















    

    

    

 


 


    

Where, 

****** ,

,

,
000000

xxx

xyyyxx

xyyyxx

kkkkkk

kkkkkk

yyy












 

   

   

   

   

2 2

1 2

2 2

2 2
2

3 4

2 2

22 2

5 6

2 2

2
2

7

2

                            

sin       

sin        sin

cos

h h

h h

h h

h h

h h

h h

h

h

D E z dz D E z z dz

h z
D E z dz D E z z dz

h

h z h z
D E z z dz D E z dz

h h

z
D E z dz

h





 

 



 

 

 



 

 
  

 

    
     

    

 
   

 

 

 

 



 

2
*

2

1 sin ( )

0

h

T T T A

h

h z
N M N C z T z

h









 
              

  



 

These thermal stress resultants are the functions of the 

incremental temperature ( )T z  
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2.3 Equations of Equilibrium 
The Principle of Minimum Potential Energy (PMPE) is used 
to derive the equations of equilibrium 
The potential energy   for a plate element is given by, 

ex eyU V W W       

Where, 
U is the Strain energy of the plate due to deformation 
V is the Potential energy due to the in-plane thermal stress  
Wex is Work done by edge stress on x (constant) 
Wey is Work done by edge stress on y (constant)  
For Equilibrium, the total potential energy    must be 
stationary. i.e.,  

( ) 0ex eyU V W W         

In analytical form Minimum Potential Energy (PMPE) can be 
expressed as: 
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 ' ' ' ' ' '
ex ey x x y y xy xy

x y z x y z

(U W W )dV dV 0               
    

The individual terms can be estimated as: 

x x y y z z xy xy xz xz yz yz

x y z

U ( ) dx dy dz                  
 

The second term in the potential energy equation is the 
potential energy due to the in-plane thermal 

stresses
'
x

'
y and '

xy  produced by in-plane thermal 

moments and 
'
x , '

y , '
xy  are in-plane strains due to 

transverse deflection w and are expressed as follows: 

 ' ' ' ' ' '

22

' ' '0 0 0 0

  

22

0 0 0 0

1
     2

2

1
     2

2

x x y y xy xy

x y z

x y xy

x y z

xT yT xyT

V dxdydz

w w w w
dxdydz

x y x y

w w w w
N N N

x y x y



     

  

       

          
          

           

        
       

        

  



 x y

dxdy
 
  
  



 

Applying  operation, the above equation becomes,  

 

0 0 0 0 0 0

 

2 2 2

0 0
0 0 02 2

 

2

1
     2 2 4

2

2

xT yT xyT

x y

xT xyT yT

x y

xT

w w w w w w
N N N dxdy

x x y y x y

w w w
V N w N w N w dxdy

x x y y

w
V N



   



                
                

                

        
         

        


 






2 2

2 2
2                                     xyT yT

w w
N N wdxdy

x x y y


  
  

    

 
 

Where, 
h/2

x y xy x y xy

h/2

N N N [ ] dz



         
 

Wex and Wey represents the work done by edge stresses on 
edges, x=constant and y= constant respectively. 

 

1
( )

2
ex x xy xz

y z

W u v w dydz      

 

1
( )

2
ey y xy yz

y z

W v u w dzdx       

Rewriting the equation yield the following: 

Substituting the proper strain expressions and then 
integrating along the thickness gives the stress resultants 
and integrating the resulting expression by parts and 

substituting coefficients of 0u , 0v , 0w , x and 

y equal to zero, the following expressions are obtained 

which constitute the equilibrium equations for buckling 
analysis. 
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2 22 2 2 2
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


 

 

 
 

 

    
     

      


  

 

 
  

 

   

3. NAVIER SOLUTION TECHNIQUE 

The FGM plate structure considered in the present work is of 
simply supported boundary condition. Such supports imply 
the following boundary conditions: 
  
At edges x = 0 and x = a; 

00 v  00 w  0x  0xM  0xN    

At edges y = 0 and y = b; 

00 u ; 00 w  0y  0yM   0yN    

The generalized displacement field is expanded in double 
Fourier series to satisfy the assumed boundary conditions 
and is written as, 

0 0

1 1 1 1

0 0

1 1 1 1

0 0

1 1

cos sin           cos sin

sin cos            sin cos

sin sin                                             

mn x xmn

m n m n

mn y ymn

m n m n

mn

m n

u U x y x y

v V x y x y

w W x y

     

     

 

   

   

   

   

 

 

 

 



 

 

                        

 

b

n

a

m

where





  ,

 

Now the expressions for the curvature and slopes are 
substituted in the stress resultant-mid plane strain 
relationship and the relation can be written as, 

22
' ' '
x y xy

1 w 1 w w w

2 x 2 y x y

         
              

         

  

/2

2 2 2

/2
2 2
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2

x x y y z z xy xy xz xz yz yz
h

x y

h
xT xyT yT

dxdydz

w w w
N N N wdxdy

x x y y

           



     
 
  

   
       

 



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To solve the equilibrium equations, Substitute into the first 
equilibrium equation: 

: 0
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


 

 

 

 

 

2 2 2 3 3

1 1 22 2 2 2 3 2

22 2

3 32 2 2

1 1 1 1
:  

2 2 11 1

1 1 1
  0

2 2 11

yx x

u u v w w
D D D

x yx y x x y

D D
x yx y



 

 



          
        

             

   
     

         

 

Substituting Navier’s solution form: 
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On simplification: 
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After following the steps, the solution is obtained in the 
following form: 
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[G] represents the coefficient matrix due to in-plane thermal 
forces , also called geometric stiffness matrix. Thermal stress 

resultants for an assumed rise in temperature T  is used to 
compute the coefficients of geometric stiffness. 
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Lowest Eigen value  for the problem and thermal stresses 

are determined. 
 
The critical temperature Tcrof the plate is calculated from 
thermal stress 
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[X] is the coefficient matrix and its elements are given as: 
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4. CONCLUSIONS 
 
 Analytical formulation and stability analysis of functionally 
graded sandwich plates under various types of thermal 
loading using Sinusoidal shear deformation theory with five 
degrees of freedom are presented. The gradation of the 
properties through the thickness is supposed to vary as per 
to Power Law function (only modulus of elasticity and 
coefficient of thermal expansion is varied and Poisson's ratio 
is assumed to be constant for metal and ceramic). Based on 
the investigation completed and numerical outcomes 
obtained, the following conclusions are made: 

 The critical buckling temperature of homogeneous 
plates is found to depend only on the coefficient of 
thermal expansion. 

 As the ceramic content of the sandwich plates 
increases by reducing the power law index, the 
buckling strength is seen to be enhanced. 

 The critical buckling temperature Tcr for the FGM 
plates are normally higher than that of 
homogeneous plates. FGM plates have numerous 
points of interest as a temperature resistant 
material, yet it is necessary to check their strength 
due to buckling failure. 

 Assuming Non-Linear temperature variation 
through thickness results in higher values of critical 
buckling temperature for FGM plates 
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